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Abstract Antarctic arthropods (mites and springtails)

have been the subject of numerous studies. However, by

far, the most diverse and numerically dominant fauna in

Antarctica are the limno-terrestrial microfauna (tardi-

grades, rotifers and nematodes). Although they have been

the focus of several studies, there remains uncertainty of

the actual number of species in Antarctica. Inadequate

sampling and conserved morphology are the main cause of

misclassification of species and underestimation of this

diversity. Most species’ distributional records are domi-

nated by proximity to research stations or limited oppor-

tunistic collections, and therefore, an absence of records for

a species may also be a consequence of the limitations of

sampling. Limitations in fundamental knowledge of how

many species are present and how widespread they are

prevents any meaningful analyses that have been applied

more generally to the arthropods within Antarctica, such as

exploring ancient origins (at least pre-last glacial maxi-

mum) and tracking colonisation routes from glacial refugia.

In this review, we list published species names and where

possible the distribution of microfaunal (tardigrade, rotifer

and nematode) species reported for Antarctica. Our current

state of knowledge of Antarctic records (south of 60�S)

includes 28 bdelloid rotifers, 66 monogonont rotifers, 59

tardigrades and 68 nematodes. In the light of the difficulties

in working with microfauna across such geographical

scales, we emphasise the need for molecular markers to

help understand the ‘true levels’ of diversity and suggest

future directions for Antarctic biodiversity assessment and

species discovery.

Keywords Tardigrada � Rotifera � Nematoda � DNA

barcoding � Antarctic Conservation Biogeographic Regions

(ACBR)

Introduction

Antarctica has one of the most extreme and challenging

environments on the planet, experiencing prolonged win-

ters, freezing temperature and lack of liquid water. It spans

nearly 30� of latitude (61�–90�S) and covers an area of 14

million km2 with only 0.3 % of its total area remaining ice-

and snow-free year round (British Antarctic Survey 2004).

It has been isolated from the other southern continents for

around 28 million years by the Southern Ocean (Lawver

et al. 1998), since the opening of the South Tasman Rise

(32 My) and the Drake Passage (28 My) (Lawver and

Gahagan 2003). It has also been covered in a permanent ice

sheet for *34 My (Tripati et al. 2005) and has experienced

more than 10 major glacial cycles over the last million
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years (Hays et al. 1976). Despite this, life has managed to

survive. Some of the Antarctic terrestrial arthropods consist

of likely descendants of ancestors present in Gondwanan

times that have diversified in ice-free isolated locations,

such as nunataks, since the completion of glaciation in the

late Miocene (*21–11 Mya) (Marshall and Pugh 1996;

McInnes and Pugh 1998; Stevens and Hogg 2003; Stevens

et al. 2006a). In the case of Antarctic lakes, few studies

have dealt with their continuous presence since the break-

up of Gondwana. De Smet and Gibson (2008) suggested

survival of rotifers in freshwater environments since the

last glacial maximum (LGM). Over the last decade, it has

become well accepted that several Antarctic localities have

remained ice-free throughout the LGM (e.g. Convey and

Stevens 2007; Convey et al. 2008, 2009) and some likely to

have been ice-free for much longer. Continental regions

such as Dronning Maud Land (Marshall and Pugh 1996),

Antarctic Peninsula (AP) (Pugh and Convey 2000),

southern Victoria Land (Stevens and Hogg 2003, 2006b)

and coastal areas (Burgess et al. 1994; Gore et al. 2001;

Hodgson et al. 2001) have been suitable for the long-term

survival of terrestrial life in ice-free refugia (Cromer et al.

2006; Convey and Stevens 2007) with many terrestrial

habitats becoming available for colonisation from refuges

within the current inter-glacial period (\17,000 years)

(Stevens and Hogg 2003).

The Antarctic limno-terrestrial microfauna is frag-

mented, patchily distributed and taxonomically restricted,

and mostly comprises rotifers, tardigrades and nematodes

(e.g. Wharton 2003; Sohlenius et al. 2004; Sohlenius and

Boström 2005, 2008; Huiskes et al. 2006). Microfaunal

communities have commonly been associated with habitats

rich in organic material (algae, moss or lichen), in the

vicinity of bird colonies (e.g. Sohlenius et al. 2004; So-

hlenius and Boström 2005; Wall 2007), or in lakes or melt

pools (e.g. Kirjanova 1958; Suren 1990; Dartnall 2000;

Andrássy and Gibson 2007; De Smet and Gibson 2008).

The limno-terrestrial microfauna form a vital component of

the food web, playing an essential function in soil eco-

system processes, mainly in recycling nutrients and pro-

cesses of decomposition (Sands et al. 2008). Today fewer

than 550 non-marine invertebrate species have been iden-

tified from Antarctica (Adams et al. 2006; Convey et al.

2008, 2009). Most of these are endemic (58 %) and can be

defined as continental ([25 %) or maritime ([29 %), with

only 3 % of species having a pan-Antarctic distribution

(Pugh and Convey 2008). Diversity is greatest for the

microfauna (rotifers, tardigrades and nematodes) (e.g.

Dastych 1984; Andrássy 1998; Convey and McInnes 2005;

Adams et al. 2006; Sohlenius and Boström 2008), followed

by arthropods, particularly springtails (Collembola) and

mites (Acari) (e.g. Hogg and Stevens 2002; Sinclair and

Stevens 2006; Stevens and Hogg 2006b). Given these basic

statistics, it is surprising that the arthropods have received a

disproportionate amount of attention and that there is no

single study that provides a complete list of diversity and

distribution for the Antarctic microfaunal species of the

Phyla Rotifera, Tardigrada and Nematoda. Such an

important synopsis of the microfauna may have been seen

as a difficult task when it is widely regarded that identifi-

cation to morpho-species of these minute microfauna are

often difficult given the lack of distinctive morphological

features (e.g. Andrássy 1998; Floyd et al. 2002; Robeson

et al. 2009) resulting in misclassification and underesti-

mation of diversity (Adams et al. 2006; Fontaneto et al.

2009; Stevens et al. 2011).

In order to assess microfaunal diversity in Antarctica

(south of 60�S), we have used, for continental Antarctica,

the sectors: Maud, Enderby, Wilkes, Scott, Byrd and Ronne

(see Pugh 1993). We have also included the AP, and the

maritime Antarctica (west of AP, and the sub-Antarctic

islands of South Orkney and South Shetland; Fig. 1). The

selection of these largely empirical sectors has also been

adopted by other studies (e.g. McInnes and Pugh 1998;

Convey and McInnes 2005; Pugh and Convey 2008) but do

not represent the bioregions as defined by Terauds et al.

(2012). The aim here is to compile the current state of

knowledge of Antarctic limno-terrestrial microfaunal

diversity and distribution based on morphology of rotifers,

tardigrades and nematodes (collectively referred to in this

review as microfauna) from continental and maritime

Antarctica. We then discuss potential dispersal mecha-

nisms and the need to establish diversity by combining

molecular methods. We conclude with suggestions for

future directions for Antarctic biodiversity assessment and

species discovery.

Current state of knowledge

Microfauna community

Tardigrada

The Phylum Tardigrada is divided into three Classes

(Heterotardigrada, Mesotardigrada and Eutardigrada),

which comprise a total of *800 species of freshwater,

terrestrial and marine tardigrades worldwide (McInnes and

Pugh 1998). Most of the limno-terrestrial forms belong to

the Class Eutardigrada, and to some extent the Heterotar-

digrada (which also include marine forms) (Kinchin 1994).

To date, 64 published species of tardigrades have been

reported for Antarctica and sub-Antarctic islands (includ-

ing records north of 60�S; McInnes and Pugh 2007),

although no species list was included in their work. In the

present review, we list 59 records of Antarctic tardigrades
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(south of 60�S) from 34 references and compiled a species

distribution list for all named Antarctic tardigrades

(Table 1). Records for continental Antarctica include 42

species, while for maritime Antarctica, 36 species are

reported (19 shared species). We found no records for Byrd

sector and only three records for Ronne sector, because of a

probable lack of studies in these areas. The most wide-

spread tardigrades in Antarctica are the pan-Antarctic

species Acutuncus antarcticus Binda and Pilato 2000 and

Milnesium tardigradum Doyère, 1840 (Table 1). Misiden-

tifications and species synonyms have been included in the

online Supplementary Material (Online Resource 1).

Rotifera

The Phylum Rotifera includes the Classes Bdelloidea,

Monogononta and Seisonidea, with the former two being

most common in Antarctica. Segers (2007) listed 92 rotifer

species and assigned them to ‘Antarctica’ (including sub-

Antarctic islands north of 55�S) but without specifying

geographical regions. We confirmed, from other refer-

ences, the presence of 63 of those species (44 monogononts

and 19 bdelloids) listed by Segers (2007) to occur in

continental and/or maritime Antarctica (south of 60�S) (see

Tables 2 and 3). Most records in the literature correspond

to the widely known Antarctic endemic Philodina gregaria

Murray 1910, which has been reported from across Ant-

arctica. Frequently found with P. gregaria is another

endemic Antarctic rotifer Adineta grandis Murray 1910

and two cosmopolitan species Epiphanes senta Müller,

1773 and Cephalodella catellina Müller, 1786. All four

species are usually found in bodies of water that remain

frozen in the winter and have a circumpolar distribution

similar to other cosmopolitan species from terrestrial hab-

itats (Adineta gracilis Janson, 1893) and lake habitats

(Collotheca ornata cornuta Dobie, 1849 and Lepadella

patella Müller, 1773) (Dartnall 1983). We have compiled a

distribution list (based on published species) of Antarctic

limno-terrestrial rotifers that includes 66 monogonont and

28 bdelloid species from 24 different reference sources

(Tables 2 and 3). Species records reported by Segers

(2007) for Antarctica that were not confirmed by other

references can be found in the Supplementary Material

(Online Resource 2). For a list of species synonyms, refer

to the Online Resource 3.

Nematoda

Nematodes are usually associated with rotifers and tardi-

grades and generally found in areas where moss, lichens or

algae are present (e.g. Timm 1971; Sohlenius et al. 2004;

Velasco-Castrillón et al. 2014). Some species (Plectus

MAUD
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1000 km

70°S

30°W

150°W

90°E

150°E

60°S

30°E

Antarctic
Peninsula

South
Shetland Is

Maritime
Antarctica

South
Orkney Is

Fig. 1 Map of Antarctica

showing the six sectors for

continental Antarctica, the

Antarctic Peninsula, and the

maritime Antarctica
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Table 1 List of Tardigrada species recorded from the Antarctic and their regional distributions

Tardigrade species/sectors Continental Antarctica AP—Maritime

Antarctica

Maud Enderby Wilkes Scott Ronne AP SS-SO

Class Heterotardigrada

Echiniscus corrugicaudatus (McInnes 2010) 13b

Echiniscus jenningsi (Dastych 1984) 14, e1 3, 5 4, 3, 13

Echiniscus kerguelensis (Richters 1904) (28b, 29) (29)

Echiniscus pseudowendti (Dastych 1984) 24 4, 27 e1

Echiniscus punctus (McInnes 1995) 3, 13

Testechiniscus meridionalis (Murray 1906) 4, 3, 13

Oreella mollis (Murray 1910) 3

Pseudoechiniscus cf. suillus (Ehrenberg 1853) 4, 16 5, 16b 4, 3, 13

Pseudoechiniscus novaezeelandiae (Richters 1903) 21, 15, 16

Class Eutardigrada

Acutuncus antarcticus (Binda and Pilato 2000) 23, 24,

25

6, 11, 14, 16, 17, 21, 27,

28, 28b, 29, 30

5, 16b 1, 22,

6

3 3, 12, 29

Amphibolus volubilus Durante Pasa & Maucci, 1975 (29)

Dactylobiotus cf. ambiguus (Murray 1907) 11 3, 12,13

Hexapodibius boothi (Dastych and McInnes 1994) 3, 9

Diphascon ongulensis (Morikawa 1962) 17, 27, 28, 29

Diphascon (Adropion) greveni (Dastych 1984) 3 3, 12, 13

Diphascon (Adropion) maucci Dastych & McInnes,

1996

3

Diphascon (Adropion) tricuspidatum (Binda and Pilato

2000)

1, 2

Diphascon (Diphascon) alpinum (Murray 1906) (29)

Diphascon (Diphascon) dastychi (Pilato and Binda

1999)

1, 19

Diphascon (Diphascon) higginsi (Binda 1971) (29)

Diphascon (Diphascon) langhovdense (Sudzuki 1964) 23, 24 7, 27, 30 3

Diphascon (Diphascon) mirabilis (Dastych 1984) 3, 12

Diphascon (Diphascon) pingue (‘Variety A’) (Marcus

1936)

16b 3, 5 3

Diphascon (Diphascon) pingue (‘Variety B’) (Marcus

1936)
19 5 4

Diphascon (Diphascon) polare (Pilato and Binda 1999) 1, 19

Diphascon (Diphascon) victoriae (Pilato and Binda

1999)

1, 19

Diphascon (Diphascon?) puniceum Jennings, 1971 e1 15 3, 13

Diphascon sanae Dastych, Ryan & Watkins, 1990 10 14, 27, e1 3 3

Hebesuncus mollispinus Pilato, McInnes & Lisi, 2012 20

Hebesuncus ryani Dastych & Harris, 1994 23, 25,

27

3 3

Hebesuncus schusteri (Dastych 1984) 24 4 3 3

Hypsibius allisoni Horning, Schuster & Grigarick,

1978

15

Hypsibius (Diphascon) scoticus Murray, 1905 (1)

Hypsibius cf. convergens (Urbanowicz, 1925) (1)

Hypsibius cf. dujardini (Doyère, 1840) 3 3, 12,13

Hypsibius cf. mertoni simoizumii (Sudzuki 1964) e1 1

Isohypsibius asper Murray, 1905 e1 29,3,12, 13
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frigophilus Kirjanova 1958; Halomonhystera spp) have

also been recorded from Antarctic lakes (Kirjanova 1958;

Andrássy and Gibson 2007) or in highly organic soils

adjacent to bird colonies, for example Panagrolaimus

(Sohlenius 1989; Sinclair 2001). According to Wharton

(2003), nematodes are the most diverse and abundant

invertebrates in both the maritime and continental Ant-

arctic regions. The Phylum includes the Classes Dorylai-

mia, Enoplia and Chromadoria (Meldal et al. 2007), which

according to Andrássy (2008a) are represented by 54 spe-

cies from Antarctica, 32 in the maritime region and 22

from continental Antarctica. In the present review, we list

68 published species for Antarctica (Table 4). We

identified 34 species occurring in continental Antarctica

and 37 species in maritime Antarctica (see Velasco-Cas-

trillón and Stevens 2014). Of particular interest is the

geographical overlap of three species (Plectus murrayi

Yeates 1970; P. frigophilus and Teratocephalus tilbrooki

Maslen, 1979). P. murrayi and P. frigophilus (commonly

known for continental Antarctica) were represented by

unconfirmed records for maritime Antarctica. While T.

tilbrooki known from maritime Antarctica, (Andrássy

1998) was reported for continental Antarctica (Table 4).

Unfortunately, no morphological or molecular data were

provided in these studies. The overlap of P. murrayi with

other species could be a result of the difficulties

Table 1 continued

Tardigrade species/sectors Continental Antarctica AP—Maritime

Antarctica

Maud Enderby Wilkes Scott Ronne AP SS-SO

Isohypsibius improvisus Dastych 1984 4 4

Isohypsibius laevis (McInnes 1995) 3,13

Isohypsibius papillifer Murray, 1905 29, 3, 12,

13

Isohypsibius saracenus Pilato, 1973 (29)

Macrobiotus blocki Dastych 1984 23, 24 4, 11, 14, 27

Macrobiotus cf. hufelandi (Schultze, 1833) 23 e1 3, 5

Macrobiotus cf. polaris (Murray 1910) 1, 18

Macrobiotus harmsworthi coronatus (Utsugi, 1991) (28b, 29)

Macrobiotus harmsworthi (Barros, 1942) e1 (29)

Macrobiotus krynauwi Dastych and Harris 1995 23, 25, 8 12, 13

Macrobiotus meridionalis Richters, 1909 22

Macrobiotus montanus Murray 1910 (29)

Macrobiotus mottai Binda & Pilato, 1994 1

Macrobiotus polaris Dougherty & Harris, 1963 1

Minibiotus stuckenbergi (Dastych, Ryan & Watkins,

1990)

3, 10 14, e1

Minibiotus vinciguerrae Binda & Pilato, 1992 1

Minibiotus weinerorum (Dastych 1984) 4, 11, 16

Ramajendas frigidus Pilato & Binda, 1990 16b 1

Ramajendas renaudi Ramazzotti, 1972 3, 4 3, 12

Ramazzottius cf. oberhäuseri (Doyère, 1840) e1 e1 1 3,

e1

Milnesium antarcticum Tumanov 2006 22 26

Milnesium cf. tardigradum (Doyère, 1840) 23, 24 16, 27, 30 3 3 3

The numbers in each column refer to reference (see table)

AP Antarctic Peninsula, SS–SO South Shetland and South Orkney Islands

Literature source: (1) Adams et al. 2006, (2) Binda and Pilato 2000, (3) Convey and McInnes 2005, (4) Dastych 1984, (5) Dastych 1989, (6)

Dastych 1991, (7) Dastych 2003, (8) Dastych and Harris 1995, (9) Dastych and McInnes 1994, (10) Dastych et al. 1990, (11) Gibson et al. 2007,

(12) Janiec 1996, (13) McInnes 1995, (13b) McInnes 2010, (14) Miller and Heatwole 1995, (15) Miller et al. 1988, (16) Miller et al. 1994, (16b)

Miller et al. 1996, (17) Morikawa 1962, (18) Murray 1910, (19) Pilato and Binda 1999, (20) Pilato et al. 2012, (21) Rounsevell and Horne 1986,

(22) Smykla et al. 2012, (23) Sohlenius and Boström 2005, (24) Sohlenius et al. 1995, (25) Sohlenius et al. 2004, (26) Tumanov 2006, (27)

Tsujimoto et al. 2014, (28) Utsugi and Ohyama 1989, (28b) Utsugi and Ohyama 1991, (29) Utsugi and Ohyama 1993, (30) Sudzuki 1964, (e1)

Australian Antarctic Data Centre (https://data.aad.gov.au/aadc/biodiversity/search_taxon.cfm). References in parenthesis indicate possible

misidentifications
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Table 2 List of Monogononta (Rotifera) species recorded from the Antarctic and their regional distributions

Rotifer species/sectors Antarctica

(unspecified)

Continental Antarctica AP—Maritime

Antarctica

Maud Enderby Wilkes Scott AP SS-SO

Class Monogononta

Brachionus angularis Gosse, 1851 10

Brachionus bidentatus bidentatus Anderson, 1889* 14 10, e1 e1

Brachionus bidentatus inermis Rousselet, 1906 10

Brachionus calyciflorus Pallas, 1766 14 10, e1

Brachionus havanaensis trahea Murray, 1913 10, e1 10, e1

Brachionus quadridentatus quadridentatus Hermann,

1783*

14 10 10, e1

Brachionus urceolaris urceolaris Müller, 1773* 14 10 10 10

Cephalodella auriculata Müller, 1773 14 1, e1

Cephalodella catellina Müller, 1786 14 2, 1 e1 1, 2, 10b,

e1

Cephalodella forficata (Ehrenberg, 1832) 14 e1 1, 10b, e1

Cephalodella gibba (Ehrenberg, 1830) 14 e1 1, 2, e1

Cephalodella megalocephala (Glascott, 1893) 14 1, e1

Cephalodella sterea (Gosse, 1887) 14 5

Cephalodella tenuior (Goose, 1886) 14 e1

Cephalodella ventripes angustior Donner, 1950 5

Collotheca gracilipes Edmonson, 1939 1, e1

Collotheca ornata cornuta (Dobie, 1849) 14 4, 5, e1 2, e1 2, 1 e1 1, 2, e1

Colurella colurus colurus (Ehrenberg, 1830) 14 e1 10b, e1

Colurella colurus compressa (Lucks, 1912) 14 1, e1

Dicranophorus permollis giganthea Dartnall and

Hollowday 1985

1 e1 1, e1

Dicranophorus uncinatus (Milne, 1886) 1, e1

Encentrum brevifulcrum Dartnall, 1997 14 4

Encentrum forcipatum Dartnall, 1997 14 4, e1

Encentrum mustela Milne, 1885 14 4, 5, e1 e1 e1 1, 10b, e1

Encentrum permolle Gosse, 1886 e1

Encentrum salinum Dartnall, 1997 14 4

Encentrum spatiatum Wulfert, 1936 4, 5, e1

Encentrum uncinatum (Milne, 1886) 14 e1 e1

Eosphora najas (Ehrenberg, 1832) 1, 2, e1

Epiphanes senta Müller, 1773 14 4, 5, 2,

e1

2, 6, e1 1, 2, 13,

e1

e1 1, 2, 10b,

e1

Euchlanis dilatata dilatata Ehrenberg, 1832 14 1, e1

Euchlanis dilatata parva Rousselet, 1832 e1

Kellicottia longispina (Kellicott, 1879) 10

Keratella americana Carlin, 1943 14 10, 20,

e1

10, 20, e1

Keratella cochlearis Gosse, 1851 14 4, 10 10 10, 20,

e1

10, 20, e1

Keratella quadrata Müller, 1786 10

Keratella valga (Ehrenberg, 1834) 14 e1 e1

Lecane lunaris (Ehrenberg, 1832) 14 e1 1, 2, e1

Lepadella acuminata (Ehrenberg, 1834) 14 5 e1

Lepadella elliptica (Turner, 1892) 14 e1

Lepadella intermedia Dartnall and Hollowday 1985 14 1, e1

Lepadella patella Müller, 1773 14 2, 4, 5,

e1

2, 6, e1 e1 2, 10b, e1

Lepadella patella oblonga Ehrenberg, 1834 14 1, e1
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encountered in the identification of Plectus species and

especially of those lacking males (see Boström 2005).

Species synonyms have been included in Supplementary

Material (Online Resource 4).

Microfaunal dispersal and occurrence

Information on dispersal of Antarctic invertebrates results

from casual observations from arthropod collections,

which have received comparatively more work in Ant-

arctica (see Convey et al. 2008, 2009). It is believed that

air currents are one potential mode of passive dispersal

(Miller and Heatwole 1995; Greenslade et al. 1999; Mu-

ñoz et al. 2004; Nkem et al. 2006; Hawes et al. 2007).

This method of transport may not be as successful for

arthropods (springtails, mites, dipterans) due to potential

desiccation (see Marshall and Pugh 1996). Other possible

dispersal mechanisms are birds (Stevens and Hogg 2002),

bubbles carried in water currents (Rounsevell and Horne

1986) or on floating materials in melt-water streams

(Moore 2002; Sinclair and Stevens 2006). For nematodes,

tardigrades and rotifers, with a specialised dispersal life

stage, a far greater potential for dispersal via wind and

water has been suggested (Stevens and Hogg 2006a).

However, long-range dispersal (inter-oceanic), even dur-

ing the anhydrobiotic phase, has been questioned by

McInnes and Pugh (1998). Dispersal by human activities

has also been reported in the literature, particularly for the

sub-Antarctic islands and maritime Antarctica (e.g. Burn

1984; Greenslade and Wise 1984; Rounsevell and Horne

1986).

Table 2 continued

Rotifer species/sectors Antarctica

(unspecified)

Continental Antarctica AP—Maritime

Antarctica

Maud Enderby Wilkes Scott AP SS-SO

Lepadella rhomboides signiensis Dartnall and Hollowday

1985

14 1, e1

Lepadella triptera (Ehrenberg, 1832) 14 10 10, 1, e1

Lindia torulosa antarctica Dartnall and Hollowday 1985 4

Lindia torulosa Dujardin, 1841 14 e1 e1

Notholca foliacea (Ehrenberg, 1838) 10

Notholca jugosa Gosse, 1887 10

Notholca salina Focke, 1961 14 10, e1 1, 10, 10b,

e1

Notholca verae Kutikova, 1958 14 2, e1 10, 2, 6,

e1

2

Notholca walterkostei de Paggi, 1982 14 10, e1 1, 10, 10b,

e1

Notholca walterkostei reducta Dartnall and Hollowday

1985

14 1, 10, e1

Paradicranophorus sordidus Donner, 1968 14 e1

Proales reinhardti (Ehrenberg, 1834) 4, 6

Ptygura crystallina (Ehrenberg, 1834) 14 4, 5, e1 e1 1, e1

Ptygura melicerta (Ehrenberg, 1832) 14 1, 2, e1

Resticula gelida (Harring & Myers, 1922) 14 4, 5, e1 e1 e1 1, 2, 10b,

e1

Resticula nyssa (Harring & Myers, 1924) e1 10b, e1

Rhinoglena fertoeensis (Varga, 1929) 6, e1

Rhinoglena kutikovae De Smet, 2007 6

Scaridium bostjani Daems & Dumont, 1974 1, 2, e1

Scaridium longicaudum Müller, 1786 14 e1

Trichocerca brachyura (Gosse, 1851) 14 1, e1

Trichocerca rattus globosa Dartnall and Hollowday 1985 1, e1

Trichocerca rattus Müller, 1776 14 e1

The numbers in each column refer to reference (see Table 3)

AP Antarctic Peninsula; SS–SO South Shetland and South Orkney Islands
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Records of species in some areas could be relicts from a

warmer pre-Pleistocene period in Antarctica (McInnes and

Pugh 1998), descendants of more recent arrivals from

outside the continent (Sohlenius et al. 2004), or simply the

result of misidentification (McInnes 1995; Czechowski

et al. 2012). Successful colonisation requires suitable

conditions for the propagules to survive, establish and

reproduce (Miller et al. 1994). Given the isolation of ice-

free habitats, we would expect a very low probability of

colonisation and the presence of habitat patches lacking

microfauna (Sohlenius et al. 2004). For slow, more gradual

changes (climate and environmental change) dispersal to

Table 3 List of Bdelloidea (Rotifera) species recorded from the Antarctic and their regional distributions

Rotifer species/sectors Antarctica

(unspecified)

Continental Antarctica AP—Maritime

Antarctica

Maud Enderby Wilkes Scott AP SS-SO

Class Bdelloidea

Adineta barbata Janson, 1893 14 16, 17, 18, e1 4 1, 8, 11 e1 1, e1

Adineta gracilis Janson, 1893 14 16, 17, 18, e1 2 2, e1 1, 2, 11 e1 1, 2, 9, e1

Adineta grandis Murray 1910 14 e1 4, 5, e1 2, 3, 12, e1 1, 8, 11, 13, 15, e1 e1 1, 2, 9, e1

Adineta longicornis Murray, 1906 14 11 e1

Adineta steineri Bartoš, 1951 14 16, 17, 18, e1

Adineta vaga vaga (Davis, 1873)* 14 16, 17, 18, e1 1, 11, 22 e1

Habrotrocha angularis (Murray 1910) 14 1, 8, 11 e1

Habrotrocha constricta (Dujardin,

1841)

14 16, 17, 18, e1 4, 5, e1 3, e1 1, 7, 8, 15, 22 e1 1, e1

Habrotrocha elusa elusa Milne, 1916* 14 16, 17, 18, e1 e1

Habrotrocha gulosa Milne, 1916 17, 19, e1

Habrotrocha tridens Milne, 1886 14 16, 17, 18, e1 e1

Macrotrachela ambigua Donner, 1965 16, 18, e1

Macrotrachela concinna (Bryce, 1912) 14 1, e1

Macrotrachela constricta Milne, 1886 11 e1

Macrotrachela insolita De Koning,

1947

14 16, 17, 18, e1 17, 19, e1 1, 7, 15 e1

Macrotrachela habita (Bryce, 1894) 14 16, 17, 18, e1 1, 8, 11 e1

Macrotrachela libera Donner, 1949 16, 17, 18, e1

Macrotrachela cf. ligulata Haigh, 1965 16, 18, e1

Macrotrachela nixa Donner, 1962 14 16, 18, e1 17, 19, e1

Macrotrachela quadricornifera

quadricornifera Milne, 1886*

14 4, e1

Macrotrachela timida Milne, 1916 16, 17, 18, e1

Mniobia russeola (Zelinka, 1891) 14 4, e1

Mniobia symbiotica (Zelinka, 1886) 16, 17, 18, e1

Otostephanos torquatus (Bryce, 1913) 16, 18, e1

Philodina alata Murray 1910 14 10 6, 10, e1 1, 8, 10, 11, 21, 22, e1 e1

Philodina antarctica Murray 1910 14 1, 8, 11, 22, e1 e1

Philodina gregaria Murray 1910 14 e1 4, 5, e1 2, 3, 12, e1 1, 2, 7, 8, 11, 13, 21, 22 1, e1 2, 1, e1

Rotaria rotatoria (Pallas, 1766) 15

The numbers in each column refer to reference

AP Antarctic Peninsula; SS–SO South Shetland and South Orkney Islands

Species names followed by ‘*’ were recorded as subspecies by Segers (2007). Records from Antarctic Peninsula (AP) include Palmer sector and

Graham sector. References from South Shetland and South Orkney Islands (SS-SO) are shown combined. Literature source: (1) Dartnall and

Hollowday 1985, (2) Dartnall 1983, (3) Dartnall 2005, (4) Dartnall 2000, (5) Dartnall 1995, (6) De Smet and Gibson 2008, (7) Donner 1972, (8)

Dougherty and Harris 1963, (9) Fontaneto et al. 2008, (10) Hansson et al. 2012, (10b), Janiec 1996, (11) Murray 1910, (12) Opalinski 1972, (13)

Suren 1990, (14) Segers 2007, (15) Smykla et al. 2010 (16) Sohlenius and Boström 2005, (17) Sohlenius et al. 1995, (18) Sohlenius et al. 1996,

(19) Sudzuki 1979, (20) Sudzuki 1988, (21) Vincent and James 1996, (22) Webster-Brown et al. 2010, (e1) Australian Antarctic Data Centre

(https://data.aad.gov.au/aadc/biodiversity/search_taxon.cfm)
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Table 4 List of Nematoda species recorded from the Antarctic and their regional distributions

Nematode species/sectors Continental Antarctica Maritime

Antarctica
Maud Enderby Wilkes Scott

Class Chromadorea

Acrobeloides arctowskii Holovachov and Boström 2006 15b

Aglenchus agricola (de Man, 1884) Andrássy, 1954 24

Antarctenchus motililus Ghosh, Chatterjee, Mitra, De, 2005 14b

Antarctenchus hooperi Spaull, 1972 4, 34, 35, 36, 37

Aphelenchoides haguei Maslen, 1979 4, 20, 35

Aphelenchoides vaughani Maslen, 1979 4, 20, 35

Apratylenchoides joenssoni Ryss et al. 2005 24

Ceratoplectus armatus (Butschli, 1873) Andrássy, 1984 4, 20, 34, 36

Chiloplacoides antarcticus Heyns 1994 15

Chiloplectus masleni Boström 1996 4, 10

Cuticularia firmata Andrássy 1998 4

Ditylenchus parcevivens Andrássy 1998 4

Dolichorhabditis tereticorpus Kito and Ohyama 2008 17

Eumonhystera vulgaris (de Man, 1880) Andrássy 1981 4, 20, 3

Geomonhystera antarcticola Andrássy 1998 1, 4, 29

Geomonhystera villosa (Butschli, 1873) Andrássy 1981 4, 20, 34, 35

Halomonhystera antarctica (Cobb, 1914) Andrássy 2006 5*

Halomonhystera continentalis Andrássy 2006 5, 8

Halomonhystera disjuncta (Bastian, 1865) Andrássy 2006 5*

Halomonhystera glaciei (Blome & Riemann, 1999) Andrássy

2006

5*

Halomonhystera halophila Andrássy 2006 5, 8

Halomonhystera uniformis (Cobb, 1914) Andrássy 2006 5*

Helicotylenchus diagonicus Perry in Perry, Darling & Thorne,

1959

21

Helicotylenchus dihystera (Cobb, 1893) Sher, 1961 21

Helicotylenchus exallus Sher, 1966 21

Hypodontolaimus antarcticus Andrássy and Gibson 2007 8

Laimaphelenchus helicosoma (Maslen, 1979) Peneva and Chipev

1999

4, 20, 35

Panagrolaimus davidi Timm 1971 1, 26, 29, 34

Panagrolaimus magnivulvatus Boström 1995 4, 27, 28,

9

Paratylenchus nanus Coob, 1923 24

Plectus antarcticus de Man, 1904 4, 20, 34, 35, 36,

37

Plectus belgicae de Man 1904 4, 20

Plectus frigophilus Kirjanova 1958 8, 25, 18 16, 31 1, 4, 29, 34 20

Plectus insolens Andrássy 1998 4

Plectus meridianus Andrássy 1998 4

Plectus murrayi Yeates 1970 4, 27, 28,

9

4, 23, 25,

18

7, 16 1, 4, 13, 29, 30 20

Plectus telekii Mulk & Coomans, 1978 21

Plectus tolerans Andrássy 1998 4, 20

Pratylenchus andinus Lordello, Zamith & Boock, 1961 24

Rhabditis krylovi Tsalolikhin, 1989 4

Rotylenchus capensis Van den Berg & Heyns, 1974 4
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new areas of suitable habitat may be possible provided that

the rate of change does not exceed their dispersal ability to

find a new alternative habitat. At a larger scale (hundreds

of kilometres), the rate of change may occur in conjunction

with other changes (soil formation, vegetation growth),

although long-distance dispersal between habitats may be

limited (Wise 1967; Hogg and Stevens 2002; Stevens and

Hogg 2002). Furthermore, several studies have suggested

that the time since the last glaciation has been insufficient

for successful colonisation of favourable habitats by soil

taxa (Convey and Block 1996; Convey and Stevens 2007;

Convey et al. 2008), and this is supported by recent data for

arthropods (Stevens et al. 2006a; Stevens and Hogg 2006a).

Accordingly, the natural dispersal of animals, other than

local, seems unlikely to provide an adequate response to

any environmental change. Long-term patterns can be

useful in determining whether taxa are capable of migrat-

ing over large distances, whether they have persisted over

Table 4 continued

Nematode species/sectors Continental Antarctica Maritime

Antarctica
Maud Enderby Wilkes Scott

Scottnema lindsayae Timm 1971 25, 2 1, 2, 4, 11, 12, 13,

26, 29

Teratocephalus pseudolirellus Maslen, 1979 20

Teratocephalus rugosus Maslen, 1979 20, 35

Teratocephalus tilbrooki Maslen, 1979 32, 33 4, 20, 35

Tylenchorhynchus maximus Allen, 1955 24

Class Enoplea

Amblydorylaimus isokaryon (Loof, 1975) Andrássy 1998 4, 34

Calcaridorylaimus signatus (Loof, 1975) Andrássy, 1986 4, 20, 34

Coomansus gerlachei (de Man, 1904) Jairajpuri & Khan, 1977 4, 20

Enchodelus signyensis Loof, 1975 4, 20, 34, 35

Eudorylaimus antarcticus (Steiner, 1916) Yeates 1970 1, 4, 6, 13, 29

Eudorylaimus coniceps Loof, 1975 4, 20, 34, 35

Eudorylaimus glacialis Andrássy 1998 6 1, 6, 30

Eudorylaimus nudicaudatus Heyns, 1993 4,6

Eudorylaimus pseudocarteri Loof, 1975 4, 20, 34, 35

Eudorylaimus quintus Andrássy, 2008 6 6

Eudorylaimus sabulophilus Tijepkema, Ferris & Ferris, 1971 21

Eudorylaimus sextus Andrássy, 2008 6

Eudorylaimus shirasei Kito, Shishida and Ohyama 1996 10b 4, 6, 19 1

Eudorylaimus spauli Loof, 1975 4, 20, 34, 35

Eudorylaimus verrucosus Loof, 1975 4, 20, 34, 35

Eutobrilus antarcticus Tsalolikhin, 1981 4, 14

Mesodorylaimus antarcticus Nedelchev and Peneva 2000 22

Mesodorylaimus chipevi Nedelchev and Peneva 2000 22

Mesodorylaimus imperator Loof, 1975 4, 20, 34

Mesodorylaimus masleni Nedelchev and Peneva, 2000 22

Paramphidelus antarcticus Tsalolikhin, 1989 4

Rhyssocolpus paradoxus (Loof, 1975) Andrássy, 1986 4, 20, 34, 35

The numbers in each column refer to reference (see table)

References followed by ‘*’ indicate marine inhabitants. Literature source: (1) Adams et al. 2006, (2) Adams et al. 2007, (3) Andrássy 1981, (4)

Andrássy 1998 (5) Andrássy 2006, (6) Andrássy 2008a, (7) Andrássy 2008b, (8) Andrássy and Gibson 2007, (9) Boström 1995, (10) Boström

1996, (10b) Boström 2005, (11) Boström et al. 2010, (12) Courtright et al. 2000, (13) Freckman and Virginia 1997, (14) Gagarin 2009, (14b)

Ghosh et al. 2005, (15) Heyns 1994, (15b) Holovachov and Boström 2006, (16) Kirjanova 1958, (17) Kito and Ohyama 2008, (18) Kito et al.

1991, (19) Kito et al. 1996, (20) Maslen and Convey 2006, (21) Bohra et al. 2010, (22) Nedelchev and Peneva 2000, (23) Rounsevell and Horne

1986, (24) Ryss et al. 2005, (25) Shishida and Ohyama 1986, (26) Sinclair 2001, (27) Sohlenius et al. 1995, (28) Sohlenius et al. 1996, (29) Timm

1971, (30) Yeates 1970, (31) Yeates 1979, (32) Ingole and Parulekar 1993, (33) Verlecar et al. 1996, (34) Maslen 1979, (35) Maslen 1981, (36)

Spaull 1973a, (37) Spaull 1973b
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long-term environmental change, or if they are the result of

exotic introductions either by natural (passive) or by

anthropogenic means. Such analyses for the microfauna is,

however, currently limited until accurate widespread data

for species identifications can lead to informed diversity

and distributions.

Establishing diversity and distribution

Rotifera, Tardigrada and Nematoda are the most abundant

and diverse microfaunal groups in the Antarctic region, but

even greater levels of cryptic diversity are expected.

Studies on the arthropods (Collembola and Acari) (e.g.

Stevens et al. 2006b) have revealed that several new

genetic entities (species) are present in the Antarctic and on

sub-Antarctic islands, and this has also been found for the

microfauna (Fontaneto et al. 2008; Sands et al. 2008;

Czechowski et al. 2012). The species diversity of these

ecologically important animals is still unresolved because

taxonomic work has been dominated by arthropods

(Greenslade and Wise 1984; Greenslade 1995; Stevens

et al. 2006b). However, it is apparent that species diagnosis

is difficult in many cases due to the conservative mor-

phology of the microfauna (e.g. Andrássy 1998; Floyd

et al. 2002; Robeson et al. 2009).

Molecular studies are needed to delineate species bound-

aries and dispersal patterns (e.g. Stevens et al. 2006b; Sands

et al. 2008; Torricelli et al. 2010). It will then be possible to

make accurate assessments of the patterns and processes of

biodiversity of the microfauna, which will further our

knowledge of the evolutionary history throughout the South-

ern Hemisphere (Convey and Stevens 2007; Convey et al.

2008). These studies are now beginning to explain the sig-

nificance of glacial events in determining patterns of species’

distribution and genetic diversity for terrestrial communities in

Antarctica (Courtright et al. 2000; Frati et al. 2001; Stevens

and Hogg 2006a). They have revealed that some taxa of little

dispersal capability have large-scale biogeographic distribu-

tions across Antarctica and the sub-Antarctic islands (e.g.

Convey and McInnes 2005; Stevens and Hogg 2006a;

Czechowski et al. 2012). Collectively, these studies have

revealed a significant effect of glacial and sea–ice barriers to

examine the mobility and gene flow of Antarctic taxa across

fragmented landscapes over evolutionary time scales.

Future directions in biodiversity assessment and species

discovery in Antarctica

With increased access to molecular techniques (Hebert

et al. 2003), the diversity of Antarctic invertebrates and the

association between organisms and environments can now

be estimated to levels previously unimaginable (Peck 2005;

Ji et al. 2013). Molecular techniques can be used to test

hypotheses related to connectivity (i.e. gene flow) and

reveal phylogeographic processes that have moulded the

pattern of genetic diversity among populations, as well as

their evolutionary history and relationships to other taxa

(Stevens and Hogg 2006a). The usefulness of the mito-

chondrial cytochrome c oxidase I (COI) gene as a DNA

barcode to determine sequence divergence among inver-

tebrates and discern among morphologically similar

(cryptic) species is now well established (e.g. Hebert et al.

2003; Stevens and Hogg 2003; Stevens et al. 2006a). COI

records can now be found for Antarctic arthropods (e.g.

Stevens and Hogg 2003, 2006a; Stevens et al. 2006a;

Stevens and D’Haese 2014) and collectively have revealed

patterns of recolonisation from glacial refugia that show far

greater diversity than known previously. Most of the suc-

cess of these data have been due to capturing most of the

geographical range for species. Comparatively, molecular

data for the microfauna from Antarctica are limited to

tardigrades (Sands et al. 2008; Czechowski et al. 2012) and

more recently nematodes (Velasco-Castrillón and Stevens

2014) and bdelloid rotifers (Velasco-Castrillón et al. 2014).

These studies have tended to have restricted sample sizes

and/or geographical coverage limiting their use for bio-

geographic comparisons beyond diversity and systematics.

Despite this, they have revealed greater diversity in Ant-

arctica than has been previously recognised. With an

increasing attention of microfauna outside continental

Antarctica on bdelloid rotifers (Fontaneto et al. 2008) and

nematodes (e.g. Blouin 2000; Derycke et al. 2010; Prosser

et al. 2013), the potential for examining the distribution of

microfauna throughout Antarctica and its neighbouring

landmasses will provide one of the most comprehensive

datasets for any group of organisms across the continent.

Rotifera, Nematoda and Tardigrada are critical micro-

faunal groups given their role in nutrient recycling and

their importance in Antarctic limno-terrestrial ecosystems.

Unfortunately, we are in our infancy in our understanding

of these ecosystems in Antarctica and we highlight below

three areas that are fundamental in providing information

on diversity, distributional range and type of habitats in

which microfauna are found; information that is critical for

future conservation and land management, and in detecting

new species and species introductions.

(1) Molecular techniques need to be applied to the

identification of species. Most of the Antarctic

microfauna to date are limited to morphological

assessments, and past molecular studies have shown

that this has not accurately reflected the biodiversity

present, particularly where wide species ranges have

been reported. This is fundamental information
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necessary for understanding and managing sustain-

able biodiversity as well as detecting exotic

introductions.

(2) Sampling in Antarctica has tended to ignore informa-

tion linked to abiotic data (e.g. soil chemistry, mineral

analyses, and other environmental) which are impor-

tant in establishing comparisons among biotic com-

munities (i.e. do the same communities occur in similar

habitats) and can also be used in predictive modelling

of Antarctic biodiversity and habitat requirements (e.g.

Convey et al. 2014; Fraser et al. 2014).

(3) Recently, biotic data have been assessed for Antarc-

tica in an attempt to determine biogeographic

regions (Terauds et al. 2012). The use of GIS

systems to define Antarctic Conservation Biogeo-

graphic Regions (ACBR) (see Terauds et al. 2012) is

an important step forward, but only with the

inclusion of phylogenetically informed biodiversity

will we be able to have accurate ACBRs. The

implementation of the current knowledge on micro-

faunal diversity (as shown in this review) with

genetic lineages identified by phylogenetic studies

combined with abiotic data will help to better

delineate ACBRs.
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