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Abstract Current trends of fish communities in the in-

terior Arctic Ocean are largely unknown, whereas more

fishes of boreal origin are reported from the Chukchi and

Barents Seas recently. To assess variability in species

composition and spatiotemporal occurrence in ichthy-

oplankton in the southeast Beaufort Sea, we sampled larval

and juvenile fish using square-conical nets in the upper

water column (\100 m) from June to September between

2002 and 2011. Gadidae consisting of Boreogadus saida

and Arctogadus glacialis numerically accounted for[75 %

of total catches every month. Cottidae and Liparidae usu-

ally followed Gadidae, together representing 9–94 % of

non-gadid species in number. The majority of dominant

and subdominant species occurred ubiquitously through the

sampling area, whereas Gymnocanthus tricuspis (Cottidae),

Liparis gibbus (Liparidae), and Leptoclinus maculatus

(Stichaeidae) occurred abundantly on the Mackenzie Shelf.

In contrast, Triglops nybelini (Cottidae) was frequently

found in the Amundsen Gulf, which was characterized by

higher salinities ([25). Exceptional species composition

was observed in September 2011, when Ammodytes hex-

apterus (Ammodytidae) numerically accounted for 67 % of

non-gadid species. In the southeast Beaufort Sea, summer

ichthyoplankton are characterized by the overwhelming

dominance of Arctic gadids as well as the frequent oc-

currence of Arctic cottids and liparids. However, the sud-

den and frequent occurrence of A. hexapterus may be a first

sign of significant changes in fish communities in the in-

terior Arctic Ocean.

Keywords Ammodytes hexapterus � Arctic Ocean �
Climate change � Fish community � Horizontal
distribution � Pacific sand lance

Introduction

Sea surface warming combined with increasing river dis-

charge and changing ocean currents will strongly impact

the Arctic marine ecosystem within the next half a century

(ACIA 2005). Although fish constitute the main energy

channel from invertebrates to seabirds, seals, and whales in

the Arctic Ocean (Bradstreet and Cross 1982; Welch et al.

1992), fish communities have mostly been studied in the

main gateways to the Arctic Ocean, such as the Chukchi

Sea (Mecklenburg et al. 2007; Norcross et al. 2010; Lin

et al. 2012), Barents Sea (Byrkjedal and Høines 2007;

Eriksen et al. 2011, 2012) and Baffin Bay (Munk et al.

2003; Jørgensen et al. 2011). Recently, more fishes of

boreal origin occur in these gateways, as many species are

extending their distribution ranges northward (Perry et al.

2005; Fleischer et al. 2007; Mueter and Litzow 2008).

Given that such biological invasions are threatening fishes

of Arctic origin (Christiansen et al. 2014; Falardeau et al.

2014), current trends of fish communities should be
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investigated not only in the gateways but also in the interior

Arctic Ocean, which is not directly influenced by Pacific or

Atlantic waters (Carmack and Wassmann 2006).

The southeast Beaufort Sea is characterized by all to-

pographic features that typically characterize the interior

Arctic Ocean: large estuarine system, shallow continental

shelf, and deep ocean basin (Carmack and Wassmann

2006). The Mackenzie River plume dominates the surface

water layer over the Mackenzie Shelf, sometimes extend-

ing to the Canada Basin over the Beaufort Slope (Mac-

donald and Yu 2006). Following the first interdisciplinary

study in the 1980s (Northern Environmental Protection

Branch 1985), several large-scale research programs have

been conducted in this area (Fortier et al. 2008; Barber

et al. 2012). These research programs have accumulated

baseline information about fish communities in coastal

waters (Chiperzak et al. 1990, 2003a, b, c; Majewski et al.

2006, 2009, 2011, 2013) as well as for the dominant fish

species, polar cod Boreogadus saida (Benoit et al. 2008,

2010; Bouchard and Fortier 2011; Bouchard et al. 2013,

2014; Geoffroy et al. 2011; Walkusz et al. 2011, 2012;

Falardeau et al. 2014). Recent studies reported that the

Mackenzie River plume dictates the distribution of

ichthyoplankton communities on the Mackenzie Shelf

(Paulic and Papst 2012; Wong et al. 2013). However, little

or no information is available concerning subdominant

fishes, especially in offshore waters.

As a first step for investigations into current trends of

fish communities in the southeast Beaufort Sea, the present

study focused on larval and juvenile fish in the upper water

column (hereafter, ichthyoplankton). Physical and biolo-

gical sampling was conducted in summer between 2002

and 2011. We examined (1) interannual changes in species

composition and (2) variability in the spatiotemporal oc-

currence of dominant and subdominant species.

Materials and methods

Study region

The southeast Beaufort Sea is comprised of the Mackenzie

Shelf, the Beaufort Slope, and the Amundsen Gulf (Fig. 1).

The Mackenzie Shelf is a shallow rectangular shelf

(520 km 9 120 km), bordered by the Mackenzie Trough

to the west, the Amundsen Gulf to the east, and the

Beaufort Slope to the north (shelf break depth, ca. 100 m).

The Mackenzie River, the fourth largest river flowing into

the Arctic Ocean, delivers a large amount of fresh water

and sediments to the Mackenzie Shelf mainly from May to

September (Macdonald and Yu 2006). Three water layers

of distinctive origins co-occur in the sea: the Polar Mixed

Layer (\50 m), the Pacific Halocline (50–200 m), and the

Atlantic Layer ([200 m) (Carmack et al. 1989; Macdonald

et al. 1989). The Polar Mixed Layer consists of sea ice melt

and river discharge as well as Pacific or Atlantic waters that

have been mixed sufficiently to have lost their original

identity. In summer, changeable wind forcing primarily

dictates water movement on the Mackenzie Shelf (Car-

mack and Macdonald 2002; Williams and Carmack 2008),

whereas off the shelf relatively constant currents exist: the

Beaufort shelf break jet flowing eastward along the Beau-

fort Slope and the Beaufort Gyre flowing westward in the

southern Canada Basin (Pickart 2004; Steele et al. 2004).

Field sampling

Physical and biological sampling was conducted in the

southeast Beaufort Sea from June to September between

2002 and 2011 onboard Canadian Coast Guard icebreakers.

Vertical profiles of temperature and salinity were obtained

at 1-m intervals with a rosette-type oceanographic profiler

equipped with a Seabird CTD. Ichthyoplankton were

sampled using a double square-net (DSN) sampler that

consisted of a rectangular frame carrying two square-con-

ical nets (1 m2 opening, 6 m long; Bouchard et al. 2014).

As ichthyoplankton increased in size during the sampling

season, the mesh size was changed from 200 or 500 lm to

750 or 1600 lm. The DSN sampler was towed obliquely in

the surface layer (\100 m) at a speed of ca. 1 m s-1. The

maximum sampling depth was determined in accordance

with bottom depth at each station. The volume of water

filtered was calculated from ship speed and towing dura-

tion, due to the frequent failure of flow meters in frigid
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Fig. 1 Sampling stations for the double square-net sampler in the

southeast Beaufort Sea in summer between 2002 and 2011. Conti-

nental shelves (\100 m) are shaded
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waters. Biological sampling stations were selected among

physical sampling stations in each year. The selected sta-

tions were arranged throughout the southeast Beaufort Sea

in 2004 and 2008, whereas in 2009 and 2010, they were

concentrated around the shelf break (Fig. 1). In addition to

oblique tows using the DSN sampler, several water layers

were sampled separately using a EZNet multi-layer sam-

pler (2–9 layers; Bouchard et al. 2014) to assess the vertical

distribution of ichthyoplankton in July 2004. Square-con-

ical nets (1 m2 opening, 200 or 333 lm mesh) mounted on

the EZNet sampler were opened sequentially and towed

obliquely at a speed of ca. 1 m s-1. The number and depth

of water layers sampled were set in accordance with bot-

tom depth at each station. The volume of water filtered was

calculated from a flow meter attached to the EZNet sam-

pler. Ichthyoplankton specimens were enumerated and

most were measured for fresh standard length (SL) onboard

before individual preservation in 95 % ethanol.

Laboratory analysis

All ichthyoplankton specimens were enumerated, identified

morphologically to the lowest taxonomic level possible,

and measured for preserved SL. Fresh SL of individuals not

measured at sea was estimated from their preserved SL

using family-specific relationships obtained from indi-

viduals measured at sea. The morphological identification

was realized following relevant literature (e.g., Able et al.

1986; Matarese et al. 1989; Fahay 2007a, b; Blood and

Matarese 2010), whereas scientific names followed

Mecklenburg et al. (2011). Families were listed in accor-

dance with Nelson (2006), and species were listed alpha-

betically within each family. The two gadid species B.

saida and A. glacialis were pooled in Gadidae because of

close similarities in morphology during their early life

stages. As genetic (Nelson et al. 2013) and otolithometric

(Bouchard et al. 2013) analysis have recently enabled

identification of the two gadid species, their respective

early life histories have been compared and published

elsewhere (Bouchard and Fortier 2011; Bouchard et al.

2014). Identification of Ammodytes hexapterus was con-

firmed by genetic analysis (Falardeau et al. 2014).

Results

Both Amundsen Gulf and Beaufort Slope were character-

ized by consistently higher salinities ([25) in contrast to

variable salinities off the mouth of the Mackenzie River

(Fig. 2). The river plume was visible in 2004 with the

distribution of higher temperatures and lower salinities in

surface waters ([4 �C and \25 respectively). The river

plume was also observed at least partially in 2008 and

2009, whereas in other years, it was not detected within the

area observed. Spatial differences in temperature and

salinity were less marked in subsurface waters (not shown).

Gadidae numerically accounted for[75 % of monthly

catches in each year (Fig. 3). Besides Gadidae, five

families, 11 genera, and 13 species were identified (Table 1).

Cottidae and Liparidae usually followed Gadidae, together

representing 9–94 % of non-gadid species in number. In

Cottidae, Gymnocanthus tricuspis and Triglops nybelini

were the dominant species. Liparis fabricii was more abun-

dant than Liparis gibbus in Liparidae. Other subdominant

species included Leptoclinus maculatus (Stichaeidae), Sti-

chaeus punctatus (Stichaeidae), Aspidophoroides olrikii

10 15 20 25 30 35-2 0 2 4 6 8
(a) Surface temperature (ºC) (b) Surface salinity

Jun-Sep 2004 Jun-Sep 2004

Jun-Aug 2008 Jun-Aug 2008

Jul-Aug 2011 Jul-Aug 2011

Jul-Sep 2009 Jul-Sep 2009

Fig. 2 Sea surface temperature (a) and salinity (b) observed in the

southeast Beaufort Sea in the summers of 2004, 2008, 2009, and

2011. Small dots represent locations where CTD casts were conduct-

ed. The isobathic lines indicate 100 m in depth
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(Agonidae), andA. hexapterus (Ammodytidae). AlthoughA.

hexapterus larvae and juveniles were caught only in 2010

and 2011, they numerically accounted for 67 %of non-gadid

species in 2011.

Growth during a prolonged planktonic period was re-

flected by temporal shifts in SL frequency distributions of

T. nybelini, L. fabricii, L. gibbus, and A. olrikii, from June

to September (Fig. 4). In these species, SL increased from

10 mm in June to [30 mm in September at an average

growth rate of [0.2 mm day-1. In contrast, early settle-

ment after a shorter planktonic period was suggested in G.

tricuspis and S. punctatus as their occurrence was restricted

both in terms of size and season: G. tricuspis,\20 mm SL

in July; S. punctatus, \25 mm SL in September. Lepto-

clinus maculatus of various sizes (12–50 mm SL) occurred

from June to September, with no clear pattern in its SL

frequency distribution. Ammodytes hexapterus occurred

abundantly only in September 2011 (12–53 mm SL).

The spatial occurrence of dominant and subdominant

species was classified into three groups: ubiquitous through

the sampling area, abundant on the shelf, and abundant off the

shelf (Fig. 5). The ubiquitous distribution was evident in

Gadidae and L. fabricii, whereas it was less evident in S.

punctatus, A. olrikii, and A. hexapterus. Generally, G. tri-

cuspis, L. gibbus, and L. maculatus occurredmore abundantly

on theMackenzie Shelf. In contrast,T. nybelini occurredmore

abundantly off the shelf, specifically in the Amundsen Gulf.

While peak abundance of most species corresponded with the

plankton bloom in June and July (Tremblay et al. 2012),

higher densities of S. punctatus were observed in September.

In July 2004, the majority of ichthyoplankton were

distributed in the Polar Mixed Layer (\50 m), independent

of bottom depth (30–490 m, Online Resource 1). The

number of larval and juvenile fish caught by the EZNet

sampler was 293 (26 tows), 201 (84 tows), and 10

(54 tows) in depth layers \10, 10–50, and [50 m,
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   Gymnocanthus tricuspis (Cottidae) Stichaeus punctatus (Stichaeidae)
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Fig. 3 Numerical composition

of ichthyoplankton caught by

the double square-net sampler in

the southeast Beaufort Sea in

summer between 2002 and

2011. Gadidae consisting of B.

saida and A. glacialis are

contrasted with other families in

a; all species except Gadidae are
shown in b
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respectively. Gadidae numerically accounted for[75 % of

catches in all depth layers. These results corroborated the

validity of the regular sampling method employed in the

present study (i.e., oblique tows in the upper water column).

Discussion

Ichthyoplankton in the interior Arctic Ocean

Geographic isolation from Pacific and Atlantic waters,

combined with large estuarine system, shallow continental

shelf, and deep ocean basin, characterizes the interior Arctic

Ocean (i.e., the Beaufort, East Siberian, Laptev, and Kara

Seas; Carmack and Wassmann 2006). The fish species

composition described here, with an overwhelming dom-

inance of Gadidae, a subdominance of Cottidae and Li-

paridae of Arctic origin, and frequent occurrence of

Agonidae and Stichaeidae, can be considered to be charac-

teristic of summer ichthyoplankton in the interior Arctic

Ocean. The two Arctic gadids B. saida and A. glacialis

represented [75 % of the ichthyoplankton in the present

study, irrespective of sampling depth or year. Between the

two species, B. saida have been shown to outnumber A.

glacialis by a factor of 12 in the southeast Beaufort Sea

(Bouchard et al. 2014). The two Arctic cottids G. tricuspis

and T. nybelini, and the two Arctic liparids L. fabricii and L.

gibbus frequently occurred in our samples and are likely

widespread elsewhere in the interior Arctic Ocean. In con-

trast to coastal and estuarine waters (Chiperzak et al. 1990,

2003a, b, c; Majewski et al. 2006, 2009, 2011, 2013; Paulic

and Papst 2012; Wong et al. 2013), no diadromous or es-

tuarine species, such as Pacific herring Clupea palasii

palasii and whitefishes Coregonus spp., were found in our

study area. Fish species composition similar to ours was

reported from the adjacent southwest Beaufort and Chukchi

Seas, although in these seas fishes of Arctic origin are oc-

casionally replaced by fishes of boreal origin, including

capelinMallotus villosus, yellowfin sole Limanda aspera, or

Bering flounder Hippoglossoides robustus (Jarvela and

Thorsteinson 1999; Norcross et al. 2010; Lin et al. 2012). On

the other hand, an overwhelming dominance of fishes of

boreal origin, such as sand lance Ammodytes spp., Atlantic

herring Clupea herengus, and Atlantic cod Gadus morhua,

was reported for ichthyoplankton in the Barents Sea and

Baffin Bay (Munk et al. 2003; Eriksen et al. 2011, 2012).

Potential effects of climate change on Arctic

ichthyoplankton

Although the spatiotemporal resolution of our sampling

was not sufficient to correlate ichthyoplankton densities to

environmental parameters, some general patterns of spatial

occurrence can, nonetheless, be drawn. For example, G.

tricuspis, L. gibbus, and L. maculatus occurred abundantly

on the Mackenzie Shelf, indicating early life histories as-

sociated with shallow waters, where the river plume fre-

quently brings higher temperatures and lower salinities in

summer. Whereas T. nybelini occurred abundantly in the

Amundsen Gulf, many other species were found ubiqui-

tously through the southeast Beaufort Sea. In temporal

patterns, the majority of dominant and subdominant species

exhibited gradual growth during a longer planktonic peri-

od, although early settlement after a shorter planktonic

period was suggested in G. tricuspis and S. punctatus as

0
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Fig. 5 Spatial occurrence of dominant and subdominant ichthy-

oplankton species caught by the double square-net sampler in the

southeast Beaufort Sea in summer between 2002 and 2011 (pooled

years). Monthly occurrence is shown for Gadidae (a), Cottidae (b),

Liparidae (c), Stichaeidae (d), and others (e). Gadidae consists of B.

saida and A. glacialis. Note that the scale of density may differ

among plots
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(d) Stichaeidae
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Density (ind. 1000 m-3)
5

20
10

Density (ind. 1000 m-3)
5

20
10

Density (ind. 1000 m-3)
5

20
10

Density (ind. 1000 m-3)
5

20
10

Jun

Jul

Aug

Sep

(e) Others

Aspidophoroides olrikii
Ammodytes hexapterus

Density (ind. 1000 m-3)Sep

Density (ind. 1000 m-3)
1
2
3

Jun

10
20
30

Density (ind. 1000 m-3)Jul 1
2
3

Density (ind. 1000 m-3)Aug 1
2
3

Fig. 5 continued
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their occurrence was restricted both in terms of size and

season (Brown and Green 1976).

In the interior Arctic Ocean, ichthyoplankton species

would be impacted by ongoing climate change differently in

response to their respective early life histories. Shelf-associ-

ated species aremore vulnerable to changes in river discharge,

whereas variability inwater temperature and ocean currents is

more likely to affect species with an extended planktonic

period (cf. ACIA 2005). Besides such direct impacts, envi-

ronmental changes could affect Arctic ichthyoplankton indi-

rectly through trophic relationships. Sea ice retreat will likely

increase light availability and wind-driven upwelling to en-

hance phytoplankton production over continental shelves,

whereas in ocean basins sea surface freshening and warming

probably strengthen stratification and prevent the replenish-

ment of nutrients available for phytoplankton (Carmack and

McLaughlin 2011; Tremblay et al. 2012). According to this

scenario, consumers might benefit from bottom-up effects of

increasing phytoplankton production only on continental

shelves. Such spatial heterogeneity should be addressed in

further investigations into Arctic ichthyoplankton relative to

their changing environment.

Ichthyoplankton diversity and abundance can serve as an

indicator of changing ocean conditions (e.g., Brodeur et al.

2008). The high abundance of L. maculatus in June 2008 and

of A. hexapterus in September 2011 represents significant

invasions of fishes of boreal origin in our study area. The

substantial presence of these species, rarely found in

ichthyoplankton in the southeast Beaufort Sea (Chiperzak

et al. 1990, 2003a, b, c; Paulic and Papst 2012; Wong et al.

2013), most likely results from recent environmental changes

in this area (e.g., sea surface warming and sea ice loss; Wood

et al. 2013). Although there is a possibility of aberrant drift

from the northern Bering Sea (Berline et al. 2008), significant

reproduction of A. hexapterus in the Beaufort Sea in 2011 is

strongly suggested by its unimodal size/age frequency dis-

tributions including small/young individuals (\20 mm SL or

\10 days old; Falardeau et al. 2014). A similar inference

about L. maculatus can be drawn from its SL frequency

distribution (cf. Meyer Ottesen et al. 2011). As such,

ichthyoplankton may act as sentinels of climate change, de-

tecting significant reproduction of new species and fore-

casting biological invasions in a given area. Moreover,

ichthyoplankton species observed in the present study have a

benthic (12 species) or bentho-pelagic (B. saida, A. glacialis,

and A. hexapterus) adult stage and therefore characterized by

different vulnerability to standard fishing gear such as bottom

or pelagic trawls during the adult stage. Intense bottom trawl

surveys conducted on certain Arctic shelves also bring con-

cerns about habitat destruction (Christiansen et al. 2014).

Ichthyoplankton surveys thus constitute a powerful tool to

assess the response of fish communities to environmental

changes in the interior Arctic Ocean.
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