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Abstract
Biodiversity surveys of Arctic soil ecosystems are limited. Here, we provide a sequence-based inventory of soil fauna from 
an Arctic tundra ecosystem near the Canadian High Arctic Research Station in Cambridge Bay, Nunavut. Invertebrate com-
munities were extracted at a vegetated and non-vegetated site in three replicates and inventoried using 18S metabarcode 
sequencing. A total of 361 amplicon sequence variants (ASV) were identified and assigned to the closest matching taxonomic 
orders, most of which belonged to the Nematoda and Arthropoda. Vegetated soils showed no significantly higher ASV 
richness relative to non-vegetated soils although they contained a significantly higher diversity of arthropod taxa including 
insects, mites, and springtails. Most taxa were found only at a single location and even samples from the same site displayed 
distinct communities, suggesting that belowground species richness in Arctic tundra habitats is highly heterogeneous. Pre-
serving soil biodiversity in a changing Arctic is essential for Inuit communities who rely on intact tundra ecosystems for 
their health and wellbeing.
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Introduction

The importance of belowground biodiversity for terrestrial 
ecosystem functioning is well-established (Bardgett and van 
der Putten 2014; Lefcheck et al. 2015), and much recent 
focus has been put to investigate drivers of biodiversity loss 
(Duncan et al. 2015). Our understanding of soil commu-
nity composition and the individual species’ components 

has increased rapidly following the application of genomic 
techniques (Geisen et al. 2019), stable isotope work (Ferlian 
et al. 2015), and network analyses (Derocles et al. 2018; 
Ramirez et al. 2018). Yet, specific taxonomic knowledge is 
still very limited in many belowground systems (Tedersoo 
et al. 2014) and the biotic diversity of soil ecosystems is 
often overlooked in conservation policy (Guerra et al. 2021).

The association between the loss of soil biodiversity 
and a resulting loss of soil function is well demonstrated 
(Wagg et al. 2014). Key functions provided by healthy soil 
ecosystems include nutrient cycling and carbon sequestra-
tion (Koltz et al. 2018) in both natural and agricultural sys-
tems (Bender et al. 2016). Unfortunately, such functions are 
diminished as soil ecosystems become degraded, polluted, 
or over-exploited—leading to a loss of soil biota (Amundson 
et al. 2015). Human-caused changes in land use and cli-
mate directly influence soil food webs and can impact their 
resistance and resilience to climate change (de Vries et al. 
2012; Griffiths and Philippot 2013). Biodiversity loss further 
directly threatens the ability of these systems to respond to 
environmental changes, particularly climate extremes (Isbell 
et al. 2015).

Arctic ecosystems are particularly vulnerable to global 
and local human activity as they are experiencing some of 
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the most rapid climate warming (Post et al. 2009). Climate 
change has resulted in risks to Indigenous country food sys-
tems through more unpredictable environmental conditions 
(Statham et al. 2015), a trend that is predicted to continue 
(IPCC 2022). Many Arctic regions are also seeing a rapid 
increase in the exploitation of their terrestrial environments 
for natural resources (Kumpula et al. 2011) and agriculture 
(Stephen 2018). The potential effects of these further envi-
ronmental changes on the biota of previously uncultivated 
soils could be dramatic. The introduction of non-native spe-
cies as a result of global warming is predicted to further 
endanger endemic species’ diversity and lead to shifts in 
species’ ranges (Nielsen and Wall 2013).

Concurrently, Arctic soil ecosystems have a legacy of 
habitation by humans, including Inuit (Keith et al. 2007), 
and provide a critical link in supporting traditional country 
foods such as caribou and muskox. Socio-economic devel-
opment of high Arctic regions is predicted to intensify the 
use of natural resources and lead to a degradation of these 
environments (Ehrich et al. 2019). Links between changes in 
micro-invertebrate species’ composition and risks to Indig-
enous food security have already been demonstrated (Kafle 
et al. 2020). Potential development in the north thus needs 
to be guided by an understanding of the diversity of soil 
invertebrates (free-living and parasitic), especially in high 
Arctic regions (Bach et al. 2020). Inventories of invertebrate 
diversity also compliment traditional Indigenous knowledge 
in Arctic communities, which focus on stewardship of the 
natural environment (Gadgil et al. 1993).

There is an urgent need to assess the species’ diversity 
of soil invertebrates in Arctic regions and to identify poten-
tial or ongoing risks related to human activities (Pentinsaari 
et al. 2020). Recent large-scale analysis has shown that 
nematode densities in sub-Arctic regions are the highest 
worldwide (van den Hoogen et al. 2019). However, much 
of this diversity has not been classified taxonomically and 
knowledge of the ecological roles of many of these groups 
is very limited. Currently, invertebrate diversity inventories 
in the Canadian Arctic are only available at some long-term 
research sites (Rich et al. 2013) and for some highly local-
ized sites (Culjak Mathieu 2020). Unfortunately, this may 
lead to a biased understanding of patterns of biotic diversity 
across the whole Arctic (Metcalfe et al. 2018), and may not 
allow local Indigenous communities to identify and respond 
to threats to their soil ecosystems. Over the last years, a 
framework for generating and curating these data is emerg-
ing (Ramirez et al. 2015). This has led to a more compre-
hensive understanding of climate and vegetation effects 
(Bastida et al. 2020) as well as distribution patterns of soil 
invertebrates in the Arctic (Phillips et al. 2019; Gillespie 
et al. 2020).

Sequencing environmental DNA directly from soils can 
provide an assessment of belowground diversity for Arctic 

soil invertebrates (Bik et al. 2012) and has been suggested as 
a tool specific for the monitoring of polar ecosystems and the 
detection of invasive species (Czechowski et al. 2017). Fur-
ther, such genomic inventories can provide critical insights 
into the complexity of these different ecosystems, such as 
the presence of predatory or parasitic species’ guilds (Creer 
et al. 2016). The composition of invertebrates in Arctic 
soils is known to vary depending on soil type (Hansen et al. 
2016) and varying habitats respond differently to environ-
mental change (Coulson et al. 1993). Baseline inventories 
and subsequent monitoring of soil invertebrates is crucial to 
understanding the broader consequences of environmental 
change for soil ecosystems, especially in the Arctic (Høye 
and Culler 2018).

Here, we extracted and sequenced communities of eukar-
yotes from soil that was collected from vegetated and non-
vegetated sites near the Canadian High Arctic Research 
Station in Iqaluktuuttiaq (Cambridge Bay), Nunavut. This 
region has been populated by hunters of fish, seal, muskox, 
and caribou for an estimated 4000 years (Kitikmeot Her-
itage Society 2012). Soil inventories therefore provide a 
taxonomic overview of community structure and diversity 
for an Arctic tundra system that has been managed under 
Indigenous stewardship for thousands of years. It contributes 
to building a comprehensive framework of the biodiversity 
in this community, relevant to larger vertebrate species and 
aboveground diversity that provides subsistence for the Inuit 
people of this region.

Methods

Two sites with differing vegetation cover were identified 
near the Canadian High Arctic Research Station (CHARS) 
in Cambridge Bay, Nunavut (vegetated site: 69° 07′ 52.4′′ 
N 105° 03′ 36.8′′ W, non-vegetated site: 69° 07′ 52.3′′ N 
105° 03′ 24.3′′ W, see Fig. 1). Three soil samples were col-
lected from each site in July 2019. Samples at each site were 
collected within a 50 m radius, selected based on above-
ground plant coverage, with Samples V1–V3 obtained from 
soils with vascular plant coverage and Samples NV4-NV6 
obtained from soils from frost-eroded areas with little plant 
coverage (Fig. 1c, d). The three vegetated samples repre-
sented the main plant associations observed on the local 
tundra system, namely: true sedges (Carex spp.) for Sam-
ple V1; a mixture of other sedge grasses and peat moss at 
Sample V2; and mixed shrub/sedge grass cover for Sample 
V3. For each sample approximately 250 g of the topsoil was 
taken from directly underneath any present vegetation (at 
the soil surface), and collected to a depth of 10 cm. Each 
sample was placed into a sterile plastic bag, homogenized 
and transported in insulated containers to CHARS prior to 
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freezing and subsequent transportation frozen (< − 10 °C) 
to Brigham Young University (BYU) for further analyses.

Once at BYU, a modified sugar-flotation protocol was 
used to extract micro-invertebrates larger than 40 µm from 
100 g of soil from each sample (Freckman and Virginia 
1993). DNA was extracted from each sample using a Qia-
gen DNEasy Blood and Tissue kit (QIAGEN, Germantown, 
MD), modified by crushing any organisms collected by 
centrifugation with a sterile pestle before proceeding as per 
the manufacturer’s instructions. Sequence libraries were 
constructed using 10 µL of the resulting 100 µL product, 
which were amplified using standard Illumina sequencing 
primers and amplicon primer sequences for the 18S small 
ribosomal subunit marker (18S) as described in Caporaso 
et al. (2012). The 18S region amplified is the one recom-
mended by the Earth Microbiome Project (Thompson et al. 
2017) for identification of micro-eukaryotes commonly 
found in soils (forward primer 1391f: GTA​CAC​ACC​GCC​
CGTC; reverse primer EukBr: TGA​TCC​TTC​TGC​AGG​
TTC​ACC​TAC​), and reference databases for this riboso-
mal sequence are increasingly found in the literature (Obiol 
et al. 2020). Sequencing primers and Illumina barcodes 
were removed before subsequent analysis using cutadapt 
(v3.2) (Martin 2011). Resulting metabarcoding reads were 
filtered, trimmed, and clustered to amplicon sequence vari-
ants (ASVs) using the DADA2 pipeline (v1.18) (Callahan 
et al. 2016) in R (v. 4.0.4). Reads were quality filtered and 
truncated at 140 base pairs for the forward and reverse 
compliment strands to each pair. DADA2 was used for sub-
sequent alpha and beta diversity analyses and taxonomic 
assignment to both the SILVA (v 1.32, Quast et al. 2013) 

and PR2 (v 4, Guillou et al. 2013) databases. Specifically, 
both the absolute richness (Observed Features) as well as 
two abundance-controlled metrics (Shannon and Simpson 
diversity) are used to provide a ranking of the diversity 
of the individual samples (Lande et al. 2000). Commu-
nity dissimilarities were investigated using phylogeneti-
cally naïve (Bray–Curtis distance) and phylogenetically 
informed distance metrics, using both abundance weighted 
and unweighted options (weighted and unweighted UniFrac 
distance, Lozupone and Knight 2005). Distance metrics 
were displayed in non-metric multidimensional scaling 
plots to observe the similarities in community composition 
between samples (Clarke 1993). Maximum likelihood phy-
logenetic trees were constructed with the phyloseq package 
(v. 1.34) (McMurdie and Holmes 2013) in R.

ASVs with poorly resolved taxonomic resolution in 
the Silva and PR reference databases were further blasted 
to the NCBI Nucleotide database (Schoch et al. 2020) 
(May 20th 2021) to be assigned to the taxonomic level for 
which consensus existed in this database (no other orders 
showed up as BLAST hits with a score higher than 200). 
No finer resolution than order-level taxonomy was derived 
from NCBI BLAST classification; hits to environmental 
sequences were excluded.

Following preliminary analyses, we found that Nem-
atoda and Arthropoda were the two most commonly 
sequenced taxa in each sample. Accordingly, the relative 
frequency of sequences and the diversity of Nematoda and 
Arthropoda were separately considered across the samples 
to investigate the similarities in invertebrate community 
composition between soil types.

Fig. 1   Tundra ecosystem of 
Cambridge Bay. a The tundra 
around Cambridge Bay displays 
a heterogenous landscape. b 
Google Earth © image display-
ing the hamlet of Cambridge 
Bay and the study area shown in 
blue. c, d Example of vegetated 
(c) and non-vegetated (d) soil 
types and sample collection 
method
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Results

Quality control and data retention

Total reads per sample were 39,286, 41,915, 43,318, 66,907, 
59,489, and 41,217 for Samples V1–V3 and NV4–NV6, 
respectively, before trimming, for a total of 292,132 reads. 
Supplementary Fig. 1 shows data loss during filtering and 
trimming using the DADA2 pipeline (Callahan et al. 2016). 
Out of 420 resulting amplicon sequence variants (ASVs) 
sequences 59 were identified as chimeras and removed, mak-
ing up 3.83% of total reads. After chimera removal the total 
of reads across all samples was 176,650, for a data loss of 
just under 40% (see supplementary Fig. 1 for data loss in 
each step).

Taxonomic diversity

Based on an initial taxonomic assignment 113 out of 361 
total ASVs were identified to the taxonomic Order level 
in the Silva database, increasing to 147 out of 361 ASVs 
by combining the Silva and PR databases. Including the 
NCBI Blast search resolved another 106 ASVs to the Order 

level, totaling 253 out of 361 ASVs resolved, including all 
but three of the 50 most common ASVs across all samples. 
Taxonomic insecurities for the remaining 108 ASVs and 
the inability to assigned detected taxa to a higher reso-
lution than order level was made difficult by the lack of 
genomic references for Arctic soil biota. The 18S primers 
developed for the Earth Microbiome Project are designed 
to capture a very broad range of eukaryotic diversity but 
as a result lack the power to resolve species’ taxonomic 
diversity at a very fine scale (Pawlowski et al. 2012).

The most abundant ASV at the non-vegetated site 
belonged to the phylum Nematoda, while at the vegetated 
site Arthropoda made up most of the reads (See sup-
plementary Fig. 2). Platyhelminthes were only found at 
the vegetated site, and annelid DNA was recovered from 
Sample V1 only. Across all samples, the other most com-
mon phyla after Nematoda and Arthropoda were Rotifera, 
Platyhelminthes, Ascomycota, Annelida, and Tardigrada. 
Figure 2 presents the results of taxonomic identification 
across all samples for these seven most abundant phyla, 
which make up between 90 and 95% of the total reads 
for each sample (See Supplementary Fig. 2 for abundance 
relative to total reads).

Fig. 2   Relative proportion of the most common phyla. Relative abun-
dance is calculated as the proportion of reads of each of the seven 
included Phyla to the total number of reads of only those seven Phyla: 
Annelida, Arthropoda, Ascomycotes, Nematoda, Platyhelmintha, 
Rotifera, and Tardigrada. The non-vegetated sites (NV4, NV5, and 
NV6) showed a higher relative abundance of nematodes than arthro-

pods as compared to the vegetated sites, while Platyhelminthes and 
annelids were only found in vegetated soils (at all three sites and in 
the Carex vegetation cover site only, respectively). Sample vegeta-
tion: V1) True sedge grasses (Carex spp.), V2) Sedge grass and peat 
moss, V3) Mixed sedge/shrub cover, V4:V6) Non-vegetated soil
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Nematodes

Figure 3 shows the distribution of nematode orders across 
the two sites. Nematode diversity was not significantly 
higher in vegetated than non-vegetated soils (one-tailed 
t-test, p < 0.05). The most common ASV in the entire data-
set belonged to the Enoplida and was highly abundant in all 
three non-vegetated soils while very rare in the soils with 
vegetation cover. While most enoplids are marine in origin, 
some members of this genus occur as free-living bacteriv-
orous nematodes in soils (Smythe 2015). The third most 
common ASV belonged to the Araeolaimida and was highly 
abundant across all six samples. Araeolaimids are also com-
monly seen as marine free-living nematodes, with some in 
the order observed living in soils as free-living bacterivores 
(Yeates 1988). While these two free-living nematode exam-
ples occurred in most soil samples, other nematode ASVs 
were highly restricted to either site or to a single sample, 
such as the most common nematode ASV (belonging to 
Enoplida), the sixth (belonging to Mononchida), and eighth 
(belonging to Tylenchida) most common ASVs all being 
highly abundant in the non-vegetated site but nearly absent 
from any of the vegetated soils (see supplementary Table 1).

Arthropods

Figure 4 shows the distribution of arthropod orders across 
the two sites. A higher diversity of arthropod ASVs was 

found in the vegetated soils than in non-vegetated soils (one-
tailed t-test, p < 0.05). Samples NV4–NV6 showed a high 
similarity in arthropod diversity, with a similar composi-
tion of collembolan and sarcoptiform arthropods. However, 
most collembolan ASVs were unique to one or two samples, 
except for the most common collembolan ASV which was 
present in Samples V1, NV4, NV5, and NV6. Trombidiform 
mites and any insects such as Diptera were only present in 
the vegetated soils, which were also the only samples to 
share the presence of the most common platyhelminth, as 
well as some other platyhelminths occurring only in a single 
sample. Generally, the vegetated site showed a much higher 
abundance of arthropod DNA, except for a single collem-
bolan ASV in Sample NV5 that made up around 20% of total 
sample abundance.

Inter‑site comparison

Seven ASVs were present in all samples, six of which were 
among the 30 most common ASVs. Of the 361 total ASVs, 
247 were unique to a single sample and a further 31 and 18 
ASVs were specific to either the vegetated or non-vegetated 
sampling sites, respectively. The remaining 65 ASVs were 
not restricted to a single sample or site. However, many were 
only present in very low abundances in the vegetated soils 
(as was the case for some of the most common nematode 
taxa in the non-vegetated soils). The total number of reads 
that were limited to a single sample or site was 32.17%, 

Fig. 3   Diversity of nematode orders and their relative abundance. The 
much larger proportion of nematode reads in the non-vegetated soil 
samples is composed mostly of a few very abundant groups in the 

Araeolaimida, Desmodorida, and Enoplida. Sample vegetation: V1) 
True sedge grasses (Carex spp.), V2) Sedge grass and peat moss, V3) 
Mixed sedge/shrub cover, V4:V6) Non-vegetated soil
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indicating that most taxa were relatively rare across samples. 
Strictly sample-specific taxa made up approximately 16% of 
total read copies, but more than two-thirds of the number of 
ASVs identified in this study.

Figure 5 shows the alpha diversity distribution across the 
six samples, including the observed features measure (A) 
and Shannon and Simpson diversity metrics which account 
for the proportional abundance of species (Shannon 1948). 
The sample with a Carex dominated ground cover (Sam-
ple V1) consistently showed high diversity compared to the 
other communities, while Sample NV6 (non-vegetated) had 
the fewest observed features and a low biodiversity index.

Patterns of community clustering are shown in Fig. 6 
for several measures of beta diversity. Two of the vegetated 
soils (Samples V2 and V3) clustered together in all NMDS 
plots, and a general distinction between the non-vegetated 
(Samples NV4–NV6) and the vegetated (Samples V1–V3) 
site was observed across all plots. The three vegetated soil 
samples also show higher within-group differences. The 
Carex-covered soil community (Sample V1) specifically 
was less similar to the other two samples from the same 
site, potentially caused by the effects of vegetation cover 
on community composition. Both inter-site and intra-site 
comparisons are broadly consistent between the different 
distance metrics used and these patterns were also consistent 
when considering nematode and arthropod diversity sepa-
rately (Supplementary Figs. 3 and 4, respectively).

Figure 7 shows the phylogenetic relationship between the 
identified nematode and arthropod groups and their presence 
across the two sites. While monophyletic groups of arthro-
pods can be identified as present only in vegetated soils (all 
Diptera, Hemiptera, and a subset of Collembola) most nema-
tode clades are shown to be present in both soil types.

Discussion

The composition of the samples we analyzed showed a high 
degree of heterogeneity. 247 out of 361 total ASVs identi-
fied are unique to a single sample. The ecological niches of 
endemic taxonomic orders can be used as indicators for food 
web structure (Ferris et al. 2001), although it is important 
to caution against over-interpreting relative abundance data 
obtained from metabarcoding (see Schenk et al. 2019). Nem-
atodes such as Rhabditida and Tylenchida are shown here 
to be prevalent in non-vegetated soil samples and are likely 
to be free-living bacterivores (Qing and Bert 2019), while 
Dorylaimida are seen more frequently in the three samples 
from the vegetated site where they comprise free-living or 
plant and animal parasitic groups (Lee 2002). Most Mon-
onchida are predators and observed in non-vegetated soils 
(Ahmad and Jairajpuri 2010), occupying a higher level in the 
food chain in these ecosystems. Few Trombidiformes were 
found at the non-vegetated site while making up roughly one 

Fig. 4   Diversity of arthropod orders and their relative abundance. 
Unvegetated soil samples’ arthropod communities were limited to 
very few groups of collembolans and sarcoptiformes, while vegetated 
soils showed a diversity of insect groups (Diptera, Hemiptera, and 

Hymenoptera) and a high abundance of sarcoptiform mites. Sample 
vegetation: V1) True sedge grasses (Carex spp.), V2) Sedge grass and 
peat moss, V3) Mixed sedge/shrub cover, V4:V6) Non-vegetated soil
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Fig. 5   Alpha diversity at six different sites as measured by the 
Observed Features metric, Shannon diversity index and Simpson 
diversity index. Site color is based on soil type (red = vegetated soils, 
blue = non-vegetated soils). Site V2 and NV66 consistently show 
lower diversity due to the high abundance of relatively few phyla, 

with Site NV5 showing the highest overall number of features but a 
more even distribution of diversity in Site 1. Sample vegetation: V1) 
True sedge grasses (Carex spp.), V2) Sedge grass and peat moss, V3) 
Mixed sedge/shrub cover, V4:V6) Non-vegetated soil

Fig. 6   Beta diversity community similarities as shown by NMDS. 
Beta diversity indices are: Bray–Curtis distance (A), Unweighted 
UniFrac distance (B), Weighted UniFrac distance (C), and Jensen-
Shannon distance (D). Samples colored-coded by soil type (red = veg-

etated soils, blue = non-vegetated soils). Sample vegetation: V1) True 
sedge grasses (Carex spp.), V2) Sedge grass and peat moss, V3) 
Mixed sedge/shrub cover, V4:V6) Non-vegetated soil
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third and one fourth of ASV reads in the vegetated Samples 
V2 and V3, respectively, suggesting that only vegetated soils 
host enough prey items for these predatory mites (Seniczak 
et al. 2020). Sarcoptiform mites were instead found at both 
the vegetated and non-vegetated site and are mainly expected 
to have a mycophagous and saprophagous ecology in the 
Arctic (Young et al. 2012).

The composition of arthropods in these soils show dis-
tinct communities exist between the vegetated and non-
vegetated sites, with only three out of the 25 total types of 
Collembola shared between the two soil types, and three 
out of 12 total mite taxa. Many of the arthropod ASVs were 
only found in a single sample, indicating that some ASVs 
were potentially associated with specific plant communities, 

similar to patterns observed for bacterial and fungal diversity 
elsewhere in the Arctic (Bölter 2003). Both phylogenetic 
trees indicate a high degree of heterogeneity of nematode 
and arthropod taxa in these soils, particularly among the 
rarer observed ASVs in this study. Arthropod species with 
such patchy distributions are suggested as key indicator spe-
cies of changing Arctic ecosystems as they are likely to be 
highly vulnerable to climate changes and invasive species 
(Hodkinson et al. 2013; Gillespie et al. 2020).

These ecosystems are warming rapidly and resulting 
declines in biodiversity and biomass have been demon-
strated aboveground (CAFF 2013)—with further declines 
predicted (Niittynen et al. 2018). However, the below-
ground components of these ecosystems are generally 

Fig. 7   Phylogenies of all col-
lected nematode and arthro-
pod ASVs and their presence 
in the different soil types. 
139 nematode ASVs and 51 
arthropod ASVs are displayed 
in an unrooted phylogeny 
to indicate the relationships 
between the diversity found in 
the two soil types. Images are 
of a collembolan and nematode 
representative of the Kitikmeot 
region of Nunavut, licensed 
by the University of Waikato, 
New Zealand and the Centre for 
Biodiversity Genomics, Guelph, 
CA—respectively. Green dots 
indicate the ASV was found in 
a vegetated soil sample while 
orange dots indicate its presence 
in one of the non-vegetated 
soils. Size of the dots indicate 
the number of reads found in 
that sample. Colored boxes 
indicate taxonomic order. Gray 
lines are unassigned, blue lines 
deviate from the group other-
wise indicated by color
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less well known. The diversity of belowground systems 
is a driving force behind the above-ground diversity of 
plants (Frouz 2018) and is therefore of great importance 
in supporting country food such as muskox and cari-
bou. Arctic microinvertebrates have also been shown to 
directly affect this food supply through the transmission 
of diseases such as brucellosis in wild muskox (Tomaselli 
et al. 2019), and arthropods such as biting flies can cause 
behavioral changes in large mammals (Witter et al. 2012). 
Soil microbiota thus play key roles in Arctic foodwebs 
supporting the health and wellbeing of Indigenous com-
munities (Pedersen et al. 2020). Understanding the dis-
persal mechanisms (Coulson et al. 2003) and responses 
of below-ground fauna to climate and vegetation changes 
(Joly et al. 2009) can provide Indigenous communities 
with crucial knowledge for responding to changing envi-
ronmental conditions.

Our study provides an inventory of belowground inver-
tebrate diversity from the Canadian central Arctic. Many 
of the ASVs we identified in this study were found only 
in a single sample and point to a high degree of heteroge-
neity on the small spatial scale at which we investigated 
these belowground invertebrate communities. While some 
ecological information can be inferred from metabarcod-
ing (Makiola et al. 2020), the incomplete nature of publicly 
available genetic repositories and biases in geographic and 
taxonomic representation can reduce confidence in individ-
ual species identification and their function in local habitats. 
Similar and ongoing studies for above-ground invertebrate 
communities (Pentinsaari et al. 2020) have also highlighted 
similar issues with existing morphological and molecular 
taxonomic databases. Our study and ongoing genomic and 
taxonomic characterization of the eukaryotic soil diversity 
in the Arctic are first steps in redressing this knowledge gap.
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