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Abstract
Cold-adapted bacterial strains are potentially valuable for biotechnological applications involving the production of cold-
active enzymes and bioproducts important to various industries. A psychrotolerant, aerobic, Gram-positive, endospore-
forming, bioemulsifier-producing strain, named Val9, was isolated from Vale Ulman soil samples, King George Island, 
Antarctica and identified as a member of the genus Psychrobacillus. To better characterize this novel strain, its whole genome 
was sequenced revealing a size of 3,986,526 bp with a G + C content of 36.6%, and 4042 predicted coding DNA sequences 
(CDSs). Digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses between strain Val9 and 
the type strains of the seven Psychrobacillus species revealed that the highest values were observed with Psychrobacillus 
psychrodurans  DSM11713T but below the conventional thresholds of 70% dDDH and 95% ANI for bacterial species assign-
ment, suggesting that strain Val9 could represent a distinct species. As potential low-temperature adaptation strategies, 
genes encoding cold shock proteins, transporters for glycine-betaine, carnitine and choline, and enzymes acting against 
oxidative stress were found in Val9 genome. DEAD-box RNA helicases, important for cold and oxidative tolerance, and a 
two-component signal transduction system related to plasmatic membrane fluidity as well as biotechnologically important 
CDSs, related to levan production, were detected. The sacB gene encoding the enzyme levansucrase was exclusive for Val9 
and it was not found in the other Psychrobacillus type strains. Altogether, the comparative genomic analyses presented here 
highlight important metabolic pathways and the biotechnological potential of this novel strain.
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Introduction

The species Bacillus psychrotolerans and Bacillus psy-
chrodurans were described as psychrotolerant species of 
the genus Bacillus in 2002 (Abd El-Rahman et al. 2002). 
Some decades before, Bacillus insolitus was proposed as a 
psychrophilic species whose strains were isolated from soil 
(Larkin and Stokes 1967). After a detailed polyphasic taxo-
nomic study of these Bacillus species—using the type strains 
B. insolitus DSM  5T, B. psychrotolerans DSM  11706T, and 
B. psychrodurans DSM  11713T—the three species were 
considered distinct from other members of Bacillus rRNA 
group 2. As a result, the genus Psychrobacillus was created 
in 2010, with B. insolitus as the type species of the genus 
(Krishnamurthi et al. 2010). The new genus Psychrobacillus 
was described harboring Gram-positive, endospore-form-
ing motile rods, and strictly aerobic bacteria. Their G + C 
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content of the genomic DNA ranged from 35.7 to 36.6 mol%, 
and the three species shared high 16S rRNA gene sequence 
similarities among them (97.8–99.7%) (Krishnamurthi et al. 
2010). Later, new Psychrobacillus species were described: 
Psychrobacillus soli (Pham et al. 2015), Psychrobacillus 
lasiicapitis (Shen et al. 2017), Psychrobacillus vulpis (Rod-
ríguez et al. 2020), and Psychrobacillus glaciei (Choi and 
Lee 2020). Therefore, currently, the genus Psychrobacillus 
is composed of seven validly published species (lpsn.dsmz.
de/genus/psychrobacillus). Strains belonging to different 
species of Psychrobacillus were isolated worldwide from 
different kinds of soils (Krishnamurthi et al. 2010; Pham 
et al. 2015), from feces of a red fox (Rodríguez et al. 2020), 
the head of an ant (Shen et al. 2017), and an iceberg in Ant-
arctica (Choi and Lee 2020). Vollú et al. (2014) described 
the isolation of 80 spore-forming and cold-adapted bacte-
rial strains from nine different soil samples of King George 
Island, in maritime Antarctica, including different Psychro-
bacillus strains.

It is widely known that spore-forming and cold-adapted 
bacterial strains are resistant to harsh conditions, and they 
are also potentially valuable for biotechnological applica-
tions involving the production of cold-active enzymes and 
bioproducts important to food, pharmaceutical, cosmetics, 
fine chemical, and other industries (Margesin et al. 2005; 
Kuddus 2018; Al-Maqtari et al. 2019). Therefore, the inter-
est in cold-adapted microorganisms has increased in an 
attempt to contribute for a potential source of cold-active 
biomaterials. For example, Vollú et al. (2014) determined 
the ability to produce extracellular enzymes (esterase, casei-
nase, amylase, and gelatinase), antimicrobial substances 
(against Staphylococcus aureus and Candida albicans), and 
biosurfactants in all spore-forming bacterial strains isolated 
from Antarctic soils.

One strain denoted as Val9 (Vollú et al. 2014)—previ-
ously identified as Bacillus psychrodurans and later reclas-
sified as Psychrobacillus sp.—was chosen for further stud-
ies as it was able to produce a bioemulsifier (BE) in low 
temperatures, in laboratory conditions. Bioemulsifiers 
derived from microbial sources can be used more efficiently 
in the food and drug industries than synthetic emulsifiers, 
because of their nutritional benefits (Alizadeh-Sani et al. 
2018). Bioemulsifiers are considered high molecular weight 
biopolymers or exopolysaccharides (EPS), constituted of 
complex mixtures of heteropolysaccharides, lipopolysac-
charides, lipoproteins, and/or proteins (Uzoigwe et al. 2015). 
Alasan (Navon-Venezia et al. 1995), emulsan (Rosenberg 
et al. 1979), and levan (Haddar et al. 2021) are examples of 
well-studied bioemulsifiers. Conversely, studies of bioemul-
sifiers produced by cold-adapted bacteria are still incipient. 
Therefore, a more in-depth study of strain Val9 may provide 
a new model strain for basic and biotechnological research 
within the genus Psychrobacillus. Performing a comparative 

analysis of the genomes of the different Psychrobacillus spe-
cies, we can contribute not only for the taxonomy but also 
for the biotechnological relevance of the genus.

Herein, we report the genomic characterization of the 
psychrotolerant strain Val9, which was isolated from soil 
collected in Vale Ulman, King George Island, Antarctica, 
highlighting important metabolic pathways and pieces of 
evidence that suggest its identification as a novel Psychro-
bacillus species.

Materials and methods

Bacterial strain, culture conditions, and DNA 
extraction

The bacterial strain studied here—Val9—was isolated from 
Vale Ulman soil samples, King George Island, Antarctica 
(Vollú et al. 2014). A map showing the location of the study 
site is shown in Online Resource 1. Strain Val9 was stored 
in trypticase soy broth (TSB) containing 20% glycerol at 
− 80 °C. The same medium was used for growth at 15 °C 
for 48 h.

DNA from strain Val9 was isolated according to the 
method described in Seldin et al. (1998). Further purification 
steps were those described in Seldin and Dubnau (1985). 
The DNA was quantified spectrophotometrically using a 
Qubit™ fluorimeter (Thermo Fisher Scientific, MA, USA).

Sequencing of 16S rRNA encoding gene from strain 
Val9 and phylogenetic analysis

The gene encoding 16S rRNA from Val9 was amplified by 
PCR using the pair of universal primers pA and pH and the 
conditions described in Massol-Deya et al. (1995), and the 
products sequenced using Macrogen (South Korea) facili-
ties. For phylogenetic tree analysis, the sequences of closely 
related Psychrobacillus strains were recovered from Gen-
Bank database and aligned to the sequence obtained in this 
study using the online Multiple alignment program MAFFT 
version 7 (https:// mafft. cbrc. jp/ align ment/ softw are/). The 
phylogenetic analyses were performed using the RaxML-
HPC2 model in CIPRES Science Gateway (Miller et al. 
2010), with the phylogenetic tree inference using maximum 
likelihood/rapid bootstrapping run. The sequence generated 
in this study was deposited in NCBI GenBank under acces-
sion number KF026354.1.

Genome sequencing and assembly

The amount of 5 μg μl-1 of gDNA was considered for the 
construction of paired-end sequencing libraries (2 × 150 bp) 
of 450 bp insert length following the manufacturer's protocol 

https://mafft.cbrc.jp/alignment/software/
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for the NEBNext® Fast DNA Fragmentation and Library 
Preparation Kit (New England Biolabs Inc., MA, USA). 
Final library-quality analysis was performed via 2100 bio-
analyzer (Agilent Technologies, CA, USA) with read length 
gDNA size control using agarose gel electrophoresis. All 
samples were sequenced on the Illumina Hi-Seq 2500 plat-
form as recommended by the manufacturer.

The genome assembly process started checking the 
quality of the reads through FastQC (Andrews 2010) and 
Adapter Removal to remove the bases with quality below 
Phred 20 (Lindgreen 2012) softwares. The estimated best 
five k-mers were selected by KmerStream (Melsted and 
Halldórsson 2014) after checking the values from 7-mers to 
127-mers, followed by the assembly using SPAdes with the 
five best k-mers (Bankevich et al. 2012).

Average nucleotide identity (ANI) and digital DNA–
DNA hybridization (dDDH)

The reference draft genomes of P. psychrodurans DSM 
11713 (NZ_FOUN00000000.1), P. psychrotolerans DSM 
11706 (NZ_FOXU00000000.1), P. glaciei PB01 (NZ_
CP031223.1), P. soli NHI-2 (NZ_VDGG00000000.1), P. 
insolitus DSM 5 (NZ_QKZI00000000.1), P. lasiicapitis 
NEAU-3TG517 (NZ_VDGH00000000.1), and P. vulpis 
Z8 (NZ_VDGI00000000.1) were downloaded from NCBI 
(www. ncbi. nlm. nih. gov/ refseq). The Val9 genome was com-
pared with the seven related type strains using the JSpe-
ciesWS database (http:// jspec ies. riboh ost. com/ jspec iesws/) 
with two alignment algorithms: mummer (ANIm) and blastn 
(ANIb).

DNA digital hybridization (dDDH) was performed using 
the Genome-to-Genome Distance Calculator—GGDC 2.1 
(Meier-Kolthoff et al. 2013) provided by Leibniz on the 
DSMZ Institute website (http:// ggdc. dsmz. de/ distc alc2. php) 
with the recommended parameters and/or default settings.

Genome annotation

The automatic annotation of the Val9 genome and related 
Psychrobacillus strains was performed using the RAST 
online server (Aziz et al. 2008) and GOFEAT (http:// compu 
tatio nalbi ology. ufpa. br/ gofeat/). KEGG (www. genome. jp/ 
kegg) and Metacyc (https:// metac yc. org/) databases were 
used for the manual annotation and the construction of the 
metabolic pathways. The pathways according to genome 
annotation of strain Val9 were created with BioRender.com.

Comparative genomics

A comparative genome map was plotted through a 
BLASTN-based ring generated by BLAST ring image gen-
erator (BRIG) version 0.95 (Alikhan et al. 2011) to compare 

the draft genomes of the seven Psychrobacillus type strains. 
The Psychrobacillus strain Val9 was used as reference. The 
prediction of orthologous genes among the Psychrobacil-
lus genomes was performed using the software program 
OrthoFinder v2.5.4 (Emms and Kelly 2015). A manual 
annotation of proteins was also performed using GO FEAT 
and BLASTp, and KEGG database (www. genome. jp/ kegg) 
was used to understand the possible metabolic pathways in 
which some proteins are embedded.

Results

Phylogenetic analysis of 16S rRNA encoding gene

Results of BLAST sequence analyses of the 16S rRNA 
encoding gene (1474 bp) indicated that the strain, previ-
ously isolated from Antarctic soil and named Val9 (Vollú 
et al. 2014), is related to members of the genus Psychroba-
cillus (Fig. 1). Its closest relatives were P. psychrotolerans 
DSM  11706T, P. psychrodurans DSM  11713T, and P. glaciei 
 PB01T, with 99.92, 99.79, and 99.25% gene sequence simi-
larities, respectively.

Genome sequence analyses

The draft genome sequence of strain Val9 was determined 
in this study, and the Whole Genome Shotgun project has 
been deposited at DDBJ/ENA/GenBank under the accession 
number JAIZDB000000000. The version described in this 
paper is version JAIZDB010000000. The genome of strain 
Val9 reveals 3,986,526 bp with a G + C content of 36.6%, 
and a total of 4042 coding DNA sequences (CDSs) were 
predicted. The identified CDSs were classified into subsys-
tems, such as carbohydrates (174 CDSs), amino acids and 
derivatives (273 CDSs), protein metabolism (146 CDSs), 
RNA metabolism (60 CDSs), and stress response (48 CDSs) 
(Online Resource 2).

In an attempt to phylogenetically classify the proteins 
encoded in the Val9 genome within the genus Psychrobacil-
lus, the orthologous groups were predicted using the seven 
type strain genomes available for the genus. The analyses 
revealed 265 proteins found exclusively in Val9, but 199 pro-
teins showed to be hypothetical ones (Online Resource 3).

To elucidate the taxonomic relatedness between Val9 
and the other known Psychrobacillus species, the ANI and 
dDDH values were determined between strain Val9 and 
the other seven type genomes of the members of the genus 
Psychrobacillus (Table 1). The ANI values varied between 
75.95 and 85.46% considering ANIb and 83.98–87.37% 
in ANIm. These values are considered below the accepted 
threshold for species delimitation using ANI (95–96%). 
Moreover, the in silico DDH results were in all cases lower 

http://www.ncbi.nlm.nih.gov/refseq
http://jspecies.ribohost.com/jspeciesws/
http://ggdc.dsmz.de/distcalc2.php
http://computationalbiology.ufpa.br/gofeat/
http://computationalbiology.ufpa.br/gofeat/
http://www.genome.jp/kegg
http://www.genome.jp/kegg
https://metacyc.org/
http://www.genome.jp/kegg
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than 70% which is the cutoff value for species delineation. 
The highest dDDH value was 37.30 (34.8–39.8) observed 
between Val9 and P. psychrodurans DSM  11713T (Table 1). 
Both ANI and DDH results suggest that strain Val9 could be 
considered as a new species of the genus Psychrobacillus.

Genome features

Metabolism

The analysis of the Val9 genome revealed the presence 
of some transporters, such as PTS (Phosphoenolpyruvate-
dependent sugar phosphotransferase system) and ATP-
binding Cassette (ABC) types, which act in the transport 
of several types of sugars such as d-glucose (EC 2.7.1.-), 

d-fructose (EC 2.7.1.-), d-galactose (EC 7.5.2.11), maltose 
(EC 7.5.2.1), and lactose (EC 7.5.2.2) (Fig. 2). In addition, 
Val9 utilizes sugars, such as d-glucose and d-fructose, 
through the Embden-Meyerhoff glycolytic pathway and 
the non-oxidative pentose phosphate pathway, generat-
ing pyruvic acid. As part of the oxidative metabolism, 
Val9 can convert pyruvate into acetyl-coenzyme A, and it 
will be converted into citrate through the enzyme citrate 
synthase (EC 2.3.3.1) to carry out the tricarboxylic acid 
(TCA) cycle (Fig. 3).

The presence of two enzymes related to an alternative 
way of the TCA cycle—succinyl-CoA/3-ketoacid CoA 
transferase (EC 2.8.3.5) and malate/quinone oxidoreduc-
tase (EC 1.1.5.4)—were found in Val9 genome analyses.

Fig. 1  Multiple alignment of the 16S rRNA encoding gene of Psy-
chrobacillus sp. Val9 and related species. The maximum likelihood 
tree was constructed based on GTRGAMMA distribution. GenBank 
accession number of each sequence is shown in parenthesis. Boot-

strap values are expressed as percentages of 1000 replications, and 
are shown at branch points. Bacillus licheniformis ATCC  14580T was 
used as outgroup. Bar substitutions per nucleotide position

Table 1  dDDH and ANI values between Val9 and closely related species. Numbers between brackets after dDDH values are the confidence 
intervals

The numbers between parentheses after values of ANIb and ANIm are % of conserved aligned DNA between two genomes

Reference genomes Accession number DDH (%) ANIb ANIm

Psychrobacillus psychrodurans DSM 11713 FOUN01000007.1 37.30 [34.8–39.8] 85.46 (61.55) 87.37 (60.74)
Psychrobacillus psychrotolerans DSM 11706 FOXU01000007.1 36 [33.6–38.6] 85.25 (62.61) 86.98 (61.19)
Psychrobacillus vulpis Z8 VDGI01000018.1 26.50 [24.2–29] 76.01 (51.83) 83.98 (13.32)
Psychrobacillus lasiicapitis NEAU-3TGS17 VDGH01000003.1 26.40 [24–28.9] 76.24 (55.62) 84.00 (15.11)
Psychrobacillus soli NHI-2 VDGG01000009.1 29.90 [27.5–32.4] 76.67 (54.03) 84.10 (15.11)
Psychrobacillus insolitus DSM 5 QKZI01000006.1 25.70 [23.4–28.2] 76.32 (45.69) 85.01 (11.69)
Psychrobacillus glaciei PB01 NZ_CP031223.1 30.50 [28.54–31.9] 75.95 (51.79) 84.12 (12.64)
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Fig. 2  Export and biosynthesis 
of some nucleotide sugars in 
strain Val9. The strain Val9 
possesses the following 
enzymes according to genome 
analyses: 1: β-galactosidase 
(EC 3.2.1.23); 2: Glucokinase 
(EC 2.7.1.2); 3: α-glucosidase 
(EC 3.2.1.20); 4: Phospho-
glucomutase (EC 5.4.2.2); 5: 
UTP–glucose-1-phosphate uri-
dylyltransferase (EC 2.7.7.9); 6: 
Galactokinase (EC 2.7.1.6); 7: 
UTP-hexose-1-phosphate uridy-
lyltransferase (EC 2.7.7.10); 8: 
UDP-glucose 4-epimerase (EC 
5.1.3.2); 9: Glucose-6-phos-
phate isomerase (EC 5.3.1.9)

Fig. 3  Biosynthesis of EPS, assembly and transportation in strain 
Val9. 1: Glucose-1-phosphate thymidylyltransferase (EC 2.7.7.24); 2: 
dTDP-glucose 4,6-dehydratase (EC 4.2.1.46); 3: Bifunctional UDP-

N-acetylglucosamine diphosphorylase/acetylglucosamine 1-phos-
phate uridylyltransferase (EC 2.7.7.23)
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Finally, oxaloacetate generated in the TCA cycle can be 
converted into phosphoenolpyruvate in gluconeogenesis, 
generating glucose. The electrons generated in glycolysis 
and in TCA cycle are directed to the electron transport chain, 
divided into four complexes. In the end,  O2 is used as the 
final acceptor and ATP is produced.

Adaptations to cold environments

Different adaptive mechanisms to low temperatures were 
observed in the Val9 genome. First, CDSs codifying cold 
shock proteins (CSPs), the CspA family, were found. Val9 
genomic analyses also identified DEAD-box RNA helicases 
(EC 3.6.4.13), important to cold and oxidative tolerance.

A two-component signal transduction system was 
detected in strain Val9 related to membrane plasmatic flu-
idity: DesK, a kinase sensor (EC 2.7.13.3) and DesR, a 
response regulator (EC 2.7.13.3). DesR binds to the des 
gene and starts the transcription of des-Δ5-lipid desaturase 
(EC 1.14.19.30). Furthermore, a fatty acid desaturase (EC 
1.14.19) which catalyzes the insertion of a double bond at 
the delta position of fatty acids and is also related to the 
increase of the fluidity of membranes was also identified 
in Val9.

As a response to oxidative stress, strain Val9 produces the 
enzymes catalase (EC 1.11.1.6) and superoxide dismutase 
(EC 1.15.1.1). The enzyme catalase acts as an antioxidant, 
which catalyzes the conversion of hydrogen peroxide  (H2O2) 
into water  (H2O) and molecular oxygen  (O2), neutralizing 
the toxic effects caused by hydrogen peroxide on cells. 
Superoxide dismutase acts similarly to catalase, converting 
superoxide radicals to molecular oxygen. A peptide methio-
nine sulfoxide reductase (EC 1.8.4.12) encoded by the msrB 
gene was also found and might play an important role as 
a repair enzyme for proteins that have been inactivated by 
oxidation. Furthermore, Val9 strain also showed a tellurite 
resistance protein (TerD).

Several genes encoding proteins involved in adaptation 
to osmotic stress are also present in the Val9 genome. CDSs 
that encode types of transporter proteins for osmolytes were 
found, with the function of acting as osmoprotectors. ABC-
type transporters have been identified for glycine-betaine 
(EC 7.6.2.9), involved in protection in environments with 
high osmolarity. Under stress conditions, bacteria make 
use of this transport system to accumulate glycine-betaine 
(OpuD), and other solutes that provide osmoprotection. 
Besides, another transporter was also identified, BCCT 
(Betaine/Carnitine/Choline Transporter), as well as potas-
sium uptake proteins, TrkH and TrkR, and a system trans-
porter. The presence of genes encoding Na + /H + antiporter 
NhaC related to adaptation to alkaline pH was also detected.

Finally, the protein arginine kinase (EC 2.7.3.3) is present 
in strain Val9 and catalyzes the specific phosphorylation of 

arginine residues in a large number of proteins. The arginine 
kinase is part of the bacterial stress response system, and it is 
involved in the regulation of many critical cellular processes.

Bioemulsifier production

The genome analyses of the Val9 strain identified CDSs 
related to exopolysaccharides (EPS) production. The syn-
thesis of a precursor molecule is necessary for the stepwise 
elongation of the polymer strands. This step happens with 
various enzymatic transformations inside the cell. The step 
of precursor starts when glucose-6-phosphate is converted 
into glucose-1-phosphate, which generates the intermediates 
UDP-glucose and UDP-galactose, including UDP-glucose 
4-epimerase (GalE) (EC 5.1.3.2) and UTP-glucose-1-phos-
phate uridylyltransferase (EC 2.7.7.9) for biosynthesis. 
The acetyl-CoA is converted to UDP-N-acetylglucosamine 
(UDP-GlcNAc), another intermediate of EPS biosynthesis, 
by bifunctional protein UDP-N-acetylglucosamine pyroph-
osphorylase/glucosamine-1-phosphate N-acetyltransferase 
(GlmU) (EC 2.7.7.23). These enzymes were also found in 
the other seven Psychrobacillus type strains in accordance 
with their genome annotation, suggesting a complete bio-
synthetic way to EPS production (Fig. 4).

The second step is the polymerization of EPS chain 
occurs in intramembrane space by the action of some gly-
cosyltransferases (EC 2.4.1.-), which can transfer the addi-
tional monosaccharides to the nascent polysaccharide chain 
linked on undecaprenol intermediate. The Val9 strain pos-
sesses the enzymes diacylglycerol kinase (EC 2.7.1.107) and 
undecaprenol kinase (EC 2.7.1.66) for undecaprenol syn-
thesis. Its genome also showed the presence of sugar trans-
ferases encoded by epsF and epsD genes, possibly involved 
in EPS chain length determination. Because the absence 
of genes that encode for sucrase enzymes (EC 2.4.1.362), 
we believe that EPS biosynthesis occurs in intracellular 
medium. The export across plasmatic membrane to the 
extracellular medium is the third step on EPS biosynthe-
sis. Some ABC-transporters evolved in EPS export were 
found, such as Carbohydrate Uptake Transporter-1 Family 
(TC 3.A.1.1.-), indicating that follow the ABC transporter-
dependent pathway, and translocation across the periplasm 
through tetratricopeptide repeat (TPR) (Fig. 3).

The Val9 genome analyses showed CDSs related to 
levan—a polysaccharide composed of (β2 → 6)-linked 
fructofuranosyl residues branched through (β2 → 1) link-
ages—production. These CDSs include the sacB gene that 
encodes the enzyme levansucrase (EC 2.4.1.10) which syn-
thesizes polymers of fructose through a transfructosylation 
reaction using sucrose as a fructose donor. In this study, 
levansucrase was found in none of the seven type strains of 
the Psychrobacillus species.
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The similarity among regions involved in BE produc-
tion between strain Val9 and related species is highlighted 
on the comparative genome map (Fig. 4). The regions of 
UTP-glucose-1-phosphate and sugar transferase (EpsD) 
showed nucleotide similarity higher than 50% among the 
compared genomes. No similarity was found when galac-
tokinase (which catalyzes the first reaction in the galactose 
metabolism pathway, the ATP-dependent phosphorylation of 
galactose, yielding galactose-1-phosphate) and levansucrase 
(which catalyzes the conversion of sucrose to glucose) were 
compared between the Val9 genome and those of strains 
P. psychrodurans DSM  11713T, P. psychrotolerans DSM 
 11706T, P. insolitus DSM  5T and P. glaciei  PB01T.

Discussion

Psychrophilic and/or psychrotolerant bacteria are considered 
as a promising source for novel products such as bioactive 
compounds and other industrially relevant substances/com-
pounds (Al-Maqtari et al. 2019; Dhakar and Pandey 2020). 
Strain Val9, a spore-forming and psychrotolerant bacterial 
strain isolated from an Antarctic soil (Vollú et al. 2014), 
was considered potentially valuable for biotechnological 

applications. This strain produced a bioemulsifier (BE) in 
low temperatures, in laboratory conditions, what motivated 
its better taxonomic and genetic characterization.

Phylogenetic analysis of 16S rRNA encoding gene indi-
cated that the strain is related to members of the genus Psy-
chrobacillus. This genus was created in 2010, harboring 
some species of the genus Bacillus and considering B. insoli-
tus as the type species of the genus (Krishnamurthi et al. 
2010). However, the ANI and dDDH values—determined 
between strain Val9 and the other seven type genomes of 
the members of the genus Psychrobacillus—suggested that 
strain Val9 could be considered as a new species of the genus 
Psychrobacillus. The accepted threshold for species delim-
itation using ANI is 95–96% (Richter and Rosselló-Móra 
2009) and the highest ANI values obtained here were about 
85% considering ANIb and 87% in ANIm. Moreover, the in 
silico DDH results were in all cases lower than 70%, which 
is the cutoff value for species delineation (Goris et al. 2007). 
Nonetheless, its physiological, biochemical, and chemotaxo-
nomic characterization are still necessary for describing new 
taxa of aerobic, endospore-forming bacteria (Logan et al. 
2009).

Strains belonging to Psychrobacillus are strictly aero-
bic according to the genus description by Krishnamurthi 

Fig. 4  Genomic context of different genes related to bioemulsifier production. Psychrobacillus sp. Val9 (inner circle) was used as a reference for 
multiple alignment. Colored regions represent similarities higher than 50% determined by BLASTn
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et al. (2010). Val9 genome annotation showed that it can 
convert pyruvate into acetyl-coenzyme A, as part of the 
oxidative metabolism. Citrate will be formed through the 
enzyme citrate synthase (EC 2.3.3.1) to carry out the tri-
carboxylic acid (TCA) cycle. In silico studies of P. glaciei 
strain  PB01T demonstrated the presence of three enzymes 
related to an alternative way of the TCA cycle: ferredoxin-
dependent 2-oxoglutarate oxidoreductase (EC 1.2.7.11), 
succinyl-CoA/3-ketoacid CoA transferase (EC 2.8.3.5), 
and malate/quinone oxidoreductase (EC 1.1.5.4) (Choi 
et al. 2020). Although the authors considered the presence of 
these enzymes in the other Psychrobacillus type strains, only 
succinyl-CoA/3-ketoacid CoA transferase and malate/qui-
none oxidoreductase were found in Val9 genome analyses.

Cold environments pose physicochemical stresses to their 
psychrophile/psychrotolerant habitants, such as low water 
activity, excessive UV radiation, low solute diffusion, and 
low nutrient availability. Therefore, psychrophiles/psychro-
tolerants have evolved adaptive mechanisms by changing 
their genome content to gain high capacity for DNA repair, 
translation, and membrane transport to cope with unfa-
vorable environments (De Maayer et al. 2014; Choi and 
Lee 2020). As expected, different adaptive mechanisms to 
low temperatures were observed in the Val9 genome. For 
example, CDSs codifying cold shock proteins (CSPs), the 
CspA family, act as RNA chaperons destabilizing second-
ary structures (Cardoza and Singh 2021). These cold shock 
proteins encoding genes were also found in P. glaciei PB01 
as a potential low-temperature adaptation strategy (Choi 
et al. 2020). It is also suggested that the cold shock proteins 
bind to mRNA and regulate translation, the rate of mRNA 
degradation, and transcription termination, functions that are 
important during normal growth in cold temperatures (Keto-
Timonen et al. 2016). Val9 genomic analyses also identi-
fied DEAD-box RNA helicases (EC 3.6.4.13), responsible 
for remodeling RNA molecules and in facilitating various 
RNA–protein interactions, and important to cold and oxi-
dative tolerance (Lehnik-Habrink et al. 2013). A fatty acid 
desaturase (EC 1.14.19) which is also related to the increase 
of the fluidity of membranes (Dhaulaniya et al. 2019) was 
also identified in Val9. Finally, strain Val9 produces the 
enzymes catalase (EC 1.11.1.6) and superoxide dismutase 
(EC 1.15.1.1), also as a response to oxidative stress, and a 
tellurite resistance protein (TerD). Tellurite is highly toxic 
to most bacteria due to its strong oxidative ability and ROS 
generation (Nguyen et al. 2021).

Several genes encoding proteins involved in adapta-
tion to osmotic stress were found in the Val9 genome. 
For example, under high osmolarity, bacteria make use of 
ABC-type transport system to accumulate glycine-betaine 
(OpuD) and other solutes that provide osmoprotection. It 
has previously been demonstrated that glycine-betaine 
uptake is accompanied by sodium cotransport (Na +) 

(Annamalai and Venkitanarayanan 2009). Moreover, as 
part of the bacterial stress response system, the Protein-
arginine kinase (EC 2.7.3.3) is present in strain Val9 and 
catalyzes the specific phosphorylation of arginine residues 
in a large number of proteins. Protein-arginine kinase has 
a physiologically important role as it is involved in the 
regulation of many critical cellular processes, such as pro-
tein homeostasis, motility, competence, and stringent, and 
stress responses by regulating gene expression and protein 
activity (Suskiewicz et al. 2019).

Bioemulsifier (BE) production in cold-adapted bacteria, 
especially exopolysaccharides (EPS), provide certain prop-
erties and functions useful to the microorganisms, such as 
production of aggregates, adhesion to surfaces, biofilm 
formation, and emulsification of hydrophobic substrates 
(Poli et al. 2010; Wang et al. 2019). Because of these prop-
erties, BEs also provide a valuable resource for biotech-
nological exploitation. Besides the fact they may not be 
found in traditional polymers of plant origin or mesophilic 
bacteria, BEs produced by cold-adapted bacteria (as Val9 
strain) may remain functional at low temperatures, reduc-
ing the production costs (Freitas et al. 2011; Rizzo and Lo 
Giudice 2020; Rizzo et al. 2020).

As previously observed the production of a bioemul-
sifier in laboratory experiments, we identified CDSs 
related to exopolysaccharides (EPS) production—more 
specifically to levan production—in the genome analyses 
of the Val9 strain. Levan is a polysaccharide composed 
of (β2 → 6)-linked fructofuranosyl residues branched 
through (β2 → 1) linkages. The enzyme levansucrase (EC 
2.4.1.10), which synthesizes polymers of fructose through 
a transfructosylation reaction using sucrose as a fructose 
donor is encoded by the sacB gene (Xu et al. 2021). In this 
study, levansucrase was found in none of the seven type 
strains of the Psychrobacillus species, making it an exclu-
sivity of Val9. Moreover, only few studies have already 
reported levan production in cold-adapted bacteria, such 
Bacillus licheniformis ANT 179 (Xavier et al. 2017) and 
Pseudomonas extremaustralis 2ASCA (Finore et al. 2020). 
The great biotechnological interest in levan production is 
its wide use in many food products. Levan provides emul-
sification, stabilization, and shows thickening properties 
due to its high molecular weight, mechanical, and rheo-
logical properties (Esawy et al. 2013).

Nonetheless, we are aware that the presence of encoding 
genes related to levan production in Val9 genome does not 
guarantee that they are being expressed, and that levan is 
the bioemulsifier produced by Val9. Further studies will be 
developed to characterize the chemical structure and the 
possible applications of this bioemulsifier, contributing to 
a better understanding of the biotechnological potential of 
this bioproduct.
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Conclusion

This study contributes to the knowledge of a novel psychro-
tolerant strain belonging to the genus Psychrobacillus iso-
lated from Antarctic soil. Different genes assigned to strain 
Val9 and presented herein suggest that they play critical 
roles in adapting this strain to extreme environments. Fur-
thermore, the presence of predicted CDSs related to levan 
production highlights its potential for biotechnological 
purposes.
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