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Abstract
The survival of the planktonic stages of marine fishes is widely considered to be a bottleneck in recruitment success and is a 
period when fishes are highly sensitive to changes in their environment. In high latitude areas that are forecasted to experience 
warming temperatures, it is critical to determine a baseline of ichthyoplankton assemblages to detect how the ecosystem may 
change in response to shifting conditions. This study used ichthyoplankton data from the eastern Chukchi Sea in the summers 
of 2010–2015 to assess temporal and spatial variation in assemblage structure. Larval densities were examined in relation to 
oceanographic conditions at depth and corresponding water masses. Additionally, the standard lengths of polar cod (Bore-
ogadus saida), a key trophic link in Arctic food webs, were assessed for size-at-catch relationships. In 2010 and 2011, years 
of widespread presence of warm, low salinity bottom water masses such as Alaska Coastal Water, yellowfin sole (Limanda 
aspera) and longhead dab (Limanda proboscidea) dominated the assemblages. In 2012 and 2013, the increased presence 
of colder, more saline Winter Water coincided with a shift to polar cod-dominated assemblages. In 2014 and 2015, water 
masses were less spatially defined and different assemblages, characterized by Arctic sand lance (Ammodytes hexapterus) 
and saffron cod (Eleginus gracilis), were detected than previous years. The greatest range in sizes of polar cod was observed 
in 2014, as well as the highest number of juveniles and age-1 individuals were collected. The biophysical patterns identified 
here support the strong connection between interannual oceanographic conditions and ichthyoplankton assemblages which 
reflect the importance of continuous, multi-year surveys to document assemblage changes in the Arctic.
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Introduction

High latitude coastal seas have been identified as ‘gateways’ 
to the Arctic Ocean (Woodgate et al. 2005; Mecklenburg 
and Steinke 2015) which is characterized by an ocean basin 
200–1700 m deep (Jakobsson 2002). Unlike other Arctic 
seas with deeper bathymetry more similar to the Arctic 
basin, the Chukchi Sea is a unique ecosystem character-
ized by a wide (800 km north to south), shallow shelf with 

over half of the area less than 50 m deep (Hunt et al. 2013; 
Logerwell et al. 2015). The Chukchi Sea extends across the 
continental shelf from Wrangel Island in the west to Point 
Barrow, Alaska in the east and constrained by the narrow 
Bering Strait to the south. This bathymetry creates a unique 
environment relative to other well-studied Arctic seas such 
as the Barents and Beaufort Seas averaging 198 and 1420 m, 
respectively (Jakobsson 2002).

Historically ice-covered and largely inaccessible much 
of the year, the region has posed a considerable challenge 
for the collection of biological data. Although adult fish 
and zooplankton sampling in the Chukchi Sea dates back 
to the mid-1900s (Alverson and Wilimovsky 1966; Ershova 
et al. 2015), the collection of ichthyoplankton did not begin 
until the late 1980s and the taxonomic resolution was 
coarse (Horner and Wencker 1980). Since that time, several 
other studies were conducted before the end of the century 
(Wyllie-Echeverria et al. 1997) but it was not until the early 
2000s that the region became the focus of increased larval 
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sampling. While previous studies described the abundance 
and distribution of larval fishes (Wyllie-Echeverria et al. 
1997; Norcross et al. 2010; Busby et al. in prep.; 2014), an 
extended, continuous Arctic ichthyoplankton time series is 
needed to understand annual variations in the ecosystem and 
establish a baseline to detect future changes.

Remotely sensed sea ice extent from 2012 to 2017 had 
its lowest maximum extents observed in nearly four decades 
(Fetterer et al. 2017, NSIDC). As summer sea ice extent 
diminishes, this creates greater accessibility to the water-
ways north of Bering Strait for potential resource extraction, 
tourism, and trade as well as generates renewed interest in 
the development of Arctic fisheries (Datsky 2015). Changes 
in the timing of sea ice formation and retreat directly impact 
the ecosystem by affecting the location and timing of the 
spring phytoplankton bloom (Thedinga et al. 2013), and the 
temperature and salinity of the surrounding water (Wyllie-
Echeverria 1995). Fish eggs and larvae are generally con-
sidered to be the bottleneck that determines recruitment 
success, but these life stages are particularly sensitive to 
changes in their environment. This sensitivity has resulted 
in ichthyoplankton being recognized as sentinels of climate 
change (Busby et al. 2014; Suzuki et al. 2015). Therefore, 
it is critical to understand how ichthyoplankton distribution 
and abundance respond to interannual climate fluctuations 
to determine how changing oceanographic conditions may 
affect these species.

One species dependent on the presence and timing of 
sea ice formation and breakup throughout all life stages is 
polar cod (Boreogadus saida) (Mueter et al. 2016; Gordeeva 
and Mishin 2019). Polar cod are thought to remain near or 
beneath the ice edge throughout early development and large 
aggregations of immature adults have been observed below 
the sea ice (Melnikov and Chernova 2013). As adults, polar 
cod are believed to spawn beneath sea ice at depth throughout 
the winter months (Benoit et al. 2008). Rich in lipids, polar 
cod is an essential prey resource for other fishes, seabirds, 
and marine mammals (Mueter et al. 2016) and is the primary 
linkage between the lower and upper trophic levels in the 
Chukchi Sea (Fortier et al. 2006; Whitehouse et al. 2014, 
2017; Gordeeva and Mishin 2019). Although the distribution 
of polar cod is circumpolar, most spawning is believed to 
occur in the coastal seas over the continental shelves (David 
et al. 2016). This life history strategy makes the species par-
ticularly vulnerable to changes in reproductive success due 
to increased sub-Arctic temperatures and reduced sea ice 
(David et al. 2016). Warming sea surface temperatures may 
also prompt a range expansion of boreal species which may 
increase competition for prey (Falardeau et al. 2014) and/or 
a poleward range constriction of polar cod to maintain pre-
ferred colder temperatures (Mueter et al. 2016).

This study examines Arctic ichthyoplankton assem-
blages based on opportunistic sampling conducted in the 

eastern Chukchi Sea between 2010 and 2015. Objectives 
were threefold: (1) identify ichthyoplankton assemblages 
with a focus on temporal variation among years and spatial 
variation along a north to south gradient, (2) assess assem-
blage patterns in relation to oceanographic conditions, and 
(3) examine the length–frequency of larval and juvenile 
polar cod throughout the study. This study provides base-
line data on ecosystem processes and biophysical linkages 
in the Chukchi Sea necessary to understand the impacts of 
climate change on summer ichthyoplankton assemblages as 
well as identify temporal and spatial variation in abundance 
and size structure of the ecologically important polar cod.

Materials and methods

Study site and oceanography

Along its eastern coastline, the Chukchi Sea extends north 
from Point Hope to Point Barrow (Fig. 1). The seafloor is 
comprised of coarse sediment with nearly half of the shelf 
area between 30 and 50 m deep (Barber et al. 1997; Hunt 
et al. 2013). The northern extent is defined by the deep gully 
of Barrow Canyon ( > 300 m), a primary production hot-
spot of the region (Arrigo et al. 2014). The southern bound-
ary is defined by the Bering Strait, which is a narrow pas-
sage roughly 50 m deep that funnels water from the Bering 
Sea into the Chukchi Sea and drives the structure of water 
masses over the shelf. Historically averaging 0.8 Sverdrups 
(1 Sverdrup = 106 m3 s−1) per year, the flow has increased 
by 50% from 2001 to 2011 (Woodgate et al. 2005, 2012), 
which can dramatically shift the distribution of water masses 
over time.

In the summer months, waters over the Chukchi Shelf 
stratify into a two-layer water mass system separated by the 
thermocline at approximately 10 m depth (Chu et al. 1999; 
Ershova et al. 2015). Primarily, two masses are advected 
through the Bering Strait influence the eastern Chukchi 
Sea: Alaska Coastal Water (ACW) and Bering Sea Sum-
mer Water (BSSW). ACW, present most commonly at the 
surface near the Alaskan coastline, is warm with low salin-
ity and nutrients (Table 1). BSSW, present most often in 
the sourthern Chukchi Sea, either at depth inshore or at the 
surface offshore, is colder and high in salinity and nutrients. 
A hydrographic front often forms where ACW and BSSW 
mix between Icy Cape and Point Franklin, the peninsula just 
beyond Wainwright (Barber et al. 1997; Weingartner 1997). 
The other predominant water mass in the Chukchi Sea is 
Winter Water (WW), which persists at depth year-round. 
Cold and highly saline, WW is also nutrient-rich from mix-
ing with the Siberian Coastal Current, which flows into the 
central Chukchi Sea from the Russian coastline during times 
of reduced advection through Bering Strait (Woodgate et al. 
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Fig. 1   Map of station transects in the northeastern Chukchi Sea. Low 
transects were defined as the start of the inshore-most station below 
68.5°N (squares), Central transects originating between 68.5° and 
70°N (triangles), and High transects (H) originating above 70°N (cir-

cles). The color gradient reflects the number of times each site was 
sampled in the six years of study with darker colors indicating higher 
sampling frequency. (Color figure online)

Table 1   Characteristics of bottom water masses identified across survey years

Stations with water masses that fit multiple temperature and salinity ranges are identified as mixed masses because it was not possible to defini-
tively distinguish which mass is prevalent. Water mass distinctions follow Berchok et al. (2015)

Water mass Code Origin Temperature (°C) Salinity (psu)

Alaska Coastal Water ACW​ Alaska Coastal Current, through Bering Strait 7 to 12 28.0 to 33.0
Bering Sea Summer Water BSSW Bering Sea, through Bering Strait 0 to 8 30.0 to 33.5
Alaska Coastal Water/Bering Sea 

Summer Water Mix
ACW/BSSW Coastal and Bering Sea, through Bering Strait 7 to 8 30.0 to 33.0

Winter Water WW Resident water, Chukchi basin  − 2 to 0 30.0 to 33.5
Winter Water/Bering Sea Mix WW/BSSW Resident water mixed with Bering Sea 0 to 1 30.0 to 33.5
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2005; Berchok et al. 2015). Following periods of increased 
on-shelf mixing, such as storm events, it is often difficult to 
delineate one water mass from another by temperature and 
salinity, so these are referred to these as mixed water masses 
(ACW/BSSW, WW/BSSW).

Field collections

Stations were sampled using a 1 m2 Tucker trawl affixed to 
a sled frame (hereby referred to as ‘sled’) with a messenger-
based opening-closing net system (Sameoto and Jaroszyn-
ski 1976) and a General Oceanics flowmeter suspended in 
the center of the net. Unlike bongo nets traditionally used 
to sample ichthyoplankton, the Tucker trawl is designed 
to capture a wider range of life stages and, with the addi-
tion of the sled frame, slide over soft-bottomed areas of 
the seafloor to collect demersal, juvenile fishes (Davies and 
Barham 1969; Dougherty et al. 2010). A 333-µm mesh was 
used from 2010 to 2012 before switching to 505-µm mesh 
in 2013, but mesh sizes were treated as analogous based on 
gear comparisons by Colton et al. (1980) and Shima and 
Bailey (1994). Experiments by Colton et al. (1980) exam-
ined retention rates of larvae between the two mesh sizes 
(333 and 505 µm) and found no significant differences in 
either larval abundance or size bias. Similarly, Shima and 
Bailey (1994) evaluated differences in the catch of walleye 
pollock (Gadus chalcogrammus) between the two mesh 
sizes as well as between the 60 cm bongo and the 1 m2 
Tucker trawl but found no significant differences in larval 
density between the mesh or gear types.

At each station the sled was lowered to the seafloor fol-
lowing procedures of Dougherty et al. (2010), the net opened 
remotely, and the sled towed obliquely from the seafloor to 
the surface. There was minimal variation in depth across all 
sites sampled across the shelf (30–50 m) except stations in 
Barrow Canyon which ranged from 120 to 160 m. Mechani-
cal difficulties in 2010 prevented the net from tripping prop-
erly, so the net remained open during descent to the seafloor 
at all stations. The nets also remained open during descent 

at all stations of the Barrow Canyon transect (all years) 
because the sled could not move along the seafloor due to the 
irregularity of the seafloor. Tows conducted in this manner 
were considered comparable to oblique tows because the net 
does not effectively fish as the sled descends to the seafloor 
due to the high deployment speed of 40 m/min, compared to 
the 20 m/min retrieval speed (Dougherty et al. 2010). Due to 
time constraints and sea ice conditions, the total number of 
stations sampled varied between years (Table 2).

A Seabird 911 plus conductivity-temperature-depth 
(CTD) profiler was typically lowered to within 5 m of the 
seafloor to collect temperature and salinity profiles. As this 
study focused on water mass at depth, temperature and salin-
ity values were averaged from 5 to 10 m above the seafloor, 
rather than averaged throughout the water column because 
this may not accurately reflect the conditions of either the 
surface or bottom water mass properties. Of the two water 
mass layers, the bottom water is more stable and is likely 
a more effective measure of interannual variation between 
years by reflecting advection strength (how far the ACW 
and BSSW persists into the Chukchi Sea) and wind effects 
driving the mixing of the surface and bottom water masses 
(presence of ACW at depth). Additionally, the majority of 
the fish species in the region are benthic, so their distribu-
tion would be influenced predominantly by water masses at 
depth rather than at the surface.

Laboratory processing

Samples were preserved at sea in 5% formalin and buffered 
with sodium borate then processed at the Plankton Sort-
ing and Identification Center in Szczecin, Poland. Ichthyo-
plankton were removed, sorted by life stage (egg, larva, or 
juvenile), and identified by morphology and pigmentation 
to the lowest possible taxonomic level. Standard lengths 
(SL) were measured for the first 50 individuals of each spe-
cies per station to the nearest 0.1 mm. Identifications were 
verified at the Alaska Fisheries Science Center, following 
Matarese et al. (1989, 2013), Busby et al. (2017), and the 

Table 2   Dates and stations 
sampled in each year of the 
study

Average temperature and salinity at depth were calculated for the Icy Cape line, the transect sampled most 
consistently across all years. Climate was broadly assigned based on the conditions observed at Icy Cape 
with the coldest and warmest years noted, while other years were referred to as transition years

Year Dates Sled tows Avg. temp. (°C) Avg. sal. (psu) Climate

2010 Aug 27–Sept 14 45 3.97 31.99 Warm
2011 Aug 12–Sept 11 44 1.61 31.09 Transition
2012 Aug 17–27 49 1.73 30.57 Transition
2013 Aug 23–Sept 9 32 -1.40 29.62 Cold
2014 Sep 23–Oct 10 60 2.46 30.97 Transition
2015 Aug 1–29 40 1.92 31.01 Transition

Total 270 2.01 31.62
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Ichthyoplankton Information System (https​://acces​s.afsc.
noaa.gov/ichth​yo/). Scientific and common names follow 
Mecklenburg et al. (2011) and Orr et al. (2015).

Statistical analysis

For analysis, catch per 1000 m3 was calculated using vol-
ume filtered estimates derived from flowmeter rotations 
(Smith and Richardson 1977), standardized, and analyzed 
in PRIMER 7.0 software (Clarke et al. 2014). Although 
identified and enumerated, we omitted eggs from the analy-
sis because their distribution is a result of drift via ocean 
currents and, at present, only pelagic eggs of the fami-
lies Gadidae and Pleuronectidae can readily be identified 
to genus (Busby et al. 2017). Larvae and juveniles were 
grouped for analysis, with the exception of the polar cod 
length–frequency analysis which examined all individuals 
collected, and only species occurring in > 4% of the stations 
in a given year were included to eliminate bias from rarely 
occurring taxa. Depth was generally uniform across stations 
sampled on the Chukchi Shelf (between 30 and 50 m), which 
made it difficult to distinguish between inshore and offshore. 
The survey area was instead divided into three regions based 
on latitude to assess spatial patterns. Transect lines which 
began below 68.5°N were categorized as ‘Low’ while tran-
sects that originated between 68.5° and 70°N were catego-
rized as ‘Central’ (Norcross et al. 2010; Eisner et al. 2013). 
Transects above 70°N were categorized as ‘High’ (Fig. 1).

A cluster analysis was used to address the first objec-
tive of describing the ichthyoplankton assemblages with 
respect to temporal and spatial variability. Larval densi-
ties were fourth-root transformed to reduce the influence 
of highly abundant species, give more weight to rare taxa, 
and to equalize variances among species. A Bray–Cur-
tis similarity was then computed using all years pooled. 
Assemblages from the cluster analysis were defined at 18% 
similarity which preserved reasonable biological species 
groups based on life history strategies. The cluster groups 
were then mapped by year to show which stations had simi-
lar assemblages. To determine which species contributed 
most to the similarity within clusters, years, and regions, 
the Bray–Curtis similarity was broken down by species, and 
percent contribution was calculated.

To address the second objective of examining assem-
blages in relation to oceanographic conditions, a permuta-
tional multivariate analysis of variance (PERMANOVA) 
was used to determine the amount of variability explained 
by environmental variables. Each environmental variable 
was evaluated and independently transformed if distribu-
tions were skewed. Values were normalized and Euclidean 
distances among variables were calculated. Since the order 
matters in PERMANOVA, a forward selection, adjusted R2 
criteria distance-based linear model (DistLM) was used for 

variable selection and ordering environmental variables. A 
PERMANOVA with covariates, added in order of impor-
tance as given by DistLM, along with year and region, deter-
mined the percent variation explained by each variable and 
factor.

Polar cod length–frequency analysis

The catch of polar cod in all years was assessed to exam-
ine length–frequency relationships and to track age classes 
throughout the time series. The size at transformation from 
the larval to the juvenile stage for polar cod was approxi-
mated at 25.0 mm SL based on known lengths of sub-arctic 
species of the same family, Pacific cod (Gadus macrocepha-
lus) and walleye pollock (Craig et al. 1982). Individuals at 
lengths from 25 to 60 mm SL were categorized as age-0 
(Craig et al. 1982) and individuals between lengths of 60 
and 100 mm SL as age-1 (Helser et al. 2017).

Results

A total of 1968 larval and juvenile fishes were collected 
representing 35 taxa from 10 families (Table 3). Greatest 
taxonomic richness was observed in 2015 with 27 species 
in 10 families present. The lowest richness was observed in 
2013 with only 13 species in 7 families present, as well as the 
lowest catches of the study with < 350 individuals collected. 
Only polar cod and kelp snailfish (Liparis tunicatus) were 
collected during all years of study. Polar cod was also the 
most frequently occurring taxon, present at nearly a third of 
all stations occupied throughout the study. Other frequently 
occurring species included yellowfin sole (Limanda aspera) 
present at ~ 25% of stations as well as Arctic sand lance 
(Ammodytes hexapterus) and Bering flounder (Hippoglos-
soides robustus), both present at ~ 20% stations. Despite a 
high frequency of occurrence, polar cod and yellowfin sole 
together represented less than 15% of the total catch (based 
on standardized larval density). Collectively, Arctic shanny 
(Stichaeus punctatus), Bering flounder, and Arctic sand lance 
accounted for over half of the total catch across all years.

Intra‑ and interannual variability

The percent contribution of each species to the similarity 
within each year reflects strong interannual variation in 
species composition (Table 4). The high abundance of yel-
lowfin sole in 2010 was represented in the total catch that 
year and contributed to nearly 75% of the similarity of the 
assemblage. Although the species contribution decreased 
in 2011, yellowfin sole continued to influence the assem-
blage structure strongly and contributed nearly 40% to the 
average similarity across stations. In both 2011 and 2012, 

https://access.afsc.noaa.gov/ichthyo/
https://access.afsc.noaa.gov/ichthyo/
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Bering flounder became more predominant and contributed 
most to observed similarity. The following two years, 2013 
and 2014, polar cod became dominant and represented over 

60% of the catch similarity. Assemblages in 2015 were 
the least defined and had the greatest number of species 
contributing to within-year similarity. Unlike previous 

Table 3   Ichthyoplankton catch 
by year of survey organized by 
phylogeny, depicting presence-
absence data

Common name Scientific name 2010 2011 2012 2013 2014 2015

Osmeridae
Capelin Mallotus villosus X X X X

Gadidae
Arctic cod Arctogadus glacialis X
Polar cod Boreogadus saida X X X X X X
Walleye pollock Gadus chalcogrammus X X X X X
Saffron cod Eleginus gracilis X X X X

Hexagrammidae
Masked greenling Hexagrammos octogrammus X
Whitespotted greenling Hexagrammos stelleri X X

Cottidae
Arctic staghorn sculpin Gymnocanthus tricuspis X X X X X
Butterfly sculpin Hemilepidotus papilio X X
Spatulate sculpin Icelus spatula X X
Shorthorn sculpin Myoxocephalus scorpius X
Eyeshade sculpin Nautichthys pribilovius X

Agonidae
Alligatorfish Aspidophoroides monopterygius X
Arctic alligatorfish Aspidophoroides olrikii X X X X X
Veteran poacher Podothecus veternus X X

Liparidae
Gelatinous snailfish Liparis fabricii X
Variegated snailfish Liparis gibbus X X X
Kelp snailfish Liparis tunicatus X X X X X X

Zoarcidae
Wattled eelpout Lycodes palearis X
Polar eelpout Lycodes polaris X

Stichaeidae
Blackline prickleback Acantholumpenus mackayi X
Stout eelblenny Anisarchus medius X X X X X
Fourline snakeblenny Eumesogrammus praecisus X X X X
Daubed shanny Leptoclinus maculatus X X X X X
Slender eelblenny Lumpenus fabricii X X X X
Arctic shanny Stichaeus punctatus X X X X X

Ammodytidae
Arctic sand lance Ammodytes hexapterus X X X X X

Pleuronectidae
Bering flounder Hippoglossoides robustus X X X X X
Northern rock sole Lepidopsetta polyxystra X
Yellowfin sole Limanda aspera X X X X X
Longhead dab Limanda proboscidea X X X X X
Sakhalin sole Limanda sakhalinensis X X X
Starry flounder Platichthys stellatus X X
Alaska plaice Pleuronectes quadrituberculatus X X X
Greenland halibut Reinhardtius hippoglossoides X

Total 15 15 24 13 14 27
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years, in 2015 polar cod contributed only 14% to assem-
blage structure. Although Arctic sand lance contributed the 
most to observed similarity that year, it only contributed 
21% while dominant species in other years contributed 
between 30–74%.

Cluster analysis of stations yielded 10 distinct assem-
blages across all years (Table 5). When cluster groups 

were mapped, Assemblage D, typified by yellowfin sole 
and longhead dab, was present at more than 75% of sta-
tions in 2010 (Fig. 2). In 2011, the stations with Assem-
blage D decreased to only a third of occupied stations and 
were present at less than 10% in 2012. Assemblage D was 
absent in both 2013 and 2015. Assemblage E was typi-
fied by Bering flounder and variegated snailfish (Liparis 
gibbus), which included only one station off Icy Cape in 
2010 but represented roughly 25% of stations in both 2011 
and 2012. The assemblages present in 2012 depict a clear 
shift away from the primarily yellowfin sole-dominated 
assemblage. Assemblage J, comprised primarily of polar 
cod, was present at more than 80% of stations in 2013. 
The groups present in 2014 reflect a mixture of both the 
2010/2011 and 2012/2013 assemblages with both yellow-
fin sole and polar cod-dominated assemblages (Fig. 2). The 
greatest diversity of assemblages was observed in 2015 
with several groups unique to that year, including Assem-
blage C, typified by Arctic sand lance, saffron cod (Elegi-
nus gracilis), and Arctic shanny which was present at more 
than half of the stations. Outliers, defined as assemblages 
present at fewer than four stations, were combined into a 
single group, Assemblage I, of which only kelp snailfish 
contributed more than 5% to the group similarity. 

Table 4   Results of the similarity percentage calculation showing 
which species contributed most to the observed assemblages of a par-
ticular year (all regions) or region (all years)

Only species contributing greater than 5% were included

Similarity within Species Contribution (%)

Year
 2010 Yellowfin sole 74.05

Butterfly sculpin 11.67
Longhead dab 7.43

 2011 Bering flounder 37.59
Yellowfin sole 36.44
Slender eelblenny 10.47

 2012 Bering flounder 31.43
Polar cod 14.42
Arctic sand lance 14.05
Variegated snailfish 13.89
Slender eelblenny 7.04

 2013 Polar cod 60.33
Arctic shanny 13.57
Arctic sand lance 12.51
Slender eelblenny 10.86

 2014 Polar cod 63.58
Yellowfin sole 17.78
Daubed shanny 10.38

 2015 Arctic sand lance 21.25
Kelp snailfish 14.61
Saffron cod 14.38
Polar cod 13.39
Arctic shanny 9.62
Daubed shanny 8.15

Region
 Low Bering flounder 30.43

Yellowfin sole 26.59
Butterfly sculpin 16.97
Arctic sand lance 8.12
Longhead dab 6.05

 Central Bering flounder 63.34
Butterfly sculpin 7.83
Yellowfin sole 6.98

 High Polar cod 55.7
Slender eelblenny 12.95
Arctic shanny 7.16
Arctic sand lance 6.95
Kelp snailfish 6.62

Table 5   Percent contribution of each species to the Bray–Curtis simi-
larity within clusters

Species contributing less than 5% were omitted

Assemblage Species Contribution (%)

A Walleye pollock 53.7
Butterfly sculpin 46.4

B Saffron cod 91.2
C Arctic sand lance 52.4

Saffron cod 15.0
Arctic shanny 9.3
Slender eelblenny 6.9
Arctic staghorn sculpin 5.3

D Yellowfin sole 85.4
Longhead dab 7.5

E Bering flounder 78.4
Variegated snailfish 9.4

F Stout eelblenny 100.0
G Daubed shanny 97.1
H Arctic alligatorfish 100.0
I Kelp snailfish 93.8
J Polar cod 80.3

Arctic shanny 7.6
Arctic sand lance 5.7
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Spatial variability

In the Low and Central regions, Bering flounder contrib-
uted most to similarities within the region at 30% and 63%, 
respectively (Table 4). In the Low region, yellowfin sole 
contributed only slightly less than Bering flounder at 27%. 
The Central region had the fewest number of contributing 
species with only two other species, butterfly sculpin (Hem-
ilepidotus papilio) and yellowfin sole, both which contrib-
uted less than 10% to the observed assemblage structure. In 
the High region, polar cod contributed over 50% similarity 
to the assemblage, along with four other species which each 
contributed between ~ 6 and 13%.

When cluster groups across years were mapped, it is evi-
dent that there is spatial structure to the groupings. Assem-
blage A, of which walleye pollock is the highest contributing 
species, and D, dominated by yellowfin sole, were found 
almost exclusively in the Low and Central regions, and 
particularly prevalent along the inshore stations (Fig. 2). 
Assemblage E, dominated by Bering flounder, is found 
throughout all regions but most often occurred in the Central 

region. Assemblage J, dominated by polar cod, is present 
throughout all years in the High region but is never present 
in the Low region. Unlike the other years, 2015 does not 
have the same, defined spatial structure and instead shows a 
dispersed assemblage pattern, although Assemblage J still 
appeared with relatively high frequency in the High region. 
Previously undetected, Assemblage C was also present 
throughout the Central region in 2015.

Oceanographic conditions

ACW was present almost exclusively in the Low and Cen-
tral regions of Chukchi Sea except for one instance at the 
inshore-most station of the Wainwright line (Fig. 3). BSSW 
was closely associated with ACW, often as the mixed mass 
ACW/BSSW or at the stations nearest to ACW. WW was 
present in all years in the High region. Between 2012 and 
2015, WW appeared to shift farther south into the Central 
and Low regions, usually as a mixed water mass, WW/
BSSW. The warmest temperature was observed in 2010, 
followed by two years of intermediate temperatures, before 

Fig. 2   Spatial arrangement of assemblages generated by cluster analysis based on similarity across all years with ‘X’ indicating stations of zero 
catch. (Color figure online)
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the coldest year of the series in 2013. 2011 and 2012 were 
identified as transition years between the warmest and cold-
est years of the surveys. Water temperatures began to rise 
again in 2014 and BSSW extended as far north as Barrow 
Canyon. By 2015, ACW was confined to the Central region, 
but the offshore-most stations remained much colder than in 
2010, creating a water mass distribution unique to that year.

The warmest year in the series (2010) was characterized 
by a yellowfin sole-dominated assemblage with a distribu-
tion that mirrored the extent of ACW and ACW/BSSW 
mixed water masses (Fig. 3). From 2010 to 2012, the number 
of stations with assemblages dominated by yellowfin sole 
decreased from over 75% to 13% and were restricted to the 
south at only the most inshore stations where ACW was still 
present. The presence of colder WW in the north, beginning 
in 2012, coincides with the first occurrence of multiple sta-
tions represented by a polar cod-dominated assemblage. As 
the presence of WW persisted over the northern region in 
2013, the presence of this assemblage increased to over 80% 
of the stations. Although the average temperatures at Icy 
Cape increased in 2014, WW was still present at nearly all 

stations in the High region and several stations in the Central 
region and the presence of polar cod-dominated assemblages 
remained strong in 2014. The water masses of 2015 were 
uniquely distributed, marked by the return of ACW that was 
absent in 2013 and 2014. In addition to the ACW along the 
inshore stations, a cold WW and WW/BSSW mixed water 
mass was present in the north, reflecting the cold year pat-
tern observed in 2013. Cluster groupings mirrored water 
mass distribution and a new assemblage dominated by Arctic 
sand lance and saffron cod was identified.

The distance-based forward selection linear model iden-
tified sea surface temperature, bottom water temperature, 
sea surface salinity, and bottom depth as significant vari-
ables influencing assemblages. When incorporated into a 
PERMANOVA, these environmental variables collectively 
explained approximately 15% of the observed variation 
(Table 6). The two factors used to examine temporal-spatial 
variation, Year and Region, explained 28% of the variation, 
leaving a residual value of 57% that could not be explained 
by the model. A significant interaction was found between 
Year and Region (p = 0.001) and required a pairwise test to 

Fig. 3   Water mass designations assigned to each station based on 
temperature and salinity values averaged 5–10 m above the seafloor. 
Years were assigned a color based on the oceanographic conditions 

of the year, with red reflecting warm years and blue reflecting cold 
years. (Color figure online)
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resolve significant differences within regions across years 
(Table 7). The least variation was observed in the Low 
region with the only significant differences found were 
between 2010 vs. 2012 and 2010 vs. 2013. In the Central 
region, 2012 was significantly different from both 2010 and 
2011. The assemblages in 2015 were also significantly dif-
ferent from those observed in each of the first three years of 

the study (2010-2012). No sampling was conducted in the 
Central region in 2013. The High region was the most varia-
ble of the regions with significant differences between nearly 
all years (Table 7). 

Polar cod analysis

Only four polar cod were collected between 2010 and 2011. 
Catches in subsequent years ranged from 28 to 62 individu-
als for a study total of 169, with the highest catch occur-
ring in 2014. Standard lengths (SL) throughout the study 
ranged from 10.0 to 76.9 mm with averages ranging from 
20.4 mm in 2012 to 46.5 mm in 2015 (Fig. 4). Although 
few polar cod were collected in the first two years of the 
study, the remaining four years provided a comparison of 
age classes (Fig. 4). A total of 10 age-1 individuals were 
collected between 2014 and 2015, representing 5% and 22% 
of the catch, respectively.

Discussion

Species composition and geographic distribution

Several species sampled in this study were among the 
first reported collections in the Chukchi Sea, enhancing 

Table 6   Permutational multivariate analysis of variance (PER-
MANOVA) test results in comparison with significant environmental 
variables and two factors, region and year, to assess effect of time and 
space on community assemblages, p (perm) reflects p value calcu-
lated from test permutations

Variables p (perm) Components of 
variation (%)

Environmental
 SST 0.001 7.5
 BW temp 0.001 5.6
 SS salinity 0.003 0.7
 Bottom depth 0.001 1.3
Factors
 Year 0.001 13.8
 Region 0.002 2.9
 Year × Region 0.001 11.7
 Residual 56.5

Table 7   Pairwise permutational multivariate analysis of variance 
(PERMANOVA) test to determine significant differences in observed 
assemblages between years of study with ‘X’ indicating years where 

no comparisons were possible and ‘–’ indicates no significant differ-
ence was observed

2010 2011 2012 2013 2014 2015

High
 2010
 2011 0.015
 2012 0.006 –
 2013 0.016 0.001 0.010
 2014 0.005 0.014 – –
 2015 0.001 0.001 0.001 0.001 0.006
Central
 2010
 2011 –
 2012 0.002 0.002
 2013 X X X
 2014 – – – X
 2015 0.001 0.001 0.001 X –
Low
 2010
 2011 –
 2012 0.001 –
 2013 0.007 – –
 2014 – – – –
 2015 – – – – –
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geographic range estimates. In 2015, larvae of northern 
rock sole (Lepidopsetta polyxystra) were collected north of 
Bering Strait but were previously only recorded as far north 
as Cape Rodney in the northwestern Bering Sea (Mecklen-
burg et al. 2011). Similarly, the northern extent of masked 
greenling (Hexagrammos octogrammus) was thought to be 
St. Lawrence Island (Mecklenburg et al. 2011), but several 
specimens were collected in Bering Strait during the 2010 
survey. This study also confirmed the presence of several 
species that were only recently reported in the Chukchi Sea. 
Among these were Sakhalin sole, first recorded in 1990, but 
absent again until the late 2000s (Mecklenburg et al. 2011). 
Mecklenburg and Steinke (2015) report similar findings, 
noting 11 species previously restricted to the Bering Sea 
(Andriashev 1954) are now commonly found in the Chukchi 
Sea. In this study, 3 of the 11 species were caught in multiple 
years including whitespotted greenling (Hexagrammos stel-
leri), fourline snakeblenny (Eumesogrammus praecisus), and 
Alaska plaice (Pleuronectes quadrituberculatus). Although 
there are reports of yellowfin sole collected as far as Kotze-
bue Sound (Andriashev 1954), individuals were collected 
farther north in five of six years of the survey and the taxon 
comprised over 20% of the total abundance.

Assemblage structure

Summer ichthyoplankton assemblages were found to vary 
significantly across years sampled and spatially across 
regions within the Chukchi Sea. Clear differences in species 
composition were observed between warm years, character-
ized by strong ACW flow and low sea ice extent, and cold 

years, characterized by weak ACW flow and greater sea ice 
extent. Two assemblages identified by cluster analysis, the 
yellowfin sole-dominated and polar cod-dominated, were 
present in nearly all years, though most prevalent in years 
of either extreme warm (2010) or cold year (2013), respec-
tively. Assemblages in the transition years between these 
two extremes reflected a gradual decline of yellowfin sole-
dominated stations, as temperatures and salinity declined, 
and an increase in stations of polar cod-dominated assem-
blages. As spatial structure became less defined starting in 
2014 and water masses became increasingly mixed in 2015, 
new assemblages were identified, and variation increased 
within regions. The presence of a previously undetected 
assemblage, as well as a group composed of stations identi-
fied as outliers, highlights the dynamic nature of the Chukchi 
marine ecosystem. This observation is supported by evi-
dence that at lower latitudes assemblages are influenced by 
temperature (Barber et al. 1997) and gradual shifts in assem-
blage structure may occur if changes, such as climate warm-
ing, persist over a long period (Mueter and Litzow 2008).

Although year effects better explained variation in 
observed assemblages, region effects were still significant. 
The presence and spatial extent of water masses varied 
across years but overall trends were similar to those pre-
viously reported (Eisner et al. 2013; Ershova et al. 2015; 
Pisareva et al. 2015). The southernmost region, Low, had 
the least observed variation across all years. Even in cold 
years, which resulted in the increased presence of BSSW 
and mixed WW/BSSW water masses, the Low region still 
experienced the mixing of ACW with BSSW, leading to 
reduced variation within the region. In the Central region, 
slightly more variation was observed, illustrating the con-
trast of assemblages between warm and cold years. The 
High region experienced the greatest degree of interannual 
variability among years, likely in part due to highly vari-
able sea ice extent in the region. Between 2010 and 2015, 
the date which sea ice concentration between Wainwright 
and Barrow Canyon declined to 10% ranged from July 15th 
in 2011 to August 31st in 2013 (Spear et al. 2019). As the 
northernmost stations are most susceptible to interannual 
variability, the assemblages in this area may experience the 
most changes in a warming climate.

Polar cod analysis

Peak abundance of the assemblage dominated by polar 
cod was in 2013, coincided with the year of greatest sea 
ice extent in August over the study (S. Salo, Pacific Marine 
Environmental Lab, pers. comm., Spear et  al. 2019). 
Spawning in the Chukchi Sea is believed to occur under 
the ice between January and March, but extremely cold 
temperatures (− 1.8 °C) may delay hatching until after the 
ice breakup later in the season (Mueter et al. 2016). In the 

Fig. 4   Length–frequency distribution for polar cod collected between 
2012 and 2015 with the dashed line indicating average stand-
ard length. 2010 and 2011 were not included due to extremely low 
catches
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Beaufort Sea, it is well documented that the hatch season 
may extend into July (Bouchard et al. 2008; 2011), but this 
region has sea ice present much longer than the Chukchi 
Sea. It has been suggested that polar cod spawning may 
also occur in the Chukchi Sea based on the size of larvae 
caught in mid-July (Wyllie-Echeverria et al. 1997) but has 
yet to be confirmed. Ice retreat over the southern Chukchi 
Sea was one to two weeks later in 2012 and 2013 relative to 
the first two years of the study (Spear et al. 2019). Increased 
abundance of larval polar cod may be the result of more 
favorable environmental conditions such as increased reten-
tion or greater sea ice presence but may also be attributed to 
biological factors such as increased prey availability.

The greatest number of individuals was collected in 2014 
as well as the first observations of age-1 individuals (Fig. 4). 
The high catch frequency of polar cod is consistent with 
recent acoustic evidence, which suggests that the species 
may be among the most numerically abundant in the region 
(De Robertis et al. 2017). The high abundance of polar cod 
in 2014 also coincided with low monthly transport estimates 
through the Bering Strait, relative to other years of the time 
series (Stabeno et al. 2018), which may decrease larval dis-
persal, resulting in increased retention and localized abun-
dance. Historically, monthly heat influx through Bering 
Strait reached its maximum in August (Serreze et al. 2016) 
so the difference may have been even more pronounced at 
the time of sampling. Colder temperatures over the previous 
summer may have created optimized conditions for growth 
and development, resulting in higher overwinter survival 
of the individuals spawned in 2013 relative to other years. 
Alternatively, the larger catches of Age-1 polar cod collected 
in 2014 and 2015 may be late-hatching individuals from the 
previous summer that recruited in the ice during their first 
winter (Geoffroy et al. 2016), which may have been missed 
in the previous year’s sampling. Greater standard lengths 
observed in 2014 may also have been an artifact of sampling 
several weeks later than other years of the survey.

With sea surface temperatures predicted to continue to 
rise over the coming decades, the thermal tolerances of polar 
cod may be tested. Lab rearing experiments conducted by 
Graham and Hop (1995) found that polar cod of the Cana-
dian Arctic require temperatures colder than 3 °C to develop, 
with optimal conditions for embryonic growth in the range 
of 0–3 °C (Mueter et al. 2016). Recent work by Laurel et al. 
(2017) found that thermal sensitivity changes with ontogeny 
with age-0 individuals attaining a maximum growth rate at 
a warmer temperature than age-1 individuals. Laurel et al. 
(2018) also determined that higher temperatures negatively 
influenced hatch success and length-at-hatch of polar cod, 
with marked declines after temperatures exceeded 2 °C in 
rearing experiments. Under various warming scenarios, it 
has been suggested that polar cod may be extirpated from 
most of its current range as early as 2038 (Cheung et al. 

2008). There are also concerns that warming may allow 
other prominent species such as saffron cod or Arctic sand 
lance to outcompete polar cod, and thus dramatically alter 
the Arctic food web (Falardeau et al. 2014; Mueter et al. 
2017).

Results from this study show the dynamic biophysical 
connections between interannual water mass distribution 
and larval fish assemblages in the Chukchi Sea. Additional 
research is needed to collect and synthesize available ocean-
ographic data to assess potential patterns in warm and cold 
year shifts and to understand how larval fish assemblages 
are influenced by water masses. This work contributes to 
establishing a baseline assemblage structure for Chukchi Sea 
fishes in the early stages of life and highlights the need for 
continued efforts to monitor fluctuations in ichthyoplankton 
assemblages in the changing Arctic climate.
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