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Abstract Although scientific knowledge about the bio-

diversity of Antarctic benthic hydrozoans has considerably

increased in recent years, little is known about their spatial

distribution and underpinning factors. Trying to contribute

to filling this gap, benthic hydroid spatial distribution in the

Bellingshausen Sea (Southern Ocean) was studied. Sam-

ples were collected at 32 stations at depths between 86 and

3,304 m during Spanish Antarctic expeditions in 2003 and

2006. Sediments and bottom water properties were ana-

lyzed using an USNEL-type box corer and a Neil Brown

Instrument System Mark III CTD, respectively. Forty

species were reported (Acryptolaria sp., Stegopoma plica-

tile, Staurotheca dichotoma having the highest percentages

of occurrence), representing ca. 19 % of the species rich-

ness of the known benthic hydroid fauna of the Southern

Ocean. Three well-defined assemblages (shallow, deep and

transitional) were established based on significant differ-

ences in species occurrence. Benthic hydroid spatial dis-

tribution in the Bellingshausen Sea seems to be controlled

mainly by depth and substrate (most hydrozoan species are

epibiotic), by species dispersal abilities and by species

resilience to changing hydrodynamic conditions. The level

of species richness found in the present study, compared

with other Antarctic areas, gives support to arguments

stated by authors against the idea that the Bellingshausen

Sea is ‘‘a benthos desert’’ controlled by oligotrophic con-

ditions and intense iceberg traffic.
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Introduction

The Bellingshausen Sea constitutes the third largest Ant-

arctic sea. It also has significant zoogeographical impor-

tance for the dispersal of species along both sides of the

Antarctic Peninsula, through waters around the Antarctic

continent and along the Scotia Arc (Saiz-Salinas et al.

2008). Yet the Bellingshausen Sea has been widely rec-

ognized as one of the lesser studied areas of the Southern

Ocean (Clarke and Johnston 2003).

With the aim of improving the limited scientific

knowledge on benthos inhabiting its shelf and deep-sea

communities, a sampling program of sea bottoms of the

Bellingshausen Sea (including Peter I Island) was carried

out during the Bentart 2003 and Bentart 2006 Spanish

Antarctic expeditions with BIO Hespérides in 2003 and

2006.

As for hydrozoans, only three papers had dealt with

benthic hydroids collected in the Bellingshausen Sea

proper before the Bentart surveys (Hartlaub 1904; Broch

1948; Blanco and Bellusci de Miralles 1972).

Two recent papers (Peña Cantero 2010, 2012) reviewed

data from those three articles and provided results from

faunistic studies of benthic hydroids collected during the

Bentart surveys. A total of 27 species was found in the

Bellingshausen Sea (including two new species and 21 new
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records for the area) and 23 species (including a new

species and 14 new records) in samples obtained from

Peter I Island.

Based on all distribution data collected during previous

surveys as well as in the literature, the present study aims

to understand the biogeographical and ecological factors

that control spatial distribution of benthic hydroids in the

Bellingshausen Sea. Hydroid records were analyzed with

regards to environmental variables and biocoenosis data

investigated during the Bentart surveys and supported by

several studies for other zoological groups, such as crus-

taceans (Garcı́a Raso et al. 2005, 2008; San Vicente et al.

2009), fishes (Matallanas and Olaso 2007; Eakin et al.

2008), sponges (Rı́os and Cristobo 2007), mollusks

(Troncoso et al. 2007; Troncoso and Aldea 2008; Aldea

et al. 2008, 2009), ascidians (Varela and Ramos-Esplá

2008) and echinoderms (O’Loughlin et al. 2009; Moya

et al. 2012) as well as macrobenthos general studies (Saiz-

Salinas et al. 2008).

Materials and methods

Study area

The Bellingshausen Sea is considered to be the part of the

Southern Ocean located between Thurston Island to the

west and Marguerite Bay to the east (from 70� to 100�W

and from the coast to 68�S), as adopted by other authors

(e.g., Fairbridge 1966; Turner and Owens 1995; Grotov

et al. 1998). It is one of the less investigated areas of the

Southern Ocean, mainly because of its remoteness and ice

prevalence during most of the year (Fairbridge 1966;

Turner and Owens 1995; Grotov et al. 1998; Clarke and

Johnston 2003).

Sedimentological and geomorphological characteristics

are consequences of glacier dynamics, their effects on the

ice layer and the activity of icebergs, which have plowed

deep grooves on the bottom (Starmans et al. 1999; Gutt

2000; ÓCofaigh et al. 2005).

Oceanographic features are the result of the combined

effects of shallow and deep water masses (Klinck et al.

2004), with water temperatures varying from -1.8 to

0.3 �C (Stambler 2003).

Field sampling

Sampling was carried out during BENTART expeditions

(Spanish Antarctic Research Program) with the BIO Hes-

pérides from January to March 2003 and from January to

February 2006. Samples were collected at 32 stations, at

depths between 86 and 3,304 m (Fig. 1; Table 1, ESM),

using an Agassiz trawl with horizontal and vertical

openings of 2.01 and 1.12 m, respectively, and a 10-mm

mesh size (Ramos 1995; Arnaud et al. 1998). A USNEL-

type box corer with a maximum breakthrough of 60 cm

and an effective sampling area of 0.25 m2 (Saiz-Salinas

et al. 2008) was used for infaunal organisms and sediments.

Suprabenthic samples were collected with a modified

Macer-GIRO Q sledge (Carter and Hunter 1994). This

sledge was equipped with three superimposed nets (0.5-

mm mesh size). Hydrographic casts were made with a Neil

Brown Instrument System Mark III CTD. Hydroids were

fixed in 70 % ethanol. For faunistic results, see Peña

Cantero (2010, 2012).

Data analyses

A majority of species in the samples form stalked or bushy

colonies. However, many colonies came on board frag-

mented. This makes abundance studies very inaccurate

since it is too difficult, or even impossible, to estimate the

exact number of colonies collected. Accordingly, no

quantitative analysis was performed in the present study.

Hydroid species were classified according to their fre-

quencies across samples, a surrogate for evaluating their

importance in the community. Based on the percentage

frequency of occurrence across all stations, four categories

were recognized: ubiquitous species ([30 % of stations),

very common species (between 30 and 20 %), common

species (between 20 and 10 %), and rare or accidental

species (\10 %) (Mora 1980; Manjón-Cabeza and Garcı́a

Raso 1994; Manjón-Cabeza and Ramos 2003; Moya et al.

2012). To investigate the structure of hydroid assemblages,

similarities between samples were computed by a hierar-

chical cluster analysis using the UPGMA agglomerative

algorithm (Sneath and Sokal 1973; RMACOQUI ver. 1.0

software Olivero et al. 2011, 2013). It was based on the

similarity matrix of the Baroni-Urbani and Jaccard coeffi-

cients, calculated from presence/absence data (Jaccard

1901; Baroni-Urbani and Buser 1976; Real and Vargas

1996; Real 1999). Robustness of each cluster was esti-

mated with a test of biological significance performed on

boundaries between hydroid assemblages (McCoy et al.

1986). Strong and weak boundaries were defined between

assemblages following McCoy et al. (1986), in both cases

for a p \ 0.05 (Olivero et al. 1998). Stations were plotted

using a detrended correspondence analysis and a canonical

correspondence analysis (CCA) computed from the pre-

sence/absence matrix and based on the eigenvalues of v2

distances between all data points (Ter Braak and Prentice

1988; Hennebert and Lees 1991; Legendre and Legendre

1998), using the PAST-paleontological statistics computer

program, version 1.181 (Hammer et al. 2001). The CCA

was performed using the environmental variables that best

matched the hydroid assemblages identified in the cluster
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analysis (those stations without environmental data were

not included in this analysis). They were used to define

ordination axes on which hydroid data (with both stations

and specimens) were plotted. Environmental variables

were plotted as well as correlations with ordination axes.

The ArcGIS v10.2 program and GEBCO Digital Atlas

v2.12 were used for mapping and digital support.

Results

Hydroids were present in 18 of the 32 stations (Fig. 1). In

total, 85 records, representing 40 species within 11 families

and 2 orders, were assembled (Table 1, ESM). Some taxa

(Eudendrium sp. 1, Eudendrium sp. 2, Eudendrium sp. 3,

Anthoathecate sp. and Acryptolaria sp.) could not be

identified to species (see Peña Cantero 2010, 2012).

Of the 40 species recorded, three (Acryptolaria sp., Ste-

gopoma plicatile, Staurotheca dichotoma) were classified as

ubiquitous ([30 %), five (Stegella lobata, Symplectoscy-

phus cumberlandicus, Halecium frigidum, Antarctoscyphus

spiralis, Symplectoscyphus glacialis) as very common

(between 30 and 20 %) and eight (Symplectoscyphus curv-

atus, Schizotricha vervoorti, Billardia subrufa, Halecium

pallens, Filellum antarcticum, Filellum magnificum, Lafoea

dumosa, Halecium delicatulum) as common (between 20 and

10 %). The rest were taken to be rare or accidental (\10 %)

(cf. Table 1, ESM).

Species richness by station is found in Table 1, ESM.

Peter I stations contained 57.5 % of the total number of

species, whereas the Bellingshausen stations accounted for

67.5 % (MB34 being the richest station).

Results from cluster and correspondence analyses

(Figs. 2, 3) show significant differences (Jaccard and Baroni

index p \ 0.05) between three well-defined assemblages,

Fig. 1 a Sampling area and

stations of the Spanish Antarctic

expeditions Bentart 2003 and

Bentart 2006 (dashed line ice

cover limit). b Station groupings

based on the similarity analysis

of hydroid assemblages
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called S (shallow), D (deep) and SH, based on species

occurrence (Figs. 1b, 4). The assemblages were separated

by strong boundaries in all cases. In addition, within the S

assemblage there was a clear partitioning between deeper

(S1) and shallower stations (S2) (Figs. 2c, 3, 4b).

Species composition of hydroid assemblages is struc-

tured as follows (B: assemblage from the Baroni index; J:

assemblage from the Jaccard index; MB: Bellingshausen

Sea stations; PI: Peter I stations):

SH: MB3. Deep-water station with mixed bottom,

distinguished by only one species, Symplectoscyphus

hesperides, which is absent from any of the other stations.

B4; J5 (except MB26 and MB12): PI27, PI28, MB30

(D). Assemblage formed by some of the deepest stations,

with sandy muds, characterized by low species richness

values and high occurrence of A. spiralis.

B3: MB26. Deep-water station with sandy bottom,

defined by four species absent from the rest (Bouillonia

Fig. 2 Qualitative analysis of

similarity [Baroni-Urbani

(a) and Jaccard (b) indexes and

UPGMA agglomeration

algorithm for both] and a

summarized tree (c). B:

Assemblages from the Baroni

index; J: assemblages from the

Jaccard index; MB:

Bellingshausen Sea stations; PI:

Peter I stations

Fig. 3 a Canonical

correspondence analysis (CCA)

(eigenvalues k1 = 0.84;

p \ 0.05 and k2 = 0.54;

p = 0.5 with 10,000-replicate

permutation test).

b Correspondence analysis with

groups identified as defined by

the hierarchical cluster analysis

(eigenvalues shown in the text).

D: Depth (m); OD: organic

deposit (%); G: gravel (%); S:

sand (%); M: mud (%)
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denhartogi, Antarctoscyphus elongatus, Symplectoscy-

phus exochus, Symplectoscyphus plectilis) and a single

shared species, A. spiralis.

J4: MB12. Deepest, mono-specific station (S. curvatus),

with sandy muds.

B1; J1, J2 (S1): MB4, MB14, MB11, MB13, MB37,

MB34. Assemblage dominated by S. plicatile, which

was present in 100 % of the stations. The stations are

characterized by mixed bottoms with a relatively high

presence of gravel (apart from MB34) located at

shallower depths.

B2; J3: PI5, PI8, PI6, PI7, MB9, MB10 (S2). Assem-

blage found on sandy muds at shallower depths and

mainly characterized by S. lobata, S. cumberlandicus

(83.33 %) and the presence of S. glacialis (66.67 %).

Results from the CCA (Fig. 3a) show that the sediment

granulometry (mud, sand and gravel percentages), organic

deposit percentage and depth are the five variables that best

explain the structure of the hydroid assemblages. The two

first axes (eigenvalues k1 = 0.84, p \ 0.05; k2 = 0.54,

p = 0.5 with 10,000-replicate permutation test) show a very

good match, except for the organic deposit percentage,

which does not seem to have a great influence on the

assemblages. Depth appears to be the main factor controlling

division of the hydroid assemblages into the deep-sea (D),

continental slope (S1) and shallowest stations (S2) (Figs. 1b,

3).

Species were plotted in the same graphic with the aim of

depicting their environmental preferences. The main dis-

tinction can be made between species exclusive to the deep

basin (S. hesperides, S. exochus, S. plectilis, A. spiralis, A.

elongatus, B. denhartogi, Sertularella sanmatiasensis) and

the rest from the continental slope or from the shallowest

stations. The only species present in both environments is

S. curvatus, although it is absent at the shallowest stations.

Discussion

Our study summarizes information on the benthic hydroid

fauna from the Bellingshausen Sea, as reported by Peña

Cantero (2010, 2012, with Peter I samples included). Forty

species were reported, with 3 of them new to science and

14 others constituting new records for the area. They rep-

resent about 19 % of the species richness of the 209 known

Antarctic benthic hydroids. This important level of species

richness, compared with other Antarctic areas, lends sup-

port to arguments stated by some authors (cf. Moya et al.

Fig. 4 Composition and occurrence percentage of hydroid assem-

blages as defined by hierarchical cluster analysis. a Three main

assemblages. b Only shallow-water assemblages. Abbreviations are

referred to in the text. Colors represent different substrates for the

species: green (star) ascidians; blue (plus) bryozoans; pink (square)

dead organisms; black other hydroids. (Color figure online)
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2012) against the idea that the Bellingshausen Sea is ‘‘a

benthos desert’’ (Saiz-Salinas et al. 2008; San Vicente et al.

2009) controlled by oligotrophic conditions and intense

iceberg traffic (Peck et al. 1999; Gutt 2000).

Such species richness is unexpected considering the

substrate dependence of hydroids (Calder 1991; Gili et al.

2008; Ronowicz et al. 2008), the type of bottoms present in

the area studied (mostly muddy and sandy bottoms) and the

scarcity of dense and rich communities of large filter

feeders in the Bellingshausen Sea (Ramil et al. 2006a, b)

compared to other Antarctic areas such as the Weddell and

Ross seas and closer areas (e.g., Ramos 1987, 1995; Luján

and Ramos-Esplá 1996a, b; Saiz-Salinas et al. 1997; Ramil

and Ramos 1997; Manjón-Cabeza et al. 2001; Ramos and

Moya 2003, Manjón-Cabeza and Ramos 2003; Ramos and

Moya 2003).

In addition to depth, hydrozoan assemblages of the

Bellingshausen Sea seem to be determined by substrate

type (see Peña Cantero 2010 for a discussion about the

substrata on which the species live), species dispersal

abilities and species resilience to changing hydrodynamic

conditions (Calder 1991; Gili et al. 2008; Ronowicz et al.

2008).

Two well-structured hydroid assemblages were recog-

nized in the study area. The first one (D) was found in

deep-water stations (\-1N500 m) of the slope with bot-

toms of sand and sandy mud. It was dominated by A.

spiralis, which had not been found before at such depths

(cf. Peña Cantero 2012). This species is usually collected in

shallower areas, from 6 to 720 m depth, as is also the case

for the other species of the assemblage. They are circum-

polar eurybathic species, capable of being widely trans-

ported by currents. In the Bellingshausen Sea, however,

they are only present at the deepest stations.

The second assemblage (S) occurs on bottoms at inter-

mediate depths and encompasses two minor groups of

species, S1 and S2.

S1 contains species with a particular preference for

mixed bottoms with an abundance of gravel at the edge of

the Continental Shelf, perhaps because of the hydrody-

namic conditions. The dominant species was S. plicatile.

The assemblage is also characterized by the presence of an

endemic species, Symplectoscyphus bellingshauseni, not

shared with any other assemblage.

Stegopoma plicatile is a species widely distributed all

around the Antarctic continent, but also outside Antarctic

waters. It is an epibiotic species that typically grows on

other hydroids such as species of the genera Eudendrium

and Halecium.

In general, this assemblage is an association of a small

number of species that are epibiotic in habit. This increases

their substrate availability and enhances their survival

chances on soft bottoms having a paucity of filter feeders,

as is characteristic of the Bellingshausen Sea.

S2 embraces shallower stations located on muddy

bottoms off Peter I Island and on sandy muds on the

Antarctic Continental Shelf. It comprises the richest spe-

cies assemblage, despite the a priori not suitable type of

bottom, with a more balanced dominance shared by three

species, S. dichotoma, S. lobata and S. cumberlandicus.

Most species are epibiotic, occurring on bryozoans

(López-Fé 2005) and large filter feeders such as desmo-

sponges, hexactinellids and ascidians, like Cnemidocarpa

verrucosa, which is very abundant at these stations, and

particularly at Peter I Island (Ramos and Moya 2003;

Primo and Vazquez 2009).

Conclusion

Hydroid assemblages from the Bellingshausen Sea show a

structure similar to that found for other zoological groups,

such as echinoids, fishes or mollusks (Matallanas and Ol-

aso 2007; Aldea et al. 2008; Troncoso and Aldea 2008; San

Vicente et al. 2009; Moya et al. 2012).

As in other taxocoenosis, depth is the factor best

explaining both the structure of the hydroid assemblages

and the species dominance.

Other abiotic factors, such as sediment features, also

contribute to determining these associations, which are

dependent on biotic parameters, too, particularly substrate

dependency, enhancing their chance of survival on soft

bottoms with a paucity of filter feeders (desmosponges,

hexactinellids and ascidians), as is characteristic of the

Bellingshausen Sea.
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