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Abstract
Recent discoveries of high levels of biological activity in the Arctic marine ecosystems during the polar night raise ques-
tions regarding the ecophysiology of the pelagic postlarval daubed shanny Leptoclinus maculatus. Of special interest is the 
composition of the lipid sac—a unique feature not found in other Arctic fishes. Analysis of the fatty acid content of major 
classes of lipids as membrane—total phospholipids (PL) and storage—triacylglycerols (TAG) in the different postlarvae 
stages during the polar night is presented in this work for the first time. A high level of monounsaturated fatty acids (MUFAs) 
(71–74% of the total fatty acids (FA) of TAG) was found in the TAG of the L3-L4* postlarvae stages, among which 20:1(n-9) 
(28%) and 22:1(n-11) (27–29%) FAs are trophic biomarkers of the zooplankton Calanus spp. Among the polyunsaturated 
FA (PUFA), the FAs of (n-3) class were dominated (22:6(n-3)—in the PL, and 18:4(n-3)—in the TAG). A decrease in the 
content of the saturated FA (SFA) and an increase in the MUFA in the structural PL during the transition from the postlarval 
to the demersal stage were observed. Our analyses of the FA composition of the lipid sac suggest that the fish continues to 
actively hunt for its preferred prey item Calanus spp. during the polar night.
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Introduction

Pelagic high-latitude marine animals are known to store 
lipid as an adaptive strategy to environmental changes 
on different time scales (Falk-Petersen et al. 2004, 2009). 
The daubed shanny, Leptoclinus maculatus (Fries 1838), 
is a common demersal fish in the Arctic (Makushok 1979; 
Meyer Ottesen et al. 2014). The life history involves a period 

of pelagic postlarvae that lasts from 3 to 5 years, and its 
body (dry weight) consists of 40% lipids (Falk-Petersen et al. 
1986; Murzina 2010; Pekkoeva et al. 2017a; Meyer Ottesen 
et al. 2011, 2018). The abdominal part of the body of the 
pelagic postlarvae contains a morphophysiological structure 
hereafter referred to as a “lipid sac” (Falk-Petersen et al. 
1986; Murzina 2010), which stores lipids as triacylglycerols.

The lipid sac is considered an adaptation for growth 
and development in an environment with strong seasonal 
changes in the food supply (Murzina 2010; Pekkoeva et al. 
2017a, b). The lipid sac begins at the pectoral fins and runs 
to the anus. It is marked by a series of melanophores and 
consists of large, closely packed lipid vacuoles surrounded 
by a simple membrane (Falk-Petersen et al. 1986; Murzina 
2010; Meyer Ottesen et al. 2011). A specific feature of the 
lipid sac of the daubed shanny is that its storage lipids are 
homogenous and do not accumulate in fat cells (adipocytes) 
as they do in adipose tissue (Falk-Petersen et al. 1986; Mur-
zina 2010). For example, the adult Antarctic notothenioid 
fish Pleuragramma antarcticum has intermuscular lipid 
structures, which are lipid sacs that consist of several white 
adipocytes with a large lipid droplet, and whose key function 
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is to maintain the neutral buoyancy of the fish in the absence 
of a swim bladder (Eastman and DeVries 1989).

The primary function of the lipid sac in the daubed 
shanny is considered to be energy storage; however, lipids 
also contribute to buoyancy (Falk-Petersen et al. 1986; Mur-
zina 2010). The melanophores and light refraction through 
the lipid droplets in the pelagic larvae are believed to make 
them inconspicuous to predators (Falk-Petersen et al. 1986; 
Pekkoeva et al. 2017a). This provisory organ is formed in 
the postlarvae stage of the daubed shanny as they begin feed-
ing. Its size and lipid content increase during the prolonged 
pelagic larval development (3 to 5 years). The lipid sac is 
resorbed at the demersal juvenile stage (Meyer Ottesen et al. 
2011). To date, lipid sacs have only been found in Arctic-
dwelling fish of the family Stichaeidae (Falk-Petersen et al. 
1986; Murzina 2010; Meyer Ottesen et al. 2011).

Leptoclinus maculatus postlarvae, feeding mainly on 
Calanus spp., has an important role in the Arctic food web 
transferring high-energy lipids to fish, sea birds, and mam-
mals (Barrett 2002; Hovde et al. 2002; Weslawski et al. 
2006; Labansen et al. 2007). Recent studies have revealed 
high biological activity in the Arctic marine ecosystems 
during the polar night, despite the absence of visible light 
(Berge et al. 2015a, 2015b). Daubed shanny postlarvae are 
a visual predator, which is believed to feed intensely on 
Calanus spp. copepod during summer and winter, to sus-
tain them during the polar night with little or no food. In this 
study, we present new data, on the fatty acid composition of 
phospholipids as structural lipid type and triacylglycerols 
providing energy from the unique lipid sac. The data are 
discussed in relation to the trophic possession, development, 
and function of the biomembrane during the polar night.

Materials and methods

Sampling

Daubed shanny larvae (Fig. 1) were collected during the 
polar night, January 14–20, 2014, from the research vessel 
Helmer Hanssen in fjords on west coast Svalbard (79oN) 
with MIK net, pelagic, and bottom trawl (Table 1, Fig. 2). 
The sea temperature was between 0.6 and 1.9 °C and salinity 
was approx. 34.8 psu. (Table 1).

The stages of development were defined according to the 
classification of Meyer Ottesen et al. (2011). The five devel-
opmental stages (L1, L2, L3, L4, and L5) were identified 
based on the morphological and physiological characteristics 
such as size, weight, colour and body pigmentation, as well 
as conditions of the lipid sac. During the expedition, the 
L4* development stage was distinguished from the L4 and 
L5 stages by a darker body colour, larger body and gills, and 
the presence of a large lipid sac.

Lipid extraction

The lipid sacs of the L3, L4, and L4* development stages 
weres dissected out from the fresh fish as soon as possi-
ble in cold conditions (Fig. 1). To prevent degradation of 
complex lipids, samples were fixed in 96% ethyl alcohol 
(10 ml in each) mixed with 0.001% of BHT as antioxidant 
(Murzina et al. 2013b). In the laboratory, total lipid was 
extracted from the samples stored in chloroform/methanol 
(2:1, v/v) by the method of Folch et al. (1957) and further 
threated as outlined by Murzina et al. (2013b).

Thin‑layer chromatography (TLC)

Gaschromatography

TLC was used for qualitative and quantitative determina-
tion of individual lipid classes as total phospholipids (PL), 
triacylglycerols (TAG), cholesterol (Chol), cholesterol 
esters (Chol esters) and wax esters. Fractionation of total 
lipids was performed on ultrapure glass TLC Silica gel 60 
F254 Premium Purity plates (Merck, Germany). The petro-
leum ether–diethyl ether–acetic acid (90:10:1 by volume) 
solvent system was used. After drying, the chromatogram 
was developed in iodine vapour.

Certain lipids (PL, TAG, Chol esters, and wax esters) 
were quantified using the hydroxamate method that was 
modified by Sidorov et al. (1972), which involves the for-
mation of dark–brown complexes of trivalent iron ions 
with hydroxamic acid through ester bonding between 
the lipids and hydroxylamine (Walsh et al. 1965). The 
stain intensity was measured using a spectrophotometer 

Fig. 1   Leptoclinus maculatus early life stages (L1, L2, L3, L4, L4*, 
L5) (Pekkoeva et al. 2018)
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(SF-2000, OKB “Spectr”, Russia) at a wavelength of 
540 nm. The quantitative determination of Chol was deter-
mined based on the method described by (Engelbrecht 
et al. 1974) using trichloroacetic iron dissolved in perchlo-
ric acid. The stain intensity was measured using a spec-
trophotometer at a wavelength of 550 nm. Lipid classes 
were identified according to the standards of the respective 
studied components (Sigma-Aldrich, USA; Avanti Polar 
Lipids, Inc., USA) taking into account the correspondence 
of the Rf values.

Gas chromatography

Fatty acid spectrum of TAG and PL were analysed by gas 
chromatography. Material for fatty acid methylation of PL 
and TAG were scraped (spots) from the TLC plates. 0.1 mL 
of a solution containing 20 mg/10 mL (behenic FA, C22:0) 
(Sigma-Aldrich, USA) in methanol was added as internal 
standard. Fatty acid methyl esters (FAME) were identified 
using a gas chromatograph “Chromatec-Crystal-5000.2” 
(Chromatec, Russia), with a flame ionization detector and 

a capillary gas chromatographic column Zebron ZB-FFAP 
(Phenomenex, USA).

The mobile phase was nitrogen. The separation mode was 
isothermal, the thermostat temperature of the columns was 
200 °C, the temperature of the detector was 250 °C, and the 
temperature of the evaporator was 240 °C. Under these con-
ditions, the methyl esters of fatty acids were divided accord-
ing to their number of carbon atoms and double bonds. 
Chromatec-Analytik-5000.2 software (Chromatec, Rus-
sia) was used for recording and integrating the data. Fatty 
acid methyl esters were identified with standard mixtures 
of Supelco 37 Components FAME Mix (Sigma-Aldrich, 
USA) and the lengths of the carbon chain and table constants 
were compared according Jamieson (Jamieson 1975). The 
research was carried out using the facilities of the Equipment 
Sharing Centre of the KarRC of RAS.

The results are given as means ± SE (standard error). Dif-
ferences between means of total lipids, lipid classes, and 
fatty acids in the lipid sac were analysed by ANOVA (one-
way) (ANOVA_F_2.25). Differences were considered sta-
tistically significant at p ≤ 0.05. A normal distribution was 
confirmed by Shapiro–Wilk’s test, p > 0.05.

Results

Fatty acid composition of triacylglycerols (storage 
lipids)

We observed large and continuous increases in size 
(Pekkoeva et al. 2018), volume (Fig. 1, Table 1), and lipid 
content of the lipid sac during the development, from L1 
to L5 stages of development. The composition of TAG 
in the lipid sac of the daubed shanny at the L3, L4, and 
L4* developmental stages was dominated by the MUFA, 
with 71–74% of the total FA. SFA and the PUFA con-
tributed much smaller amounts (Table 3). The dominant 
TAG FAs were the 20:1(n-9) (27.5–28.2% of the total 
FA) and 22:1(n-11) (26.9–29.3% of the total FA). In total, 
the 20:1(n-9) and 22:1(n-11) FA accounted for nearly 
60% of the TAG. Among the PUFA, 18:4(n-3), 20:5(n-
3), and 22:6(n-3) FAs were recorded, but their level was 

Table 1   Data of sampling of 
the Leptoclinus maculatus 
postlarvae in Kongsfjord 
(Spitsbergen) during the polar 
night

Stage of development L1 L2 L3 L4 L4* L5

Samples (n) 6 30 40 30 17 17
Length (mm) (Pekkoeva 

et al. 2018)
34 58 65 75 89 90

Equipment MIK net Pelagic trawl Bottom trawl
Depth of sampling (m) 30 125  > 130
Temperature (°C) 0.60–1.90 0.90–1.10 0.60–0.80
Salinity (psu) 34.8 34.8 34.7–34.8

Fig. 2   Map of sampling place of the Leptoclinus maculatus post-
larvae in fjords (Kongsfjord) west coast of West Spitsbergen Island 
(79oN)
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approximately equal or lower than 2% of the total FA of 
TAG. No significant differences in the content of these 
FA among ontogenetic stages were found. The SFAs fea-
turing high levels were 14:0 and 16:0 FA (up to 7–8%).

Fatty acid composition of phospholipids (membrane 
lipids)

The FA composition of phospholipids (PL) at stage L3 
showed a prevalence of SFA (58.1% of the total FA), 
whereas at stages L4 and L4*, the MUFAs were dominant 
(Table 3). A decrease (p ≤ 0.05) in the SFA content (from 

Table 2   The content of lipid 
classes (% of dry weight) in 
the lipid sac of postlarvae 
Leptoclinus maculatus of 
different developmental stages 
(L3, L4, L4 *) from Kongsfjord 
(Spitsbergen) during the polar 
night

c The value significantly differs from that of stage L3 (p ≤ 0.05)
d The value significantly differs from that of stage L4 (p ≤ 0.05)

Stage of development L3 L4 L4*

Total lipids 75.97 ± 2.79 84.63 ± 1.92c 92.32 ± 0.82 cd

Dry mass 24.03 ± 2.79 15.37 ± 1.92c 7.68 ± 0.82 cd

Total lipids/dry mass 3.16 5.51 12.02
Structural lipids
Phospholipids 0.84 ± 0.31 13.11 ± 4.78c 31.01 ± 5.36 cd

Cholesterol 3.42 ± 0.35 11.31 ± 4.36c 4.37 ± 0.89d

Energetic lipids
Triacylglycerols 68.75 ± 2.47 55.15 ± 5.83c 55.95 ± 5.76c

Cholesterol esters and wax esters 2.96 ± 0.42 4.06 ± 1.09 1.01 ± 0.30 cd

Table 3   The content of some 
fatty acids in the composition 
of phospholipids and 
triacylglycerols in the lipid sac 
of the Leptoclinus maculatus 
postlarvae during the polar 
night

SFA saturated fatty acid, MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid
c The value significantly differs from that of stage L3 (p ≤ 0.05). The samples contained other fatty acids, 
the values of that did not exceed 1%: 12:0; 15:0; 17:0; 20:0; 24:0; 16:1(n-5); 18:1(n-5); 22:4(n-6); 22:3(n-
3); 22:4(n-3) FA

Stage Phospholipids Triacylglycerols

L3 L4 L4* L3 L4 L4*

14:0 2.6 ± 0.2 5.5 ± 1.0 6.6 ± 0.5c 7.0 ± 0.1 6.5 ± 0.4 6.0 ± 0.2
16:0 13.2 ± 0.9 11.2 ± 1.0 9.9 ± 0.2c 8.2 ± 0.2 7.7 ± 0.4 7.5 ± 0.1
18:0 6.7 ± 03 3.3 ± 0.6 2.1 ± 0.2 0.9 ± 0.1 0.7 ± 01 0.8 ± 0.0
∑SFA 58.1 ± 2.7 31.6 ± 2.7c 25.9 ± 1.4c 18.9 ± 0.4 16.7 ± 1.0 16.2 ± 0.4c

16:1(n-7) 2.0 ± 0.2 3.5 ± 0.4 5.0 ± 0.3 6.2 ± 0.2 6.4 ± 0.2 7.1 ± 0.2
18:1(n-9) 4.7 ± 0.3 4.5 ± 0.3 4.1 ± 0.1 5.3 ± 0.1 4.6 ± 0.3 4.6 ± 0.1
20:1(n-9) 9.7 ± 0.8 19.4 ± 3.1 24.8 ± 1.4c 27.5 ± 0.2 28.0 ± 0.4 28.2 ± 0.3
22:1(n-11) 7.7 ± 0.7 16.5 ± 2.7 20.4 ± 1.5 26.9 ± 0.6 29.3 ± 0.7 27.8 ± 0.7
∑ MUFA 26.3 ± 1.9 49.7 ± 6.3c 60.6 ± 3.3c 70.7 ± 0.6 73.7 ± 0.4 73.1 ± 1.0
18:2(n-6) 2.3 ± 0.1 1.8 ± 0.3 1.4 ± 0.2 2.2 ± 0.1 1.9 ± 0.1 1.9 ± 0.1
20:4(n-6) 0.1 ± 0.0 0.3 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
∑ (n-6) PUFA 2.3 ± 0.1 5.1 ± 1.1 3.4 ± 0.5 3.0 ± 0.2 2.6 ± 0.1 2.7 ± 0.1
18:3(n-3) 0.4 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.8 ± 0.0 0.5 ± 0.1 0.5 ± 0.1
18:4(n-3) 0.8 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 1.9 ± 0.1 1.7 ± 0.4 2.0 ± 0.4
20:5(n-3) 1.5 ± 0.4 0.8 ± 0.3 0.5 ± 0.1 1.0 ± 0.1 0.7 ± 0.2 1.0 ± 0.3
22:6(n-3) 4.6 ± 0.5 2.8 ± 0.4 2.0 ± 0.2 1.6 ± 0.1 1.3 ± 0.2 1.5 ± 0.3
∑ (n-3) PUFA 7.7 ± 0.9 6.3 ± 1.1 4.6 ± 0.6c 5.8 ± 0.3 4.8 ± 0.7 5.7 ± 1.2
∑ PUFA 15.6 ± 1.1 18.7 ± 3.6 13.5 ± 1.9 10.4 ± 0.5 9.7 ± 0.6 10.7 ± 1.3
∑ (n-3)/∑ (n-6) 3.4 ± 0.3 1.3 ± 0.1 1.4 ± 0.1 2.0 ± 0.1 1.8 ± 0.3 2.0 ± 0.4
∑SFA/∑PUFA 3.7 1.7 c 1.9 c 1.8 1.7 1.5
18:3(n-3)/18:2(n-6) 0.2 0.1 0.1 0.3 0.2 0.3
16:0/18:1(n-9) 2.8 2.4 2.4 1.6 1.7 1.6
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58.1 to 25.9% of the total FA of PL) and a rise (p  ≤ 0.05) 
in the MUFA content (from 26.3 to 60.6% of the total FA) 
by stage L4* were observed. Among the MUFA in the PL, 
the 20:1(n-9) and 22:1(n-11) FAs were prevalent, and their 
levels rose (p ≤ 0.05) from 9.7 to 24.8% of the total FA and 
from 7.7 to 20.4% of the total FA by stage L4*, respectively. 
Remarkably, the content of the palmitoleic 16:1(n-7) FA was 
higher in the TAG (6.2–7.1% of the total FA) compared to 
the PL (2.0–5.0% of the total FA). The prevalent PUFAs 
in PL of the lipid sac of the daubed shanny at stages L3, L4, 
and L4* were FA of the (n-3) class (4.6–7.7% of the total 
FA), primarily attributed to the 22:6(n-3) and 20:5(n-3) FA. 
The 16:0/18:1(n-9) ratio in the PL was 2.4–2.8, which is 
higher than in the TAG (1.6–1.7). In the (n-6) class, linoleic 
acid 18:2(n-6) prevailed in both the PL and TAG.

Discussion

The lipid sac is a provisory organ in daubed shanny lar-
vae, where the substantial amounts of the TAG are stored 
(up to 60% dry weight), while PL, cholesterol esters, and 
cholesterol constitute lower amounts (Falk-Petersen et al. 
1986; Murzina 2010; Pekkoeva et al. 2017a). The lipid sac 
of the daubed shanny larvae in the polar night is charac-
terized by a high content of TAG at the L3, L4, and L4* 
stages of development (68.8, 55.2, 56.0% dry weight, respec-
tively) (Table 2). TAG in the lipid sac of the daubed shanny 
postlarvae at all investigated stages (i.e. L3, L4, and L4*) 
demonstrated the MUFA as the prevailing FA (71–74% of 
the total FA in TAG) (Table 3). Leptoclinus maculatus has 
an important role as an intermediate in the Arctic trophic 
chains, where it simultaneously acts as a predator and prey. 

The MUFA is a main component of storage lipids (Tocher 
et al. 1985; Tocher 2003), and their structure makes them 
energetically important for maintaining the metabolic 
needs of the organism; therefore, MUFAs are mainly used 
as sources of energy (Lloret et al. 2014). The FA composi-
tion of the lipids in fish is strongly dependent on the fatty 
acid composition of their diet (Dalsgaard et al. 2003; Tocher 
2003, 2010; Arts and Kohler 2009; Nemova et al. 2015). In 
Arctic ecosystems, Calanus spp. species are the most impor-
tant herbivorous zooplankter (Søreide et al. 2006; Mayzaud 
et al. 2015) and are the main food item for many Arctic 
pelagic fish, including the daubed shanny postlarvae. Spe-
cies of the zooplankton Calanus also have a lipid sac, where 
lipids are stored (up to 70% dry weight) primarily as wax 
esters (Falk-Petersen et al. 2007, 2009). Calanus copepods 
can de novo synthesize 20:1(n-9) and 22:1(n-11) FA, which 
are reliable trophic biomarkers (Dalsgaard et al. 2003; Sar-
gent and Henderson 1986; Kattner and Hagen 1995). The 
dominant MUFAs in Calanus glacialis, C. finmarchicus, and 
C. hyperboreus are 20:1(n-9), 22:1(n-11), and 16:1(n-7) FAs 

(Lee et al. 2006; Mayzaud et al. 2015), which are transferred 
up the food chain to fish, seabirds, and mammals (Falk-
Petersen et al. 2007). Wax esters from copepods enter the 
body of fish during feeding and converted into membrane 
and reserve lipids. A structure like the lipid sac in polar 
animals is believed to be an adaptation to the cold environ-
ment and the seasonal variations in food availability. Daubed 
shanny is well adapted for reproduction and development 
in northern latitudes (Falk-Petersen et  al. 1986; Meyer 
Ottesen et al. 2011, 2014; Murzina et al. 2012a, b, 2013a). 
Some studies (Mecklenburg et al. 2011a) have shown the 
expansion of its habitat in the seas of the Arctic Ocean. The 
Kongsfjorden–Krossfjorden fjord system is particularly suit-
able for studies of effects of climate changes on ecosystems 
because it lies adjacent to both Arctic and Atlantic water 
masses (Hop et al. 2006). The proportions of copepods, the 
boreal C. finmarchicus, and local Arctic C. glacialis (which 
the daubed shanny postlarvae actively feeding on) are vary-
ing seasonally and annually in Kongsfjorden depending on 
the timing and volume of Atlantic and Arctic water mass 
intrusions (Kwasniewski et al. 2003). Leptoclinus maculatus 
was identified as an indicator species along with other fish 
from the Arctic region for studying variations in the struc-
ture of ecosystems of high latitudes under climatic changes 
(Swanburg et al. 2015).

In earlier studies (Pekkoeva et al. 2017a), we observed 
an increase in the content of 20:1(n-9) and 22:1(n-11) FA 
of the total lipids in the muscles of larvae of the L2 stage, 
likely in connection with the transition to a high-energy diet 
of Calanus spp. zooplankton from the phytoplankton-based 
diet at the L1 stage. These FAs, which are derived from a 
Calanus diet, are mostly included in the TAG of the lipid 
sac (up to 28–29% of the total FA) of L3, L4, and L4*. In 
this study, high amounts of 20:1(n-9) and 22:1(n-11) FA 
(up to 29% of the total FA) were found among MUFA of the 
TAG. In comparison, the content of MUFA in the TAG of 
muscles of the postlarvae (L3-L4* stages) is lower (61–65% 
vs 71–74% of the total FA in TAG of the lipid sac) due to 
20:1(n-9) and 22:1(n-11) FA (22–25% and 17–22%, respec-
tively) (Pekkoeva et al. 2019). The level of 16:1(n-7) FA in 
the TAG of the lipid sac of the daubed shanny postlarvae 
is within 6–7% the total FA in the polar night and 8% in 
the autumn (Falk-Petersen et al. 1986). The 16:1(n-7) FA 
is known to be derived from food and used as a source of 
energy (Tocher 2003). The content of this acid was higher in 
the TAG (6.2–7.1% of the total FA) than in PL (2.0–5.0% of 
the total FA). Most of the dietary FAs are incorporated into 
TAG, unaltered (Sargent et al. 2002; Iverson 2009).

Thus, high levels of 20:1(n-9) and 22:1(n-11), as well 
as 16:1(n-7) FAs in the TAG of the lipid sac of postlarvae 
of the L3, L4, and L4* stages confirm feeding on Calanus 
spp., both in the pelagic zone and near the bottom during 
the polar night. A rise from 26.3 to 60.6% of the total FA 
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was demonstrated for the MUFA content in the PL is due 
to the increase in 20:1(n-9) and 22:1(n-11) FA (from 9.7 
to 24.8%, and from 7.7 to 20.4% of the total FA, respec-
tively. The FA composition of food items of fish is known 
to influence to involvement of individual FA in the adap-
tive transformation of the organism’s biomembranes in 
response to the environment and food (Dalsgaard et al. 
2003; Arts and Kohler 2009; Tocher 2010; Murzina et al. 
2012b; Nemova et al. 2015). It has been suggested that 
the increase of the hydrostatic pressure and low tempera-
ture have the similar effect to the biomembrane (Velansky 
and Kostetsky 2008) that is expessed in the increase of 
MUFA with depth. In our previous research, we found that 
the MUFA/PUFA content in the TL is higher in the arctic 
L. maculatus (Fries 1838) (Isfjord, Spitsbergen) inhabiting 
at 0 ºC temperatures at 206 m compared with the subarctic 
Lumpenus fabricii (Reinhardt 1836) (White Sea) collected 
from two habitats in the temperature range of 5.9–6.7 ºC 
at depths down to 38 m (Murzina et al. 2013b). Despite 
the known genetic determinacy, the FA composition of the 
PL may vary at early ontogenetic stages in fish in response 
to environmental factors (Tocher et al. 2008). The high 
dietary supply of 20:1(n-9) and 22:1(n-11) FA deposited in 
the lipid sac of daubed shanny can influence the FA com-
position of the PL, which are involved in the adaptation of 
biomembranes to extreme environments. A decrease (two-
fold) of the SFA content in the PL (58.1–26% of the total 
FA) in the lipid sac was detected, possibly due to a demand 
for a modification of the FA composition. This implies a 
replacement of SFA with MUFA in the biomembranes in 
the ontogenetic transition from L3 to L4* to a demersal 
stage of life.

The content of PUFA is 2.5-fold lower in the PL and 
seven-folds lower in the TAG of the lipid sacs compared to 
the MUFA content. The PUFA content in the PL is consider-
ably lower in the lipid sac (up to 18.7% of the total FA) than 
in the muscles (up to 45% of the total FA) at these stages of 
postlarval development (Pekkoeva et al. 2019), suggesting 
that they have a major role in maintaining the functioning of 
complex biomembranes. Polyunsaturated fatty acids of the 
(n-3) class were found to prevail over (n-6) PUFA in the PL 
and TAG in the lipid sac.

Very low level of 18:2(n-6) and 18:3(n-3) FA in the PL 
and TAG in the lipid sac (≤ 2.3% of all FA in the total lipids) 
was observed. 22:6(n-3), 20:5(n-3), and 18:4(n-3) FAs pre-
vailed, that is typical for marine organisms at high latitudes 
(Sargent et al. 2002; Burri et al. 2012; Mayzaud et al. 2015), 
which derive the FA from their food. The PL was domi-
nated by 22:6(n-3) (up to 4.6%), and the TAG was domi-
nated by 18:4(n-3) (up to 2.0%). The 22:6(n-3), 20:5(n-3) 
FAs are known to be essential for marine predaceous fish 
and are supplied in large amounts in food, whereas 18:2(n-
6) and 18:3(n-3) FAs are less important for growth and 

development. Marine fish have low capacity to convert these 
FA into highly unsaturated FA (Sargent et al. 1995; Tocher 
2003).

Conclusions

We present, for the first time, data on the FA composition of 
the membranes and storage lipids in the lipid sac of the post-
larvae stages (L3, L4 and L4*) of the daubed shanny during 
the polar night. A distinctive feature of the FA profile of 
the lipid sac in young fish of the daubed shanny is that the 
TAG and PL contain high levels of the MUFA, primarily 
20:1(n-9) and 22:1(n-11) FA, which are biomarkers of the 
zooplankton Calanus spp. The high content of these FA in 
the daubed shanny larvae indicates that Calanus copepods 
are the main food source for juveniles during the polar night. 
These data are important for the analysis of the putative 
pathways of the FA transformations and transfer in the food 
web of the Arctic ecosystem. Data on the fatty acid com-
position of the TAG and PL in the lipid sac of postlarvae 
daubed shanny developing under polar night conditions can 
contribute to the understanding of the role of lipids in the 
early ontogenetic ecological–biochemical adaptations of this 
Arctic fish species whose life cycle has, so far, been poorly 
studied.
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