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Abstract The Antarctic krill, Euphausia superba, and the

Northern krill, Meganyctiphanes norvegica, are closely

related species but occupy significantly different trophic

and climatic environments. E. superba holds a key position

as a phytoplankton grazer in the Southern Ocean. The

omnivorous M. norvegica is an important member of

plankton communities in the Northeast Atlantic. Both

species expressed high proteolytic activities which were

dominated by serine proteinases. In the stomachs of Ant-

arctic krill, activities of total proteinase, trypsin, and chy-

motrypsin were significantly higher than in Northern krill.

In the midgut glands, however, total proteinase and trypsin

activities were similar in both species, but chymotrypsin

activity was significantly higher in Antarctic krill. More-

over, Antarctic krill expressed four trypsin isoforms while

only one isoform appeared in Northern krill. Chymotrypsin

was present in either species as one single isoform. Ant-

arctic krill adapted to the low and patchy distribution of

food by elevated enzyme activities and the expression of

trypsin isoforms with slightly different catalytic properties.

Presumably, these enzymes facilitate in concerted action

the efficient utilization of proteins from phytoplankton, the

major food. Northern krill, in contrast, seems not to be

equipped to face food limitation. It expresses a ‘‘simple’’ or

‘‘basic’’ set of digestive enzymes for utilizing abundant and

easily digestible prey.

Keywords Antarctic krill � Northern krill � Digestion �
Proteinase � Trypsin � Chymotrypsin

Introduction

Euphausiids are important members of many marine

pelagic ecosystems all over the world (Mauchline and

Fisher 1969; Mauchline 1980). Some species may even be

considered outstanding due to their abundance and eco-

logical relevance. Among them are the Antarctic krill,

Euphausia superba, and the Northern krill, Meganycti-

phanes norvegica.

Euphausia superba is endemic in the Southern ocean

and holds a key position in Antarctic marine food webs. It

adapted to an environment with low temperature around

0�C and patchy and seasonally changing food availability

(Meyer 2012). While predominantly feeding on phyto-

plankton, Antarctic krill forms an important link between

primary producers and higher trophic levels (e.g.,

Smetacek et al. 1990; Falk-Petersen et al. 2000). M. nor-

vegica inhabits the North Atlantic Ocean and adjacent seas.

The area of distribution extends from the east coast of

Canada to Iceland and the Barents Sea. To the south and the

east, M. norvegica is abundant in the Mediterranean Sea

and has its southern distributional limits around the Canary

Islands. According to this wide latitudinal distribution,

Northern krill faces a wide range of temperatures from 4 to

16�C and is exposed to different trophic conditions

(Einarsson 1945; Mauchline 1960; Matthews et al. 1999).

The Northern krill is considered omnivorous feeding on zoo-

and phytoplankton but also on detritus (Lass et al. 2001).

In both species, alimentary proteins form the major

source for amino acids and nitrogen. Accordingly, the uti-

lization of proteins from the food is an essential metabolic

requirement. Proteolysis is also one of the most ancient

metabolic processes (Neurath 1984). Several classes of

proteinases (serine-, cysteine-, and metallo-proteinases) and

isoforms of various enzymes have evolved in crustaceans.

R. Saborowski (&)

Functional Ecology, Alfred Wegener Institute for Polar

and Marine Research, 27515 Bremerhaven, Germany

e-mail: Reinhard.Saborowski@awi.de

123

Polar Biol (2012) 35:1003–1012

DOI 10.1007/s00300-011-1147-2



The expression of certain proteinase classes in crustaceans

seems to be related to taxa (Teschke and Saborowski 2005;

Navarrete del Toro et al. 2006). Euphausiids express high

levels of serine proteinases which are dominated by trypsin-

like enzymes. Trypsin-like activity but also carboxypepti-

dase A-, carboxypeptidase B-, and aminopeptidase activi-

ties were measured in Antarctic krill by Chen et al. (1978),

Kimoto et al. (1981, 1983), Nishimura et al. (1983), Kimoto

and Murakami (1984) and Osnes and Mohr (1985a, b).

Mayzaud et al. (1987) separated six different enzymes

which hydrolyze the synthetic substrate N-benzoyl-L-argi-

nine p-nitroanilide (BANA). Turkiewicz et al. (1991) as

well as Bucht and Karlstam (1991) isolated highly active

serine proteinases and enzymes with wide substrate speci-

ficity. In contrast to Antarctic krill, detailed investigations

on digestive proteinases in Northern krill are rare (Spicer

and Saborowski 2010). The postmortem proteolysis of

M. norvegica was studied by Saether et al. (1987) and,

similar to Antarctic krill, the authors found high levels of

peptide hydrolase. Autoproteolysis was mainly due to

digestive enzymes in the midgut gland.

Because of the close taxonomical relationship between

both species, a comparative study on adaptations to dif-

ferent habitats appears rewarding. Therefore, this work is

focused on the activities and expression pattern of digestive

endopeptidases and how they may be related to the climatic

and, particularly, trophic environment of either species.

Materials and methods

Origin of samples

Northern krill, M. norvegica, were caught with an Isaacs-

Kidd Midwater Trawl in the central part of the Gull-

marnfjord, Sweden (58�19.90N, 11�33.80E) in spring 2000.

The net was deployed during daytime at a depth of

80–90 m (van den Thillart et al. 1999). After capture, krill

were transported to Kristineberg Marine Research Station

where they were shock-frozen at -80�C.

Antarctic krill, E. superba, were captured off the South

Shetland Islands in February/March 2000 during an expe-

dition of the Russian vessel R/V Yuzhmorgeologiya

(Stübing and Hagen 2003). Antarctic krill were briefly rinsed

with distilled water, blotted dry, and then frozen and stored at

-80�C until analysis at the marine Station Helgoland.

Dissection of organs

Organs were dissected from frozen animals under a bin-

ocular microscope. In order to prevent thawing, the krill

were placed on a cooling block (-80�C). The stomach and

the midgut gland were rapidly excised, relieved of adhering

tissue, transferred into pre-weighed reaction tubes, and

immediately placed on ice.

Extracts

Crude extracts for enzyme assay were prepared from

individual stomachs and midgut glands of either species.

After weighing, 1 ml of ice-cold demineralised water (aqua

dem.) was added to the reaction cup which contained the

tissue. Subsequently, homogenization was performed on

ice with a Branson Sonifier cell disrupter (Model B15,

equipped with a microtip) by applying three ultrasonic

bursts of 5 s at 30% of maximum energy. The homogenates

were centrifuged for 10 min at 15,0009g (Heraeus, Bio-

fuge A). Thereafter, the supernatants were transferred into

new tubes and assayed for enzyme activity.

Enzyme assays

Total proteolytic activity was determined with the substrate

azocasein Na-salt (Serva, 14391) at 0�C and at 30�C.

Reaction cups (1.5 ml) were equipped with 200 ll phos-

phate buffer (0.05 mol l-1 NaH2PO4, 0.05 mol l-1

Na2HPO4, 0.15 mol l-1 NaCl, pH 6.8) and 20 ll of sample

and were pre-incubated in a thermomixer (Eppendorf,

5436) at the respective temperature (0�C and 30�C) for 5

min. The reaction was started by the addition of 100 ll of

azocasein solution (1% w/v in phosphate buffer). After

30 min of incubation, the reaction was terminated by the

addition of 500 ll of trichloroacetic acid (TCA, 20% w/v

in aqua dem.) and cooling on ice. Controls were run in

parallel in which the sample was added after termination

with TCA. Samples were run in triplicate and controls were

run in duplicate. Finally, the reaction cups were centrifuged

at 15,0009g (10 min, 4�C), and the absorption of the

supernatant was measured at 366 nm against air. The

activity was expressed as DA366 min-1 gfw
-1.

Trypsin activity (peptidase) was determined in routine

with the substrate Na-benzoyl-L-arginine 4-nitroanilide

hydrochloride (L-BAPA, Merck 1.10754) according to

Erlanger et al. (1961) with the following modifications:

600 ll of buffer (0.05 mol l-1 Tris–HCl, pH 7.5) and 20 ll

of sample were pre-incubated for 5 min at 30�C in a

temperature-controlled cuvette holder. The reaction was

started by the addition of 20 ll of L-BAPA (32 mmol l-1

in dimethyl sulfoxide, DMSO) and continuously monitored

at 405 nm for another 5 min. The substrate concentration

in the cuvette was 1 mmol l-1. The activity was expressed

as U gfw
-1 (=lmol min-1 gfw

-1) using the extinction coeffi-

cient e405 = 10.2 l mmol-1 cm-1 (Geiger and Fritz 1988).

Trypsin activity (esterase) was determined with Na-p-

tosyl-L-arginine methyl ester (TAME, Sigma T-4626) after

Rick (1974). TAME was dissolved in aqua dem. and
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applied to the assay at a final concentration of 1 mmol l-1.

The cuvette containing the reaction mixture was incubated at

25�C in temperature-controlled cuvette holder. The change in

absorbance at 247 nm was recorded for 5 min. The activity

was expressed as U gfw
-1 (=lmol min-1 gfw

-1) using the

extinction coefficient e405 = 0.54 l mmol-1 cm-1 (Rick

1974).

Chymotrypsin activity was measured with the substrate

N-succinyl-ala-ala-pro-phe p-nitroanilide (SAAPPNA, Sigma

S-7388). The assay conditions were the same as described

above for tryptic peptidase activity. The activity of chymo-

trypsin was also expressed as U gfw
-1 (e405 = 10.2 l mmol-1

cm-1, Geiger 1988).

Inhibitor assays

Enzyme extracts from the midgut gland were incubated

with the serine proteinases inhibitor 4-(2-aminoethyl)en-

zenesulfonyl-fluorid hydrochloride (AEBSF, Merck

124839) and with the cysteine proteinase inhibitor trans-

epoxy-succinyl-L-leucylamido-(4-guanidino)-butane (E-64,

Sigma E3132). The inhibitors were dissolved in aqua dem.

at a concentration of 1 mmol l-1. One hundred microliters

of the extract and the same amount of inhibitor solution

were incubated for 60 min at room temperature in a ther-

momixer (Eppendorf 5436). Thereafter, the extract/inhibi-

tor solution was used for the assay of azocasein digestion

as described above. Controls were run with aqua dem. (the

solvent) instead of inhibitor solution. The residual activity

was calculated and expressed as percent of the uninhibited

activity.

Chromatography

Extracts for liquid chromatography were prepared from

individual animals or from batches of up to 120 mg of

tissue (5–10 organs). Depending on the amount of tissue,

samples were homogenized in 1 or 2 ml of imidazole

buffer (0.01 mol l-1, pH 6.8) by ultrasonication as

described above. After centrifugation (15,0009g, 10 min,

4�C), the supernatant was desalted over Sephadex G-25

PD10 columns (AP Biotech, 52-1308-00).

Chromatographic separation of enzymes was performed

with a FPLC system (AP Biotech) using the anionic

exchange column UNO Q-1R (BioRad, 720-0011). The

sample was applied onto the column over a 2-ml sample

loop. Elution of proteins was achieved with increasing

concentration of NaCl (0–1 mol l-1) in imidazole buffer

(0.01 mol l-1, pH 6.8) at a flow rate of 1 ml min-1. During

each run, 70 fractions of 0.5 ml each were separated into

pre-cooled reaction tubes. During the run, the absorption

was monitored at 280 nm (Uvicord II) as a measure for the

relative protein concentration.

The molecular weights of isolated proteins were deter-

mined by gel filtration over Superdex 200 prep grade (High

Load 16/60, Pharmacia, 17-1069-01). The buffer used was

imidazole (0.01 mol l-1, pH 6.8) at a flow rate of

1 ml min-1. Calibration was done with Ribonuclease A

(13.7 kDa), Chymotrypsinogen A (25 kDa), Ovalbumin

(43 kDa), Albumin (67 kDa), Aldolase (158 kDa), Cata-

lase (232 kDa), and Ferritin (440 kDa), (Pharmacia

17-0441-01 and 17-0442-01). Fractions of 1 ml were

collected.

Activity screening of FPLC fractions

In order to obtain activity profiles after chromatographic

separation, the collected fractions were screened for total

protease, trypsin, and chymotrypsin. Total protease was

measured as described above in 1.5 ml reaction cups.

However, 50 ll of sample was used instead of 20 ll.

Trypsin-like activity was measured in microplates: first, 50

ll of sample was transferred from the fraction-collector

tubes into the wells of a 96-well microplate. Subsequently,

250 ll of buffer (0.05 mol l-1 Tris–HCl, pH 7.5) which

was supplemented with the substrate L-BAPA (final con-

centration 1 mmol l-1) was quickly added to the samples

in the microplate. The plate was incubated at room tem-

perature for up to 1 h. The optical density of the plate was

read at 405 nm after 15, 30, 45, and 60 min. Chymotrypsin

activity was measured in the same way but with SAAPPNA

as substrate (final concentration 1 mmol l-1).

Effect of calcium

Calcium significantly affects the activity of vertebrate

serine proteases. In order to investigate the effect of cal-

cium on krill trypsin and chymotrypsin, the activities in

crude extracts of either species were determined without

Ca2? and with Ca2?. The extracts were prepared and

desalted as described above. The concentration of CaCl2 in

the reaction buffer was 1 mmol l-1.

Thermal stability

In order to investigate the thermal stability, isolated

enzymes were incubated for 20 min at temperatures

between 25 and 55�C in intervals of 5�C. Between 40 and

50�C, the temperature intervals were 2.5�C. After incuba-

tion, enzyme activities were measured at 30�C. The assays

were run as described above.

Statistics

Data were expressed as means and standard deviation (SD).

Differences among means were analyzed by ANOVA
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followed by a Tukey’s multicomparison test. Differences

are reported as statistically significant when P \ 0.05. The

significance levels in graphs are indicated by asterisks:

P \ 0.05 (*), P \ 0.01 (**), P \ 0.001 (***).

Results

Enzyme activities and enzyme classes in digestive

organs

Total proteinase activity was measured in individual

stomachs and midgut glands at 0 and at 30�C (Fig. 1). In

both species, weight-specific activities were always higher

in the stomachs than in the midgut glands. In the stomach,

total proteinase activity was significantly higher in

E. superba than in M. norvegica (Fig. 1a). It amounted on

average to 4 DA366 min-1 gfw
-1 in M. norvegica and 10.8

DA366 min-1 gfw
-1 in E. superba. In contrast, activities in

the midgut gland did not differ significantly between spe-

cies (3.8 vs. 5.8 DA366 min-1 gfw
-1). At 30�C, activities in

both species were 10–20 times higher than at 0�C (Fig. 1b).

However, a similar ratio of activities remained between

species and between organs. The increase in activity with

temperature corresponds to Q10-values between 2.0 and

2.7.

The effects of inhibitors were determined at 30�C

(Fig. 2). The inhibitory effect of AEBSF was significantly

higher than that of E-64 (P \ 0.001). In M. norvegica,

AEBSF reduced total proteolytic activity in midgut gland

extracts to 54% and E-64 to 86% of initial activity. In

E. superba extracts, residual activity remained at 46% after

AEBSF treatment and at 93% after E-64 treatment.

Trypsin activities (L-BAPA) amounted on average to

2.9 U gfw
-1 in the stomachs of M. norvegica and to

10.3 U gfw
-1 in the stomachs of E. superba (Fig. 3a). The

difference between both species statistically significant

(P \ 0.001). In the midgut gland, however, activities did

not differ significantly between both species. They

amounted to 5.6 U gfw
-1 in M. norvegica and 6.8 U gfw

-1 in

E. superba.

Chymotrypsin activities were significantly higher in

E. superba than in M. norvegica in both digestive organs

(Fig. 3b). In the stomach of M. norvegica, chymotrypsin

activities amounted to 49.5 U gFW
-1 and in E. superba to

125 U gfw
-1. In the midgut glands, the activities were 28.5

and 52.3 U gfw
-1, respectively.

Separation of trypsin and chymotrypsin isoforms

Anionic exchange chromatography of midgut gland extract

of M. norvegica showed a good separation of proteins.

Only a little amount of protein did not bind to the column

and eluted in the fractions 6–8 before the concentration of

NaCl increased (Fig. 4). At 0.9 mol l-1 of NaCl, almost all

proteins eluted from the column. Several protein peaks

were detected between fractions 17 and 33 (5–35% NaCl)

and fractions 45 and 60 (60–90% NaCl).

Three major peaks of total proteinase were detected in

fractions 39–44, 47–52, and 55–58 (Fig. 4a). Minor peaks

appeared in fractions 25, 27, 30, 33, and 37. No proteolytic

activity was detected prior to fraction 17 assuming that

proteases entirely bound to the column.

Trypsin (determined with L-BAPA as substrate) eluted

in one single and well-defined peak between fractions
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Fig. 1 Activities of total proteinase at a 0�C and b 30�C from

stomachs and midgut glands of Northern krill (Meganyctiphanes
norvegica) and Antarctic krill (Euphausia superba). Means ? SD,

n = 12. Significant differences between species are indicated by

asterisks: P \ 0.01, n.s. not significant
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48–51 (Fig. 4b). Some low activity was detected in fraction

43. The same pattern was obtained when TAME was used

as substrate. The fractions of activity were pooled for

further analysis. The enzyme was denoted as M.n.TryI.

Chymotrypsin eluted also as a single peak between

fractions 38–44 (Fig. 4c). The chymotrypsin peak was

wider than the trypsin peak. The fractions of activity were

pooled and the enzyme was denoted as M.n.ChyI.

The chromatographic profiles of midgut glands from

E. superba differed from the profiles of Northern krill. The

share of non-bound proteins was higher and the proteins

showed a different elution pattern (Fig. 4d). Major protein

peaks appeared at fractions 22, 25, 34, 36, 42, 44, 47, and 51.

Total proteinase activity was detected in four major

peaks in fractions 33–36, 39–41, 49–53, and 55–58

(Fig. 4d). Some minor activity was detected between

fractions 18–31 and between 60 and 65.

Trypsin activity (L-BAPA) appeared in three sharp and

distinct peaks between fractions 34–36, 52–55, and 58–61

(Fig. 4e). Minor activity was detected at fraction 39–41.

Trypsin activity with TAME as substrate was detected in

the two latter peaks. Compared to those, however, only

little activity was present around fraction 34. In contrast, a

major peak appeared between fraction 39 and 41 which

was not present when the trypsin assay was run with

L-BAPA. Fractions of activity were pooled for further

analysis, and the enzymes were denoted as E.s.TryI,

E.s.TryII, E.s.TryIII, and E.s.TryIV.

Chymotrypsin eluted as a single peak between fraction

41 and 46 (Fig. 4f). No activity was detected aside this

peak. The enzyme was denoted as E.s.ChyI.

Molecular weight

The molecular weights (MW) were determined under

native conditions by gel filtration. The MW of all trypsin

and chymotrypsin isoforms showed uniform results of

31–34 kDa (Table 1). No distinct differences in MW were

evident between species.
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Effect of calcium

The presence of calcium had no significant effect on the

activities of chymotrypsin or trypsin of M. norvegica. The

activity of chymotrypsin decreased slightly to 98% of the

activity with unsupplemented buffer. The activity of tryp-

sin rose slightly to 102% when measured with both, BAPA

and TAME as substrate (results not shown).

Thermal stability

The trypsin and chymotrypsin from M. norvegica remained

fully active up to 35�C when pre-incubated for 20 min

(Fig. 5a). Activities began to decrease at 40�C, and the

most rapid loss of activity appeared between 42 and 46�C.

At 50�C both enzymes showed less than 10% of the initial

activities.

A
28

0n
m

 -
 A

ct
iv

ity
 -

 [N
aC

l] 
(%

)

0

10

20

30

40

50

60

70

80

90

100

A
28

0n
m

 -
 A

ct
iv

ity
 -

 [N
aC

l] 
(%

)

0

10

20

30

40

50

60

70

80

90

100

A280 nm
[NaCl] 

Fraction 

A
28

0n
m

 -
 A

ct
iv

ity
 -

 [N
aC

l] 
(%

)

0

10

20

30

40

50

60

70

80

90

100

(a) total Proteinase

(b) Trypsin

(c) Chymotrypsin

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Fraction 

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

I    II III IV

(d) total Proteinase

(e) Trypsin

(f) Chymotrypsin

Meganyctiphanes norvegica Euphausia superbaFig. 4 FPLC elution profiles of

midgut gland extracts from

Northern krill (M. norvegica)

and Antarctic krill (E. superba).

Shaded areas in the graphs

denote enzyme activities of total

proteinase, trypsin, and

chymotrypsin as indicated. The

trypsin isoforms of E. superba
are denoted with number I, II,
III, and IV in the graph e

1008 Polar Biol (2012) 35:1003–1012

123



The stability profiles of E. superba enzymes showed

similar patterns as those of M. norvegica (Fig. 5b). Again,

denaturation started at 40�C. E.s.TryII maintained 50% of

activity after incubation at 42�C and of E.s.TryI after

incubation at 46�C. Chymotrypsin (E.s.ChyI) showed the

same course of denaturation as the trypsins did. Half

maximum activity remained at 44�C.

Discussion

This work confirms the high proteolytic activities and the

presence of several trypsin isoforms in Antarctic krill.

However, it also shows that Northern krill maintains, at

least in the midgut gland, a similar level of activity as the

Antarctic krill. Accordingly, the major differences between

both species appear to be the expression of different trypsin

isoforms and the elevated proteolytic activities in the

stomachs. These features, however, can help to understand

the physiological adaptation of either species to its par-

ticular environment.

Northern krill feed on phytoplankton and zooplankton

(Beyer 1992; Båmstedt and Karlson 1998; Onsrud and

Kaartvedt 1998; Kaartvedt et al. 2002). Even dead organic

matter such as detritus was found in the stomachs (Lass

et al. 2001). Usually, M. norvegica is not limited by food.

Only in particular environments, such as the oligotrophic

Ligurian Sea, it may be exposed to food limitation (Fabi-

ano 1984; Saborowski and Buchholz 2002). Compared to

Antarctic krill, the proteinases expressed by Northern krill

seem to represent a set of enzyme which may be denoted

‘‘simple’’ or ‘‘basic’’, suitable for animals with abundant

food supply. Moreover, Northern krill is distributed in

waters with moderate temperatures of about 4–16�C.

Therefore, rate limiting conditions due to low temperatures

affect Northern krill to a lesser extent than Antarctic krill,

which live at around 0�C. Again, a ‘‘simple’’ set of

enzymes seems sufficient to successfully cope with these

conditions. Finally, Northern krill is an omnivorous feeder

utilizing micro- and mesozooplankton which provide both,

sufficient energy to fuel metabolic demands and, particu-

larly, sufficient nitrogen for the synthesis of proteins and

nucleic acids. Moreover, zooplankton species possess

Table 1 Trypsin (Try) and chymotrypsin (Chy) enzymes which were separated by liquid chromatography from the midgut glands of Northern

and Antarctic krill

Species Enzyme Elution (fraction) Mol. mass (kDa) Catalytic specificity Substrate

Meganyctiphanes norvegica M.n.TryI 48–51 31 Peptidase L-BAPA

M.n.ChyI 38–44 34 Peptidase SAAPPNA

Euphausia superba E.s.TryI 34–36 33 Peptidase L-BAPA

E.s.TryII 39–41 31 Esterase TAME

E.s.TryIII 52–55 33 Peptidase/Esterase L-BAPA/TAME

E.s.TryIV 58–61 34 Peptidase/Esterase L-BAPA/TAME

E.s.ChyI 41–46 33 Peptidase SAAPPNA

L-BAPA = Na-benzoyl-L-arginine 4-nitroanilide hydrochloride, SAAPPNA = N-succinyl-ala-ala-pro-phe p-nitroanilide, TAME = Na-p-tosyl-

L-arginine methyl ester
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Fig. 5 Thermal stability of chymotrypsin and trypsin isoforms from

a Northern krill (M. norvegica) and b Antarctic krill (E. superba).

Means ± SD of 3–6 measurements of pooled samples
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endogenous digestive enzymes which may contribute to the

digestive process and, thus, accelerate digestion and

improve the utilization of nutrients in krill (Dabrowski and

Glogowski 1977; Le Ruyet et al. 1993).

Antarctic krill, in contrast, inhabits environments where

food is often limiting. Although krill is capable of feeding

on smaller zooplankton (Huntley et al. 1994; Atkinson and

Snÿder 1997; Cripps and Atkinson 2000), phytoplankton is

the major food of E. superba. The thoracopods form a

highly specialized filter basket (Hamner et al. 1983; Kils

1983) which enables krill to exploit efficiently pelagic

microalgae (Quetin and Ross 1985) as well as ice algae

(Smetacek et al. 1990; Meyer 2012). Phytoplankton con-

tains less protein than zooplankton (e.g., Mayzaud and

Martin 1975; Brown et al. 1997). Therefore, the utilization

of protein from phytoplankton has to be optimized. This

may be facilitated by increasing the digestive enzyme

activities and/or by increasing the gut retention times

(Mayzaud et al. 1998).

These suggestions are in agreement with observations

on decapods. Kumlu and Jones (1997) compared trypsin-

like activity in various decapod larvae and found high

levels in herbivorous, low levels in carnivorous and inter-

mediate levels in omnivorous species. High trypsin activity

was suggested to facilitate protein utilization from ‘‘less

digestible’’ algae, whereas in carnivorous larvae, compar-

atively low activity was considered sufficient to utilize

large and ‘‘easily digestible’’ prey. Similarly, LeVay et al.

(2001) concluded that herbivorous decapod larvae adapted

to low energy values of food with high enzyme activities,

rapid food turnover, and low assimilation efficiency. In

contrast, carnivorous larvae show lower levels of enzyme

activities but compensate it by extending the gut retention

time thereby increasing assimilation efficiency. Similar

results were obtained in feeding experiments with Penaeus

japonicus. Trypsin activity was sixfold higher in larvae

which were fed with the diatom Chaetoceros gracilis than

in larvae fed with nauplii of the brine shrimp Artemia sp.

(Rodriguez et al. 1994)

The midgut gland and the stomach form a functional

unit in terms of both anatomy and physiology. Digestive

enzymes are synthesized and secreted in the midgut gland

and accumulate in the stomach (Saborowski and Buchholz

1999). Both species, E. superba and M. norvegica, showed

similar levels of total proteinase as well as trypsin activity

in their midgut glands. However, in the stomachs, activities

were significantly higher in E. superba. On one hand, these

high activities may be due to higher enzyme accumulation

as a result of elevated synthesis rates. But on the other

hand, the proteinases in the midgut gland of Antarctic krill

are thoroughly regulated by a set of specific inhibitors

(Ellingsen and Mohr 1987). Upon release from the cells,

the regulatory effects of the inhibitors collapse and the

enzymes develop full activity. In any case, the ability to

provide elevated activity in the stomach prior to food

uptake enables Antarctic krill to digest food immediately

after ingestion. This feature represents an efficient adap-

tation to the patchy occurrence of phytoplankton in the

Southern ocean.

Expression of different trypsin isoforms appears bene-

ficial when the isoforms differ slightly in specificity or in

their kinetic properties. In E. superba, one trypsin isoforms

showed predominantly peptidase activity (E.s.TryI), two

showed peptidase and esterase activities (E.s.TryIII and

E.s.TryIV), and one isoform showed predominantly ester-

ase activity (E.s.TryII). It is likely that the isoenzymes act

synergetically and, thus, hydrolyze proteins more effi-

ciently than a single enzyme with defined specificity could

do. Besides trypsin, high activities of chymotrypsin were

present in both species. Chymotrypsin hydrolyzes peptide

bonds after tyrosine, tryptophan, phenylalanine. Thus, it

complements the hydrolytic action of trypsin which cleaves

at the amino acids arginine and lysine. Accordingly, most

efficient protein digestion seems to be provided by the

concerted action of a set of endopeptidases, each with

slightly different specificities.

In both species of krill, most proteolytic activity was

contributed by serine proteinases. Their share amounted to

about 50% of total proteolytic activity as shown by

inhibitor assays. In contrast, cysteine proteinases, which

may prevail in caridean shrimps (Teschke and Saborowski

2005) contributed only a minor share. Other endopeptid-

ases which were not inhibited by AEBSF or E64 may

belong to the classes of metallo- or aspartic proteinases.

These, however, were not considered in the present work.

Nevertheless, the serine proteinase trypsin is regarded as

the most important and most frequent endopeptidase in

invertebrates and, particularly, in crustaceans (Dall and

Moriarty 1983). This study has shown that beside trypsin,

also chymotrypsin plays a significant role in the digestion

of proteins in the studied euphausiids. Different to verte-

brate trypsin, none of the krill enzymes were affected by

calcium. This observation is in agreement with the results

by Osnes and Mohr (1985b), and this feature seems to

separate crustacean serine proteinases from those of many

vertebrates.

There was no obvious adaptation of E. superba prote-

olytic enzymes in terms of thermal properties, stability or

activities at low temperatures. Apparently, the proteolytic

enzymes of E. superba do not compensate low tempera-

tures by elevated activities. At 0�C, the activity of

E. superba was not elevated in comparison to M. norvegica.

Moreover, the enzyme activities of either species increased

with temperature at the same rate which resulted in similar

ratios of activities between both species at 0 and at 30�C.

Probably, adaptations to low temperature are more distinct in
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other physiological systems. These might be membrane

transfer processes in the midgut gland since the transfer of

nutrients through the membrane into the cell appears to be

one of the crucial and probably limiting steps in nutrition.

In conclusion, both krill species expressed serine pro-

teinases, trypsin, and chymotrypsin, which constitute a

significant share of digestive endopeptidases. M. norvegica

shows more simple proteolytic characteristics than

E. superba which allows living in an environment without

significant food limitation. E. superba, in contrast, exhibit

more complex digestive properties which comprise ele-

vated activities in stomach and the expression of isoen-

zymes with slightly different substrate specificities. Both

features enable rapid digestion of incidental food and, thus,

support viability in the extreme Antarctic environment.
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