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Abstract

The glacier retreat in the Antarctic Peninsula is opening new ice-free areas and providing an excellent opportunity to study
successional processes. Antarctic terrestrial ecosystems have the particular characteristic of being dominated almost exclu-
sively by lichens and mosses. The aim of the present study was to analyze the diversity, cover and composition of a lichen
community on a deglaciated gradient on Potter Peninsula, King George Island (maritime Antarctica), and to investigate how
microsite variables influence these patterns. Total lichen cover, species richness, and the frequency and cover of lichens
species were measured in five 50 X 50 cm grids in 24 sites covering the whole Peninsula from the coast to the glacier front.
Microsite conditions were also registered: slope, aspect, and proportion of different substrates (rocks, soil or bryophytes). We
recorded a highly diverse and complex lichen community arranged in three assemblages of species. The lichen communities
showed clear variations along the studied gradient, related to the distance to the glacier, the slope, the type of substrate, and
the interaction between them. We consider that the patterns of these Antarctic lichen communities are dynamic and very
heterogeneous, since they depend on macroclimatic variables but there is also a strong influence of microsite factors.
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Introduction

There are several reports on the retreat of glaciers in mari-
time Antarctica, i.e. the Antarctic Peninsula and adjacent
archipielago (King and Harangozo 1998; Cook and Vaughan
2010; Riickamp et al. 2011; Turner et al. 2013), in spite
of recent evidence that suggest a temperature decline since
1998 (Turner et al. 2016). In particular, Riickamp et al.
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(2011) recorded the retreat of the Fourcade Glacier in Pot-
ter Cove and Potter Peninsula since 1956, near the Carlini
(ex. Jubany) Argentinean base, detecting the reduction of
the ice mass.

Antarctic terrestrial ecosystems have the the particular
characteristic of being dominated almost exclusively by
lichens and mosses. Many studies have focused on the lichen
diversity of the Antarctic continent, especially on maritime
Antarctica where the milder climate conditions harbor a
higher number of species (Inoue 1995; Seppelt 1995; Qvs-
tedal and Smith 2001; Smykla et al. 2007; Johansson and
Thor 2008; Favero-Longo et al. 2011; Rai et al. 2011). In
particular, King George Island (South Shetland Archipel-
ago) has been intensively studied (Redén 1985; Olech 2004;
Pifieiro et al. 2012; Spielmann and Pereira 2012). However,
relatively few studies have focused on the ecology of lichen
communities and how they have changed after the retreat
of glaciers (Sancho and Valladares 1993; Smith 1995; Val-
ladares and Sancho 1995; Poelking et al. 2015; Sancho et al.
2017).

Bacteria, algae and lichens initiate the succession of ter-
restrial communities beyond the glacier boundaries with a
subsequent progressive increase in species diversity and
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colony size (Longton 1988; Fernandez-Martinez et al. 2017).
The types of vegetation that colonize the ice-free areas
depend on the substrata and other factors. Antarctic vegeta-
tion distribution is primarily determined by environmental
factors such as temperature, moisture availability, snow melt,
and micro-topography (Robinson et al. 2003; Schroeter et al.
2017). Lichen communities, for example, tend to be particu-
larly rich on north-facing rock sites, where the temperature
is consistently warmer (Kappen 1985).

In spite of the many studies on the lichen flora, the pat-
terns and processes of lichen succession after a rapid retreat
of glaciers are still far from being understood in the highly
diverse lichen communities from maritime Antarctica.

The aim of the present study is to analyze the variation
of the diversity, cover and composition of a lichen commu-
nity within a deglaciation gradient, and to investigate how
microsite variables influence these patterns.

Materials and methods
Study site

This study was performed in the Potter Peninsula, located
between Potter Cove and Stranger Point in the southwest of
King George Island (Isla 25 de Mayo), in the South Shetland
Islands, north of the Antarctic Peninsula. Average annual
air temperature is — 2.8 °C, with the summer temperature
ranging from — 1.3 to 2.7 °C and in winter from —15.5 to
— 1.0 °C (Ferron et al. 2004). The geology of the Potter
Peninsula belongs to the Warszawa tectonic block, which
is dominated by a volcanic rock sequence, mainly basalts
and basaltic andesites, formed between 50.6 and 49.1 Ma
(Kraus and del Valle 2008). The peninsula has been shaped
by glacial action, with moraines forming with typical rock
outcrops, and different levels of terraces (Birkenmajer 1998;
Kraus and del Valle 2008). The highest point in the area
is Three brothers Hill (196 m. a.s.l.). For a more detailed
description, see Birkenmajer (1998). The soils of the Pot-
ter Peninsula are poorly developed, typical for a periglacial
environment, with coarse sand and gravel, a sandy texture,
and ornithogenic soils in marine beaches; permafrost was
found at about 90—-100 cm depth (Poelking et al. 2015).
Although snow usually melts completely during summer,
it is possible to find some isolated permanent snow banks
and ice patches throughout this area (Vinocur and Maidana
2010). The Peninsula is characterized by strong and humid
westerly and easterly winds.

Sampling

Systematic sampling was conducted using a 2-km? grid with
25 sampling stations located 500 m from each other. The
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grid was designed to cover the largest possible area free of
ice of the Potter Peninsula (Fig. 1). Each sampling station
was marked with GPS for future reference and monitoring.
At each sampling station, five 50X 50 cm quadrats were ran-
domly located within a 25-m-diameter circle. Each quadrat
was divided into 25 10X 10 cm squares, and the frequency
and cover of lichen species in each were measured. The
frequency is the number of 10 X cm squares occupied by
each lichen species. The percentage of each type of sub-
strate—rocks, soil or bryophytes—was also measured. The
frequency and cover of vascular plants and bryophytes (as a
group) were measured and incorporated into the multivari-
ate matrix. When the sampling station was inaccessible (i.e.
aquatic habitats, permanent snow banks), the station was
relocated to the closest place outside the constraint.

In addition, we registered environmental variables for
each sample point: altitude, slope angle, aspect, distance to
glacier front, distance to coast (both measured on a map)
and the presence of bird nests. The distances were calcu-
lated with the latest satellite images available (Google Earth
January 2014). Twenty-four sampling points were measured.
Point number 25 was inaccessible.

Identification of species

The species were identified following standardized meth-
ods in lichenology (Nash et al. 2002). In general, we ana-
lyzed morphological, anatomical, reproductive and chemi-
cal characteristics following routine techniques, including
macroscopic and microscopic observations of sections of
the thallus and the identification of secondary metabolites by
thin layer chromatography (Orange et al. 2001). A specimen
of each identified species was deposited in the BCRU and
CORD Herbaria. The identification of a few crustose speci-
mens was impossible at the genus or species level due to the
lack of sexual structures. These specimens were processed
with artificial names. The nomenclature mainly follows @vs-
tedal and Smith (2001).

Data analysis

Sample points were ordinated using nonmetric multidi-
mensional scaling (NMS; McCune and Grace 2002) sepa-
rately for frequency and cover. In order to filter noise that
could obscure the underlying structure of the data and to
reduce the stochastic effects of rare species, we excluded
lichen species present in five or fewer sample points (10%
of frequency; McCune and Grace 2002). Pearson’s correla-
tion coefficients were calculated to compare environmental
variables and multivariate axes.

The NMS analysis was run with 500 iterations per run
and 999 runs in total, using 0.005 as the stability criterion
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and 20 iterations to evaluate the stability using the relative
Sgrensen index of dissimilarity.

Total lichen cover and species richness were modeled
by fitting generalized linear models (Guisan et al. 2002).
The significance of each predictor was estimated by means
of deviance tests. Predictors were excluded from the model
when the level of significance was higher than 0.05. Previ-
ously, all residuals were tested for normality and homosce-
dasticity. Model selection was conducted using nonlinear
fittings in R project software v.2.6.2 and INFOSTAT (Di
Rienzo et al. 2014).

We also performed all the same analyses for lichen
diversity measured as the Shannon diversity index, but we
always obtained the same pattern of results as with species
richness, with which it is highly correlated (Pearson rank
correlation; 0.89, P <0.001).

Results

A total of 65 lichen species were identified from 24 meas-
ured sampling stations (Table 1). Four stations did not
contain lichen species or any other type of vegetation. A
total of 36 species were present in less than 10% of sample
points and were therefore excluded from the multivariate
analysis (Table 1).

The diversity and coverage of lichens increased with the
distance from the glacier front and from the coast (Fig. 2).
However, habitat features were also found to be important
explanatory variables. According to the fitted generalized
model, the main variables explaining the species rich-
ness are the glacier and coast distances, their interaction,
the altitude, the slope and the % of rock cover (Table 2).
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Table 1 Identified species, frequency (number of sample points with
the species) and relative coverage

Species Frequency Relative
coverage
(%)
Acarospora sp. 1 0.009
Amandinea pettermanii 3 0.070
Arthonia lapidica 2 0.002
Aspicilia aquatica 3 0.010
Austrolecia sp. 4 0.044
Bacidia jhonstonii 1 0.001
Bellemerea subsorediza 1 0.017
Buellia aff. augusta 4 0.031
Buellia cladocarpiza 1 0.004
Buellia darbishirei 1 0.001
Buellia isabellina 4 0.015
Buellia sp. 2 0.035
Caloplaca athallina 3 0.006
Caloplaca schofieldii 13 0.014
Caloplaca sublobulata 5 0.008
Candelariella flava 1 0.004
Carbonea assentiens 3 0.122
Carbonea vorticosa 19 0.060
Catillaria constristans 3 0.048
Cetraria aculeata 1 0.009
Cladonia borealis 2 0.026
Colobanthus quitensis 6 0.052
Deschampsia antarctica 6 0.037
Himatormia lugubris 12 0.426
Huea aff. cerussata 2 0.035
Huea cerussata 12 0.122
Huea diphyella 6 0.012
Lecanora aft. griseosorediata 5 0.027
Lecanora aff. dispersa 2 0.002
Lecanora polytropa 41 0.120
Lecanora sp. A 12 0.066
Lecidea aff. medusula 2 0.003
Lepraria sp. 1 0.001
Lepraria straminea 1 0.002
Leptogium puberulum 22 0.566
“Black lichen” 2 0.010
“Lichen” sp. 1 1 0.001
“Lichen” sp. 2 1 0.004
Massalongia carnosa 8 0.046
Megaspora verrucosa 1 0.009
Ochrolechia frigida 19 0.441
Pertusaria coralophora 7 0.543
Pertusaria erubescens 4 0.052
Placopsis antarctica 13 0.257
Placopsis contortuplicata 9 0.101
Psoroma buchananii 0.126
Psoroma cinnamomeum 3 0.035
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Table 1 (continued)

Species Frequency Relative
coverage
(%)
Psoroma hypnorum 9 0.050
Rhizocarpon copelandii 1 0.009
Rhizocarpon distinctum 1 0.004
Rhizocarpon geminatum 14 0.105
Rhizocarpon geographicum 14 0.270
Rhizocarpon grande 2 0.013
Rhizocarpon nidificum 2 0.005
Rhizocarpon osbcuratum 15 0.310
Rhizocarpon sp. 5 0.030
Rhizocarpon superficiale 9 0.128
Rinodina cf. occulta 2 0.005
Sphaerophorus globosus 1 0.001
Staurothele aff. frustulenta 3 0.014
Tephromela minor 3 0.053
Thellenella aff. mawsonii 11 0.027
Trapelia coarctata 3 0.006
Usnea antarctica 34 1.384
Usnea aurantiaco-atra 14 1.130
Usnea aurantiaco-atra (pendulous form) 1 0.017
Verrucaria sp. 1 0.001

The species included in the multivariate analysis are shown in bold

The fitted generalized model for total coverage of lichens
showed that the explanatory variables are the glacier dis-
tance, the altitude, the percentage of bryophyte cover and
the interaction between the last two variables (Table 2).

The NMS analysis for the frequency and coverage of
lichen species (Fig. 3) showed that the sample points near
the coast are grouped together, and that the vascular plants
are grouped together and related to the points near the coast.
Also, the species Thelenella mawsonii (C.W. Dodge) H.
Mayrhofer & P.M. McCarthy, Carbonea vorticosa (Florke)
Hertel, Lecanora polytropa (Ehrh.) Rabenh., Huea diphyella
(Nyl.) C.W. Dodge and Caloplaca schofieldii C.W. Dodge
are related to the sample points closer to the front of the
glacier.

The richest communities are those far from the glacier
and the coast. Some points are closer to the coast but in
elevated terrains. In these communities, the type of sub-
strate conditioned the presence of the species. The NMS
coverage analysis (Fig. 3b) showed a better separation of
the points and species depending on the type of substrate.
Points with higher coverage of mosses were associated with
Himatormia lugubris (Hue) I.M. Lamb, Austrolecia sp.,
Psoroma hypnorum (Vahl) Gray and Caloplaca sublobu-
lata (Nyl.) Zahlbr. On the other hand, stations with rocks
or soil as the main substrate are separated according to the
distance from the glacier front. The genera and species of
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Table 2 Fitted generalized linear models of species richness and rela-
tive lichen cover

Community traits ~ Variables Deviance P value

Richness Glacier distance 106.27 <0.0001
Coast distance 74.58 <0.0001
Altitude 35.61 <0.0001
% Rocks 5.11 0.0238
Slope 6.61 0.0102
Glacier:coast 31.96 <0.0001

Cover Glacier distance 4847.46 0.0001
Altitude 7415.24 <0.0001
% Bryophytes 4370.28 0.0002
Altitude:% bryophytes ~ 2261.57 0.0068

Site

these groups closer to the glacier are Leptogium puberulum
Hue, Rhizocarpon obscuratum (Ach.) A. Massal., Placopsis
antarctica D.J. Galloway, R.ILL. Sm. & Quilhot and Usnea
antarctica Du Rietz. Finally, Massalongia carnosa (Dicks.)
Korb., Usnea aurantiaco-atra (Jacq.) Bory, Psoroma bucha-
nanii (C. Knight) Nyl., Ochrolechia frigida (Sw.) Lynge,
Pertusaria sp., etc. belong to the group of species related
to sample points more distant from the glacier and with the
highest richness and coverage of lichens.

Discussion
The present investigation reports on the structure of a lichen

community in maritime Antarctica in a deglaciation sce-
nario. The results showed a highly diverse and complex
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Fig.3 Non-metrical multidimensional scaling plots of frequency (a)
and cover of species (b) versus sampling points. Arrows indicate cor-
relations of principal axes with environmental variables. Aust Aus-
trolecia sp., B isa Buellia isabellina, C sch Caloplaca schofieldii, C
sub C. sublobulata, C vor Carbonea vorticosa, Colo Colobanthus
quitensis, Desch Deschampsia antarctica, Hima Himatormia lugu-
bris, H cer Huea cerussata, H dyp Huea diphyella, L gri Lecanora
aff. griseosorediata, L poly Lecanora polytropa, L spA Lecanora sp.
A, Lept Leptogium puberulum, Massa Massalongia carnosa, Ochro

lichen community. Similar ecological studies have reported
fewer numbers of species, 18—40 compared to the 65 species
found in the present study (Valladares and Sancho 1995;
Kim et al. 2006, 2007; Pifieiro et al. 2012). However, the
total lichen species cited for King George Island exceeds
300 taxa (Olech 2004) and there are still new records being
found (Passo et al. 2015; De la Rosa et al. 2016). In fact, it
has been reported that the terrestrial biota of Antarctica is
poorly described in detail (Convey 2010).

Very few species and low lichen coverage were recorded
at those sampling points closest to the front of the glacier. It
can be assumed that this is a clear sign that the retreat of the
glacier on the Potter Peninsula is very recent (Lagger et al.
2017), considering the rapid lichen response reported for
similar places in maritime Antarctica (Smith 1995; Sancho
et al. 2017). This is in agreement with the observations of
the ice masses on King George Island (Riickamp et al. 2011).

At sites near the coast, we found low coverage and species
numbers. However, our sampling area did not include those
rich lichen communities near penguin rookeries and bird
colonies with a high nutrient input, which have a typical and
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Ochrolechia frigida, Pert ¢ Pertusaria corallophora, Pert e Pertusaria
erubescens, Plac an Placopsis antarctica, Plac co Placopsis contortu-
plicata, Ps bu Psoroma buchananii, Ps hi Psoroma hypnorum, Rh ge
Rhizocarpon geminatum, Rh geo Rhizocarpon geographicum, Rh obs
Rhizocarpon obscuratum, Rh sp Rhizocarpon sp., Rh sup Rhizocar-
pon superficiale, Thell Thelenella aff. mawsonii, U ant Usnea antarc-
tica, U aur Usnea aurantiaco-atra, Altitud altitude, Cov. Mus cover-
age of bryophytes, Cov. Soil coverage of soil, Coast distance from the
coast, Glacier distance from the glacier

different species assemblage (Smykla et al. 2007). Thus, the
community near the coast is very poor in lichen species. Sea
tides and unstable substrata are probably the cause of this
pattern. On the other hand, our results from the multivariate
analysis show that these points near the coast are related
to the frequency and cover of vascular plants. Vera (2011)
argued that at the coast the temperature is higher and that
this provides better conditions for the expansion of vascular
plants.

According to the linear models, the environmental vari-
ables that best explain the species richness and total cover of
lichens are the distance to the glacier and the altitude. When
considering the species richness alone, the distance to the
coast explains not only this but also the interaction between
both distances considered, the slope and the coverage of
rocks. These results show that not only are very few species
found near the coast or near the glacier front but also the
combination of both showed the lowest number of species
(e.g., sites 4, 5 and 10 in Fig. 1). At these sites, located at
the inner side of Potter Cove and near the glacier front, the
richness is very low while the cover is almost imperceptible.



Polar Biology (2018) 41:2523-2531

2529

In the same way, places with a steep slope without rocks are
almost devoid of lichens. The stability of the substrate in
such conditions may be playing a key role in lichen coloni-
zation (Matthews and Vater 2015). On the other hand, the
total lichen cover is explained by the interaction between the
coverage of bryophytes and altitude: the higher the site and
bryophyte cover, the higher the lichen diversity.

Scarce ice-free areas in Antarctic territory have a diverse
lichen biota, usually not reflected in large-scale ecological
works (Poelking et al. 2015). Classical works on Antarc-
tic vegetation are based on physiognomic approaches that
show different community assemblages only considering
dominant species (Longton 1988; Pifiero et al. 2012). This
is usually due to mainly two factors: first, the considerable
necessary taxonomic effort for the identification of spe-
cies, mainly crustose lichens, and second, the need to cover
microhabitat scale conditions such as aspect or slope (Cole-
sie et al. 2014; Laguna-Defior et al. 2016). In our work, the
species assemblages showed a greater variability than previ-
ous studies. Our results showed that richness and coverage
of lichens depends on many driving variables that work at
different scales (Alfredsen and Hoiland 2001; Casanovas
et al. 2013). On the one hand, the distance to the glacier
front, the distance to the coast and the altitude, and on the
other hand, the type of substrate and the slope. The type of
substrate generates microclimatic modifications that facili-
tate the establishment of other plant species (Groeneveld
et al. 2007; Casanova-Katny and Cavieres 2012). Laguna-
Defior et al. (2016) found higher cover of some species of
macrolichens (such as H. lugubris) at higher sites together
with an increase of the humidity.

We considered that the succession dynamic of this com-
munity responds more to a turnover of species (Garibotti
et al. 2011) rather than a nested pattern (Nascimbene et al.
2017), probably due to the microsite variables acting as
ecological filters (Keddy 1992). Accordingly, from the mul-
tivariate analysis, we can recognize at least three species
assemblages, with only a few species present in the whole
gradient. The first one is near the front of the glacier, with
a low coverage and pioneer species. The next assemblage,
observed at medium distances from the glacier front, has a
low cover but higher number of species than the first assem-
blage. Species with cyanobacteria, such as the main photo-
biont or in cephalodia, such as L. puberulum and Placopsis
spp., are common in this assemblage, which may be playing
an important role in developing the community through the
input of nitrogen (Sancho et al. 2011; Raggio et al. 2012).
However, sites where these species were found had moderate
slopes. In contrast, sites with a similar distance to the gla-
cier, but with steeper slopes and a low proportion of rocks,
which were very unstable and had a smaller number of spe-
cies. It is clear that the slope and the type of substrate are
also very important (Favero-Longo et al. 2011). The third

assemblage is a more developed community, far from the
front of the glacier (or at higher altitudes) and with a com-
position depending on the type of substrate. We speculate
that in this last assemblage the competition could be another
filter for species (Trenbirth and Matthews 2010), although
we do not have enough data to be sure about this factor.
Finally, near the coast and far from the glacier, without bird
enrichment, the lichen species are almost absent with the
conspicuous presence of the two vascular plants.

We consider that the patterns in these Antarctic com-
munities are dynamic and very heterogeneous, since they
depend on macroclimatic variables but there is also a strong
influence of microsite factors. It is essential to perform fur-
ther evaluations of the responses to these factors in studies
that assess the impact of climate change in Antarctic ter-
restrial communities.
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