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Abstract Polychaetes in the Southern Ocean are often

thought to have wide distribution ranges on a horizontal

and vertical scale. Here, this theory is tested for specimens

commonly identified as the widely distributed glycerid

Glycera kerguelensis using two molecular markers, the

mitochondrial cytochrome oxidase c subunit I (COI) and

the nuclear 28S rDNA. Identical morphospecies of three

‘‘populations’’ from three different habitats and two depth

zones (abyssal plain 5,300 m, continental slope 2,000 m,

sea mountain plateau 2,000 m) are compared. High genetic

distances suggest the existence of three clades representing

distinct species, identifying the investigated specimens as a

complex comprising cryptic species with vertically

restricted distribution. Two clades were found in sympatry

on the Atka Bay slope in 2,000 m depth, one of these also

found in similar depth on the plateau of the sea mountain

Maud Rise. The third clade was limited to the abyssal

plains (5,300 m) indicating the strong role of depth in the

distribution of clades, possibly in conjunction with pre-

vailing current systems. Evolution of the different clades is

suggested to have resulted from a single emergence event

with the origin of clades lying in the abyss.

Keywords Polychaeta � Deep sea � Phylogeography �
Weddell Sea � COI � 28S

Introduction

The biodiversity and zoogeography of Southern Ocean

(SO) benthic taxa has been a focus of polar marine biology

for several years now. Summarizing the general picture, the

shelf as well as the deep-sea benthos is species rich when

compared to Arctic waters (Brandt et al. 2007a). A high

degree in endemism is observed in taxa which have been

focus of taxonomic attention, e.g., peracarids, molluscs,

pycnogonids, and echinoderms (Brandt et al. 2007b;

Munilla and Soler Membrives 2008). Concerning the

evolution of species, the oceanographic isolation of the SO

and its unique environment are believed to enhance species

radiation and endemism (Hunter and Halanych 2008).

Also, speciation is often discussed in context of the

recurrent large-scale glaciation events on Milankovitch

timescales, during which species went extinct or took ref-

uge in ice-free shelf regions or the deep sea (submergence)

(Thatje et al. 2005, 2008; Rogers 2007; Wilson et al. 2009).

Nevertheless, an observation often made by taxonomists of

all taxa is the occurrence of circum-Antarctic and eury-

bathic distribution patterns for many species (Brey et al.

1996; Arntz et al. 2005; Soler i Membrives et al. 2009)

explained by re-invasion of the shelf from one or very few

refugia and deeper waters during interglacial phases, the

occurrence of strong current systems facilitating gene flow,

and a lack of distribution barriers (e.g., a continuous shelf

and no thermocline on a vertical scale). For the deep sea, as

for the shelf, it seems that the SO works as a biodiversity

pump (Clarke and Crame 1989; Ellingsen et al. 2007 and

references cited therein), and species are believed to be

able to invade more northward deep-sea basins via the

Antarctic bottom water (e.g., Schüller and Ebbe 2007;

Strugnell et al. 2008). However, first molecular studies on

several benthic taxa from the SO shelf have already shown

Electronic supplementary material The online version of this
article (doi:10.1007/s00300-010-0913-x) contains supplementary
material, which is available to authorized users.

M. Schüller (&)

Animal Evolution, Ecology and Biodiversity,

Ruhr University, 44780 Bochum, Germany

e-mail: myriam.schueller@freenet.de

123

Polar Biol (2011) 34:549–564

DOI 10.1007/s00300-010-0913-x

http://dx.doi.org/10.1007/s00300-010-0913-x


that we find distinct genetic patterns challenging the

observation of wide distribution ranges of species and the

idea of re-invasion of the Antarctic shelf from single

refugia. Many populations seem to be not only geograph-

ically but also reproductively isolated from each other

despite the lack of clear morphological differences in

specimens (Held 2003; Held and Wägele 2005; Linse et al.

2007; Hunter and Halanych 2008; Krabbe et al. 2009)

giving rise to the idea that cryptic speciation and smaller

realized distribution ranges than originally believed might

be a common phenomenon in SO shelf species. Also,

current estimates on SO biodiversity and species distribu-

tion based purely on morpho-taxonomic studies have to be

re-evaluated, given that SO biodiversity might be largely

underestimated while the distribution ranges of some spe-

cies in a horizontal and vertical scale might be overesti-

mated. A thoughtful and efficient collaboration of

taxonomists and molecular biologists is necessary to shed

more light on these questions (Sands et al. 2008). However,

the requirements for phylogeographic studies are rarely

met in the SO as suitable sample sizes (numerous speci-

mens of one species) and spatial sampling schemes are

limited. Especially for the deep sea, sample sizes are small

and the preservation of specimens for molecular studies has

proven difficult. As a consequence, very few phylogeo-

graphic studies for SO deep-sea species are available to

date and most shelf studies concentrated on isopods, mol-

luscs, echinoderms, fishes, and recently pycnogonids (Held

2000, 2003; Held and Wägele 2005; Janko et al. 2007;

Linse et al. 2007; Mahon et al. 2008; Wilson et al. 2007,

2009; Krabbe et al. 2009). Despite their high abundance

and species richness in the macrobenthos, no phylogeo-

graphic studies have been done for polychaetes in the SO.

However, they present a particularly interesting case for

such studies given that their life history traits are very

variable (brooders to free spawners) (Wilson 1991; Rouse

and Pleijel 2006), and especially many deep-sea species are

reported to have wide horizontal and/or vertical distribu-

tion ranges (Schüller and Ebbe 2007; Paterson et al. 2009).

This presented study is the first molecular analysis on

specimens of a presumed eurybathic species with wide

distribution ranges in the Southern Ocean (Glycera kerg-

uelensis McIntosh 1885). Specimens of G. kerguelensis are

commonly reported in high abundances in samples from

large depth ranges in the SO (e.g., McIntosh 1885; Hart-

man 1964, 1967, 1978; Hartmann-Schröder and Rosenfeldt

1988, 1990, 1992). Therefore, the species represents a

suitable model for phylogeographic studies. Several

markers such as mitochondrial genes (e.g., cox3-trnQ-

nad6, 16S or COI), RAPD-PCR or AFLPs have proven to

be useful tools to distinguish species in polychaetes where

morphological characters fail (e.g., von Soosten et al. 1998;

Bleidorn et al. 2006; Barroso et al. 2010). In the past

decade, studies on the molecular taxonomy and phylogeny

of polychaetes with wide distribution ranges have become

frequent. For a wide variety of polychaetes species, it is

shown that distribution ranges are smaller than former

morphological studies suggest and that cryptic speciation is

often closely linked to geographic distances (von Soosten

et al. 1998; Schmidt and Westheide 1999, 2000; Bleidorn

et al. 2006; Wiklund et al. 2009; Barroso et al. 2010). But

also sympatric occurrence of different genetic lineages of

the same morphospecies without hybridization are repor-

ted, as e.g., for Hediste diversicolor (O.F. Müller, 1776) in

the Baltic Sea (Audzijonyte et al. 2008). However, studies

mainly concentrate on geographically separated popula-

tions from temperate shallow waters. This study presents

the first analysis on SO polychaetes. The studied specimens

originate from samples of different depth zones (bathyal

and abyssal) and topological features (continental slope,

sea mountain plateau, and abyssal plain) in the Eastern

Weddell Sea thus representing samples from three different

ecological realms on a relatively small spatial scale

(\500 Nm). Under consideration of the reported distribu-

tion of G. kerguelensis and the finding of numerous cryptic

species in other benthic taxa, morphological and molecular

methods are used to question the identity of the species and

to investigate if the gene flow between populations is

continuous between the sampled regions or if yet invisible

barriers such as water masses, physiological requirements

in different depths, or environmental differences (e.g.,

sediment, food availability) work to separate already dif-

ferent species.

Materials and methods

All taxonomic studies conducted during this project were

done at the Ruhr-University in Bochum. The molecular

analysis was carried out at the Canadian Centre of Biodi-

versity at the University of Guelph and is embedded in the

iBOL (international Barcode of Life), CAML (Census of

the Antarctic Marine Life) and CeDAMar (Census of the

Diversity of Abyssal Marine Life) programs. Specimens of

G. cf kerguelensis were collected at three different stations

of the expedition ANDEEP-SYSTCO (ANT XXIV-2 with

RV Polarstern) to the Atlantic sector of the SO in 2007/08

(Table 1, Fig. 1). The stations were positioned on the Atka

Bay continental slope (station 17, *2,100 m), on the

Weddell abyssal plain (station 33, *5,337 m), and on the

plateau of Maud Rise (station 39, *2,150 m), a seamount

in the far eastern sector of the Weddell Sea. Samples were

taken with an epibenthic sledge (EBS) or an Agassiz-Trawl

(AGT) and immediately fixed in 98% pre-cooled ethanol

after retrieval. The EBS was constructed of two nets (epi-

and supranet, mesh size: 500 lm) with an opening of
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1 9 0.5 m and a cot-end of 300-lm mesh size. The

deployed AGT was equipped with an inlay-net of 500-lm

mesh size. Effective trawling times (Table 1) resulted from

about 10 min of active trawling with a ship speed of 1 kn

over ground and subsequent heaving with a winch speed of

0.5 m/s until the gear left the bottom (ship speed: 0 kn over

ground). Sorting of specimens was carried out at the ear-

liest after 48 h and samples were subsequently stored in

98% ethanol at 1–4�C until further use. Specimens of G. cf

kerguelensis were closely analyzed for their taxonomic

characters. Identification took place under a dissecting

microscope. Additionally, permanent slides (after Platt and

Warwick 1988) of the parapodia, ailerons, jaws, and pha-

ryngeal papillae were made for observation under higher

magnification of a light microscope. Aileron base shapes

were hereby only documented and taken into account when

they could be observed at approximately the same angle in

the slides (Table 2).

DNA was extracted from posterior segments of all 38

specimens via CTAB method. The anterior parts are kept in

single vials as voucher and will be stored at the Zoological

Museum (University of Hamburg) in the long term together

with the permanent slides (Table 2). The specimens

of Gk46 were destroyed during analyses. For PCR of

mitochondrial cytochrome oxidase subunit I, the primers

LCO 1490 [50-GGTCAACAAATCATAAAGATATTGG-30]
and HCO 2198 [50-TAAACTTCAGGGTGACCAAAAA

ATCA-30] (Folmer et al. 1994) tailed with M13 [M13-tailF:

50-TGTAAAAGGACGGCCAGT-30; M13-tailR: 50-CAGG

AAACAGCTATGAC-30] were used. When first PCR

failed (Gk12, Gk14, Gk20, Gk43, Gk45, Gk55), modified

versions of these (PolyLCO [50-GAYTATWTTCAACAA

ATCATAAAGATATTGG-30] and PolyHCO [50-TAMA

CTTCWGGGTGACCAAARAATCA-30] (Carr and Ste-

inke pers. comm.)) were used. For 12.5 ll reactions, 2 ll

template DNA was mixed with 0.06 ll (=0.5 U) Platinum-

taq (Invitrogen), 6.25 ll trehalose (10%), 1.25 ll 109 PCR

buffer, 0.625 ll Mg?? (50 mM), and 0.125 ll of each

primer 10 lM), 0.0625 ll dNTPs (10 mM), and 2 ll water

(ddH2O). The PCR temperature profile was: initial dena-

turation at 94�C, 1 min; 5 cycles of denaturation at 94�C,

30 s; annealing at 45–50�C, 40 s; elongation at 72�C, 60 s,

30–35 cycles of denaturation at 94�C, 30 s; annealing at

51–54�C, 40 s; elongation at 72�C, 60 s; final elongation at

72�C for 10 min. Bidirectional sequencing was carried out

with M13F and R primers or the PolyLCO and PolyHCO

primers (see above) on a 37309l DNA Analyzer (Applied

Biosystems) automated sequencer. All protocols and fur-

ther details on extraction, PCR, and sequencing are

accessible via the homepage of the Barcode of Life (www.

barcodinglife.org). Also, nuclear 28S rDNA sequences

were analyzed for eleven specimens representing the clades

found during COI-analyses. For PCR amplification, the

Table 1 Sampling stations of G. cf kerguelensis during ANDEEP-SYSTCO

Station Date Gear Longitude Latitude Depth (m) Trawl duration (min)

17–10 22.12.2007 AGT 3�19.660–3�19.380W 70�4.580–70�4.310S 2189.7 42

17–11 22.12.2007 EBS 3�21.500–3�22.210W 70�4.830–70�4.640S 2051.4–2063.1 40

33–14 30.12.2007 AGT 2�59.330–2�59.560W 62�0.640–62�0.600S 5337.7–5338.1 42

39–17 04.01.2008 EBS 2�52.690–2�53.140E 64�28.770–64�28.660S 2151.7–2153.1 46

Fig. 1 ANDEEP-SYSTCO stations at which G. cf kerguelensis
specimens were found
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primers Po28F1 [50-TAAGCGGAGGAAAAGAAAC-30

(Struck et al. 2006)] and Po28R4 [50-GTTCACCATCTT

TCGGGTCCCAAC-30 (Passamaneck et al. 2004)] were

used. For 25 ll reactions, 1 ll template DNA was mixed

with 0.1 ll (=0.5 U) Eurotaq (Biocat), 2.5 ll Eurotaq PCR

buffer, 1 ll Mg?? (=2 mM), 2.5 ll dNTPs (=0.2 mM),

and 0.125 ll of each primer (=0.5 pmol/ll) deluded in

17.65 ll water HPLC. The PCR temperature profile was:

initial denaturation at 94�C, 3 min; 37 cycles of denatur-

ation at 94�C, 30 s; annealing at 48�C, 30 s; elongation at

72�C, 120 s; final elongation at 72�C for 8 min. PCR

products were purified with innuPREP PCRpure-Kit

(Analytik Jena) and sequenced at Qiagen (Hilden, Ger-

many). Sequences of COI and 28S were aligned separately

with MUSCLE (Edgar 2004) implemented in Geneious

4.7.5 (Biomatters 2005–2008).

Table 2 Information on G. cf kerguelensis specimens and clades analyzed: gear, collection codes of vouchers deposited at the Zoological

Museum, University of Hamburg, sizes in mm (C-6: chaetiger 6), aileron observed in permanent slides (y: yes, n: no)

ID Clade Station Depth (m) Gear Collection

code

Width C-6

(mm)

Width C-6 ?

parapodia (mm)

Lengths to

C-6 (mm)

Aileron

observed

Gk01 I 17 2189.7 AGT ZMH P 25872 0.28 0.55 ? y

Gk02 I 17 2189.7 AGT ZMH P 25873 0.53 0.9 0.95 y

Gk03 I 17 2189.7 AGT ZMH P 25874 0.46 0.9 1.028 y

Gk04 II 17 2051.4–2063.1 EBS ZMH P 25875 0.35 ? 0.57 y

Gk05 I 17 2051.4–2063.1 EBS ZMH P 25876 0.32 ? 0.68 y

Gk06 I 17 2051.4–2063.1 EBS ZMH P 25877 0.028 0.59 0.89 y

Gk07 II 17 2051.4–2063.1 EBS ZMH P 25878 ? ? 0.62 y

Gk08 II 17 2051.4–2063.1 EBS ZMH P 25879 0.42 0.61 0.83 y

Gk09 II 17 2051.4–2063.1 EBS ZMH P 25880 0.36 0.57 0.76 y

Gk10 II 17 2051.4–2063.1 EBS ZMH P 25881 0.51 ? 0.8 y

Gk12 III 33 5337.7–5338.1 AGT ZMH P 25882 0.66 1.1 ? n

Gk14 III 33 5337.7–5338.1 AGT ZMH P 25883 0.68 ? 1.22 n

Gk17 III 33 5337.7–5338.1 AGT ZMH P 25884 0.66 1.12 1.34 n

Gk20 III 33 5337.7–5338.1 AGT ZMH P 25885 0.95 1.58 1.66 n

Gk22 III 33 5337.7–5338.1 AGT ZMH P 25886 0.48 0.89 ? y

Gk25 III 33 5337.7–5338.1 AGT ZMH P 25887 0.77 1.21 1.1 y

Gk26 III 33 5337.7–5338.1 AGT ZMH P 25888 0.82 1.19 1.07 y

Gk31 I 39 2151.7–2153.1 EBS ZMH P 25889 0.29 0.61 0.86 y

Gk32 I 39 2151.7–2153.1 EBS ZMH P 25890 ? ? 0.86 n

Gk33 I 39 2151.7–2153.1 EBS ZMH P 25891 0.48 ? 0.89 n

Gk34 I 39 2151.7–2153.1 EBS ZMH P 25892 0.33 ? 0.66 y

Gk35 I 39 2151.7–2153.1 EBS ZMH P 25893 0.27 0.5 0.65 n

Gk36 I 39 2151.7–2153.1 EBS ZMH P 25894 0.42 0.69 0.89 y

Gk38 I 39 2151.7–2153.1 EBS ZMH P 25895 0.27 ? 0.76 y

Gk40 I 39 2151.7–2153.1 EBS ZMH P 25896 0.33 0.6 0.67 y

Gk42 I 39 2151.7–2153.1 EBS ZMH P 25897 0.29 0.58 0.6 n

Gk43 I 39 2151.7–2153.1 EBS ZMH P 25898 0.36 0.6 0.59 n

Gk44 I 39 2151.7–2153.1 EBS ZMH P 25899 0.35 ? 0.64 y

Gk45 I 39 2151.7–2153.1 EBS ZMH P 25900 0.24 0.5 0.98 n

Gk46 I 39 2151.7–2153.1 EBS destroyed ? ? ? n

Gk47 I 39 2151.7–2153.1 EBS ZMH P 25901 0.36 0.55 0.69 y

Gk48 I 39 2151.7–2153.1 EBS ZMH P 25902 0.36 0.63 0.83 y

Gk50 I 39 2151.7–2153.1 EBS ZMH P 25903 0.35 0.51 0.8 n

Gk51 I 39 2151.7–2153.1 EBS ZMH P 25904 0.3 0.5 0.47 y

Gk52 I 39 2151.7–2153.1 EBS ZMH P 25905 0.51 0.89 1.34 y

Gk53 I 39 2151.7–2153.1 EBS ZMH P 25906 0.46 0.73 1.06 y

Gk54 I 39 2151.7–2153.1 EBS ZMH P 25907 0.46 0.08 1.31 n

Gk55 I 39 2151.7–2153.1 EBS ZMH P 25908 0.26 ? 0.58 n
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The COI alignment was cropped to a length of 592 bps.

Corrected genetic distances between sequences and clades

(substitution models: Kimura-2-Parameter for comparison

with literature data, GTR?G was suggested as most suit-

able for presented data) were determined with PAUP*

(Swofford 2002), and haplotype diversity was calculated

after Nei (1987). In addition, a haplotype network was

drawn using TCS 1.21 (fixed 50 steps connection limit,

95% (10 steps connection limit), and 90% (15 steps con-

nection limit)) (Clement et al. 2000). For Bayesian tree

reconstruction, the best substitution model was estimated

using MrModeltest (Nylander 2004) embedded in the

PAUP* plugin of Geneious and jModeltest 0.1 (Posada

2008). Trees were calculated with PAUP* (maximum

likelihood) and MrBayes (GTR?G, 1,100,000 generations,

4 chains at a temperature at 0.2 (default setting), burn-in

after reaching convergence at 50,000 generations), each

unrooted. A second MrBayes-tree was calculated for final

analyses using MrBayes 3.1.2 (Huelsenbeck and Ronquist

2001) (GTR?G, 10,000,000 generations, 4 independent runs

with 4 heated and 3 cold chains, burn-in after reaching con-

vergence at 50,000 generations) adding outgroups. The

alignment was cropped to 556 bps, limited by sequence

length available for published outgroups. As outgroups,

COI sequences of Glycera sp. from British Columbian shal-

low waters (BCPOL390_08BAMPOL0361_Glycera (Carr

unpublished)), Glycera nicobarica Grube, 1868 (Genbank:

EU683436 (Neave et al. unpublished)), Glycera southeast-

atlantica Böggemann, 2009 (Genbank: GQ426630 (Bögge-

mann 2009)), Glycera tridactyla Schmarda, 1861 (Genbank:

AY583700 (Colgan et al. 2006)), and the goniadid species

Goniada emerita Audouin and Milne-Edwards, 1833 (Gen-

bank: EU835659 (Neave et al. unpublished)) were used. The

tree was rooted with G. emerita. Additionally, a maximum

parsimony tree was calculated with PAUP* to achieve

bootstrap values (100 replicates, outgroup: G. emerita).

For correlation of genetic distances to geographic

position and depths, a Mantel test was performed.

For analyses of 28S rDNA sequences, the alignment was

cropped to 616 bps. Pairwise distances (Kimura-2-Param-

eter, GTR?G) within and between clades were calculated

with PAUP*. For tree reconstruction outgroups of 28S

rDNA sequence of Glycera dibranchiata Ehlers, 1868

(Genbank: AY995207.1 (Struck et al. 2006)), Glycera

americana Leidy, 1855 (Genbank: EU418864 (Struck et al.

2008)), and the goniadid species Goniada brunnea Trea-

dwell, 1906 (Genbank: DQ790037 (Struck et al. 2007))

were added. Phylogenetic reconstruction was estimated

using MrBayes 3.1.2 GTR?G, (10,000,000 generations, 4

independent runs with 4 heated and 3 cold chains, burn-in

after reaching convergence at 50,000 generations) and

PAUP* (maximum parsimony, bootstrap number of repli-

cates = 100, outgroup: G. brunnea).

Maps were designed with GebcoCE 1.0. Drawings of G.

cf kerguelensis were digitalized with help of a Wacom pen

tablet Intuos 3 and Adobe Illustrator CS3.

Results

Morphology

The distribution and taxonomic characters of the 38 spec-

imens fitted well to the commonly used descriptions of

Glycera kerguelensis (e.g., Hartman 1978; Hartmann-

Schröder and Rosenfeldt 1988) justifying the identification

of the specimens as such from a morphological point of

view. No consistent morphological differences were found

between the specimens who are therefore classified as

morphologically the same species.

The specimens (Fig. 2) were all incomplete with part of

their posterior segments missing, and non-ovigerous. Their

sizes were therefore documented by (1) the distance of the

prostomium tip to the middle of the sixth chaetigerous

segment (fifth segment with biramous parapodia, present in

all specimens sampled), (2) the width of the sixth chaeti-

gerous segment between the parapodia, and (3) the width of

the sixth chaetigerous segment including the parapodial

lobes whenever a dorsal observation of the specimens was

possible. For few specimens, the entire length and

according number of chaetigers was documented. Length

of the specimens to the sixth chaetiger (1) ranged from 0.47

to 1.66 mm, the width between the parapodia of the sixth

chaetiger (2) ranged from 0.24 to 0.82 mm, and the mea-

sured width including the parapodial lobes (3) lay between

0.5 and 1.58 mm. The most complete specimens were

5.42 mm (26 chaetigers) to 12 mm (37 chaetigers) long.

For comparison, Böggemann (2009) recorded South-East

Atlantic deep-sea specimens of Glycera capitata Ørsted,

1842 with a maximum length of 20 mm for 43 chaetigers,

the width of the sixth chaetiger (2) in his drawings

resembled 0.47 mm. The great size ranges in the samples

were independent from the sampling sites and lay well in

the range documented by Böggemann (2009) for the deep

sea in the closely related species indicating that the sam-

pled specimens did not represent juveniles. The prosto-

mium was conical, annulated with 8–11 rings, and bore

four apical appendages. Chaetigerous segments were tri-

annulated and gradually increasing in length toward med-

ian and posterior body. The parapodia were biramous

except for the first, bearing a slender almost triangular

prechaetal lobe that distinctly exceeded the neuropodial

lobe. Postchaetal lobes were shorter and wider than pre-

chaetal lobes. Two stout aciculae were visible under light

microscope (Fig. 2a). The parapodia bore one to three

simple chaetae dorsally in the notopodium; the remaining
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chaetae were all composite with three differently sized

blades (Fig. 2b). Shifted to a dorso-lateral position above

the parapodia a spherical to oval dorsal cirrus was present

per chaetiger. The pharynx bore two types of papillae ((1)

digitiform, (2) stouter, oval shaped, distally flattened in

lateral view, Fig. 2c) and was distally equipped with a

cross of four dark jaws. The accessory ailerons were

characterized by a slightly concave base (Fig. 2d).

Phylogenetic and phylogeographic analyses

COI sequences of the same 38 specimens from the three

different sites and depths in the Weddell Sea were

achieved. Of these, seven specimens originated from the

Weddell Sea abyss (St. 33, *5,337 m), 10 from the Atka

Bay slope (St. 17, *2,100 m), and 21 specimens from

Maud Rise, a sea mountain in the eastern part of the

Weddell Sea (St. 39, *2,150 m) (Fig. 1). Sequence

lengths varied between 592 and 660 bps resulting in an

alignment of 592 bps and average base frequencies of A

25.49%, C 23.55%, G 16.28%, and T 34.7%. In the

alignment, 172 sites were variable, and 167 of them par-

simony informative (details on sequence lengths and base

content are given in Table 3). General topologies of the

maximum likelihood, maximum parsimony, and Bayesian

trees were identical.

Analysis of sequences resulted in a total of 22 different

haplotypes (A-U, Online Resource ESMTab 1), 16 of them

being unique. Two haplotypes were found in two speci-

mens each (Q and T), one in three specimens (J), and one in

five specimens (B). Each of these four haplotypes was

limited to one location only. Haplotype P was found in ten

specimens, two of them from station 17 (Atka Bay slope)

and eight from station 39 (Maud Rise). The haplotypes

clustered in three well-supported clades (posterior proba-

bilities of 0.93–1.0 in the Bayesian tree, Fig. 3). Despite

the high connection limits of 95% (10 steps) to up to 50

substitution steps, a single network was not achieved under

statistical parsimony, rather three disconnected networks

(Fig. 4).

Clade I: Specimens from the Atka Bay slope and Maud

Rise (St. 17 and 39, *2,050–2,190 m, 13 haplotypes [J–

U]—9 unique).

Clade II: Specimens from the Atka Bay slope (St. 17,

*2,050–2,190 m, 5 haplotypes [D–H]—all unique).

Clade III: Specimens from the abyssal Weddell Sea (St.

33, *5,337 m, 3 haplotypes [A–C]—2 unique).

Clade III found in the Weddell Sea abyss is suggested as

the most basal of the three clades in the Bayesian tree

based on COI. The three clades form a monophyletic group

next to the yet unidentified Glycera species from British

Columbian shelf waters. Pairwise genetic distances

(GTR?G) within clades ranged from 0 to 2.0% (Table 4).

The highest mean distance was found in clade I with a

mean distance of 0.6%, the lowest in clade III (0.1%).

Between clades, genetic distances ranged from 25.6%

(minimum genetic distance between clades I and II) to

45.8% (maximum genetic distance between clades I and

III). The absence of genetic distances between 2 and 25%

results in a large barcoding gap. Between the three clades

of G. cf kergulensis and the well-defined Glycera species

recovered from Genbank genetic distances ranged from

31.9 to 66.2% (GTR?G), respectively, 22.4–28.2% (K2P),

genetic distances to Goniada emerita ranged from 39.2 to

52.5% (GTR?G), respectively, 25.4 to 29.4% (K2P),

Fig. 2 G. cf kerguelensis:

photograph—habitus, a median

parapodium, b chaetal types of

drawn parapodium,

c pharyngeal papillae, d aileron
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questioning the identification of Glycera tridactyla

(AY583700, distances GTR?G to clade I-III:

56.8–66.2%). A more detailed summary of genetic dis-

tances (GTR?G and K2P) and haplotype diversity is given

in Table 4 and ESMTab 1. Haplotype diversity (h) was

highest in clade II with only unique haplotypes (h = 1),

followed by clade I (h = 0.846). Clade III showed the

lowest haplotype diversity (h = 0.524) due to the abun-

dance (71% of all specimens) of haplotype B. High branch

support values (Fig. 3) in the Bayesian tree analyses as

well as the great genetic distances strongly suggest that the

three different clades represent three different species.

Inspecting the differences between the three clades in

further detail, a maximum of 15 nucleotide substitutions

are found within clades (Clade 1, haplotypes I and J,

Fig. 4). Between clades 97 (minimum number between

clades I and II) and 131 (maximum number between clades

I and III), nucleotide substitutions are observed. Although

Table 3 Details on COI sequences of G. cf kerguelensis (origin, lengths, base frequencies, haplotypes)

Specimens ID Haplotype (HT) Clade Station Length [bp] A [%] C [%] G [%] T [%] Genbank acc #

Gk17 A III 33 649 25.4 25.7 16.9 31.9 HM016120

Gk12 B III 33 660 25.1 25.6 17 32.1 HM016121

Gk14 B III 33 660 25.1 25.6 17 32.1 HM016122

Gk20 B III 33 660 25.1 25.6 17 32.1 HM016123

Gk22 B III 33 649 25.3 25.9 17.1 31.7 HM016124

Gk25 B III 33 610 25.6 26.6 16.9 31 HM016125

Gk26 C III 33 592 24.8 26.7 17.4 31.1 HM016126

Gk07 D II 17 650 23.7 24 17.2 35.1 HM016127

Gk04 E II 17 650 23.5 23.7 17.4 35.4 HM016128

Gk08 F II 17 650 23.7 23.8 17.2 35.2 HM016129

Gk09 G II 17 650 23.7 23.8 17.2 35.2 HM016130

Gk10 H II 17 650 23.7 24 17.2 35.1 HM016131

Gk40 I I 39 650 25.5 22.8 16.3 35.4 HM016154

Gk47 J I 39 650 25.8 22.9 16.3 35.2 HM016155

Gk48 J I 39 650 25.8 22.9 16.3 35.2 HM016156

Gk55 J I 39 660 25.4 23.1 16.2 35.3 HM016157

Gk35 K I 39 650 26.2 23.1 15.7 35.1 HM016132

Gk46 L I 39 650 26 22.9 15.8 35.2 HM016133

Gk01 M I 17 650 26.2 22.8 15.7 35.4 HM016134

Gk33 N I 39 650 26 22.6 15.8 35.5 HM016135

Gk36 O I 39 650 26 22.6 15.8 35.5 HM016136

Gk42 P I 39 650 26 22.6 15.8 35.5 HM016137

Gk50 Q I 39 650 25.8 22.8 16 35.4 HM016152

Gk54 Q I 39 650 25.8 22.8 16 35.4 HM016153

Gk43 R I 39 660 25.8 23.1 15.7 35.3 HM016138

Gk03 P I 17 650 26 22.8 15.8 35.4 HM016139

Gk06 P I 17 650 26 22.8 15.8 35.4 HM016140

Gk31 P I 39 650 26 22.8 15.8 35.4 HM016141

Gk34 P I 39 650 26 22.8 15.8 35.4 HM016142

Gk44 P I 39 650 26 22.8 15.8 35.4 HM016143

Gk45 P I 39 660 25.8 22.9 15.7 35.5 HM016144

Gk51 P I 39 650 26 22.8 15.8 35.4 HM016145

Gk52 P I 39 650 26 22.8 15.8 35.4 HM016146

Gk53 P I 39 650 26 22.8 15.8 35.4 HM016147

Gk38 S I 39 622 26 23.5 16.1 34.4 HM016149

Gk02 T I 17 650 26 22.8 15.8 35.4 HM016150

Gk05 T I 17 650 26 22.8 15.8 35.4 HM016151

Gk32 U I 39 650 26 22.6 15.8 35.5 HM016148
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they mainly concern the 3rd codon position (145 substi-

tutions, 1st base: 24 substitutions, 2nd base: 3 substitu-

tions), they account for a total of 9 different amino acid

substitutions. Details on extent and position of amino acid

differences between the clades are summarized in Online

Resource ESMTab 2. Five amino acid substitutions have a

possible functional consequence in that amino acids are

substituted by amino acids of different side chain polarity

and charge. Three of these ‘‘functional’’ changes concern

clade III, one further is an autapomorphy to haplotype A of

clade III, and the fifth concerns clade II. The changes have

consequences for the predicted secondary structure of the

Fig. 3 Bayesian tree of COI mtDNA sequences (556 bps) of G. cf

kerguelensis from the expedition ANDEEP-SYSTCO (GTR?G,

10,000,000 generations, burn-in 50,000 generations), outgroups:

Glycera sp. (BCPOL390_08BAMPOL0361_Glycera; Carr unpub-

lished), Glycera nicobarica (Genbank: EU683436, Neave et al.

unpublished), Glycera southeastatlantica (Genbank: GQ426630,

Böggemann 2009), Glycera tridactyla (Genbank: AY583700, Colgan

et al. 2006 Goniada emerita (Genbank: EU835659, Neave et al.

unpublished). Branch labels indicate posterior probabilities and

bootstrap value (maximum parsimony, in []) if they are above 0.7/

70. Labels of taxa correspond to station, specimens id, and Genbank

acc. #, respectively

Fig. 4 Haplotype network

calculated with TCS 1.21

(fixed 50 steps connection

limit), Haplotype letters
correspond to Table 3, numbers
in [] behind haplotypes indicate

haplotype frequency per station

if greater 1. aa amino acid, bp
base pairs, St. station

556 Polar Biol (2011) 34:549–564

123



cytochrome c oxidase protein subunit I in that helix lengths

and number and position of turns vary between different

clades.

The haplotype and clade distribution positively corre-

lates with geographic distances and depths (Mantel test

with 10000 permutations, P \ 0.0001 in both cases).

Geographic position and depths of stations are not inde-

pendent of each other, and correlation to depths

(r(AB) = 0.764, not exceeded by any permutation) is

slightly stronger than to distance (r(AB) = 0.335, excee-

ded thrice).

The separation of the three clades is supported by

analyses of 28S rDNA sequences (Table 5). All three

clades are recovered in the Bayesian tree (Fig. 5), sup-

ported by posterior probabilities of 1.0 (clade II and III)

and 0.91 (clade I). General topology of the maximum

parsimony tree was identical. As in the COI analysis, clade

III forms the most basal clade in the 28S tree. The lower

posterior probability of clade I is caused by one nucleotide

substitution in Gk45 forming the only within clade sub-

stitution in the data set. Between clades, mean pairwise

distances ranged from 2.68 to 6.01% (GTR?G) opposed to

0–0.05% within clades (Table 6). The overall pairwise

identity was 97.6% with 580 identical sites (94%) and 36

variable sites, all of them parsimony informative. Mean

base frequencies were as follows: A 18.2%, C 26.9%, G

33.7%, T 21.2%.

Discussion

Taxonomic status, ecology, and morphology

of G. kerguelensis

The species G. kerguelensis has been recorded for the

complete Atlantic sector of the Southern Ocean, Kerguelen

Island and the waters around the Antarctic Peninsula (e.g.,

McIntosh 1885; Hartman 1964, 1967, 1978; Hartmann-

Schröder and Rosenfeldt 1988, 1990, 1992) in depths from

few hundred to over 4,000 m. Based on morphological

analyses, Böggemann (2002) questioned the validity of the

species and made it a synonym of Glycera capitata.

However, Hartmann-Schröder (1986) had previously found

that the SO specimens have distinctly longer dorsal pre-

chaetal lobes than specimens of the European species

supporting the status of G. kerguelensis as a valid species.

The presented morphological analyses substantiate these

differences in the parapodial shape. Also, the aileron base

of the observed specimens is slightly concave as opposed

to straight ones recorded for G. capitata by Böggemann

(2002). From a morphological point of view, all specimens

included in the presented study belong to G. kerguelensis

as clearly defined variations in their morphology among

them and compared to published descriptions (e.g., Hart-

man 1978) were missing. Differences in total length or

morphometric relations followed no pattern and could be

assigned to age of specimens and preservation artifacts.

Comparison of the found size ranges to findings of G.

capitata from the deep Southeast Atlantic (Böggemann

2009) suggest that analyzed specimens were not juveniles

and found morphological characters truly resemble species

characters. The genetic differentiation of specimens into

three well-defined clades, however, puts doubt behind the

assumption that found specimens really belong to the

species G. kerguelensis whose type locality are the shallow

waters of Kerguelen Island (McIntosh 1885). The speci-

mens are therefore herein referred to as G. cf kerguelensis.

If any or which of the three clades represents specimens of

the originally described G. kerguelensis is only determin-

able based on comparison with genetic data from the type

locality. Also, morphological analyses with higher magni-

fication such as scanning electron microscopy (SEM) might

uncover morphological differences between the clades

themselves and compared to the original G. kerguelensis

that then allow an unambiguous differentiation and

description of the clades without the need of molecular

references.

Table 4 Mean pairwise genetic distances among/between COI

sequences of G. cf kerguelensis clades—left lower half: GTR?G in

percent, right upper half: Kimura-2-Parameter model in percent and

haplotype diversity (h) (Nei 1987)

Clade I (%) II (%) III (%) h

I 0.6/0.6 19.20 25.90 0.846

II 26.70 0.4/0.4 26.20 1

III 43.20 42.60 0.1/0.1 0.524

Table 5 Genbank accessory numbers for 28S sequences of G. cf

kerguelensis

Specimens ID Clade Genbank acc no

Gk12 III HM016109

Gk14 III HM016110

Gk07 II HM016113

Gk08 II HM016112

Gk09 II HM016111

Gk01 I HM016118

Gk02 I HM016115

Gk03 I HM016116

Gk32 I HM016119

Gk45 I HM016114

Gk53 I HM016117
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As for all deep-sea polychaetes in the Southern Ocean,

nothing definite is known about feeding behavior and

reproduction of the species. From shallow waters, we know

that species of Glycera Savigny, 1818 build semi-perma-

nent tubes in the sediment and lurk for their prey (e.g.,

small crustaceans, other polychaetes) which they then

immobilize and kill with help of venom from gland asso-

ciated with the jaw apparatus (Ockelmann and Vahl 1970;

Fauchald and Jumars 1979; Manaranche et al. 1980;

Böggemann 2005). Their ability to swim is used for escape

responses or during epitocy for spawning (Röder and Röder

1974). Böggemann (2002) presumed that an occasional

upwards swimming of atok specimens can result in a

horizontal drift with water currents. Shallow water species

of Glycera are described to develop long natatory chaetae

during epitoky. Spawning is synchronized and the gametes

are released into the water by rapture of the body walls.

Larvae are planktotrophic and active (Simpson 1962;

Strathmann 1987; Shanks 2001). Both the feeding behavior

and the presumed drift of atok specimens are also easily

imaginable for deep-sea glycerids. However, free-living

larvae have not been recorded for SO deep-sea polychaetes

and only scarce information is available on deep-sea

polychaete reproduction in general (Blake and Naray-

anaswamy 2004). Since sampling methods currently

applied are not fit for catching bottom-near plankton,

reproduction and dispersal via free-living larvae, either

lecitotrophic as proposed for deep-sea benthos in general or

planktotrophic, cannot be ruled out for SO deep-sea poly-

chaetes. The analyzed specimens were all atok and non-

ovigerous giving no indication about their possible repro-

duction mode.

Phylogeny and distribution

The great differences of the genetic distances between and

within the three clades strongly suggest three indepen-

dently evolving lineages. Thus, despite the lack of mor-

phological features supporting the genetic findings, it is

Fig. 5 Bayesian tree of 28S rDNA sequences (616 bps) of G. cf

kerguelensis from the expedition ANDEEP-SYSTCO (GTR?G,

10,000,000 generations, burn-in 50,000 generations), outgroups:

Glycera dibranchiata (Genbank: AY995207.1, Struck et al. 2006),

Glycera americana (Genbank: EU418864, Struck et al. 2008),

Goniada brunnea (Genbank: DQ790037, Struck et al. 2007). Branch
labels indicate posterior probabilities and bootstrap value (maximum

parsimony, in []) if they are above 0.7/70. Labels of taxa correspond

to clade, specimens id, and Genbank acc. #, respectively

Table 6 Mean pairwise genetic distances among/between 28S

sequences of G. cf kerguelensis clades—left lower half: GTR?G in

percent, right upper half: Kimura-2-Parameter model in percent

Clade I (%) II (%) III (%)

I 0.05/0.1 2.5 4.3

II 2.68 0.0/0.0 5.4

III 4.74 6.01 0.0/0.0
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proposed that the three clades represent three different,

possibly cryptic species. The apparent lack of distin-

guishing morphological characters might be evidence for

recent separation of species that has not yet been accom-

panied by respective morphological changes. Another

possibility is that clades are defined by physiology rather

than morphology. If clades inhabit comparable ecological

niches at different stations, equal selective pressures might

work to prevent phenotype divergence.

The three stations sampled are positioned in a triangle

with stations 33 and 39 closest to each other (distance st.

17–33: *480 Nm [*889 km], st. 17–39: *370 Nm

[*685 km], st. 33–39: *192 Nm [*356 km]). Speci-

mens from clade I were found at stations 17 and 39 both

situated in about 2,000 m depth, while not at station 33 in

over 5,330 m depth which is closer to Maud Rise than the

Atka Bay slope. Clade III in contrast was only found in the

abyssal Weddell Sea (St. 33). Depth has been identified as

a possible driving force in deep-sea invertebrate speciation

before (France and Kocher 1996; Chase et al. 1998;

Quattro et al. 2001; Zardus et al. 2006) and explanations

are sought in depth-related historical patterns, environ-

mental gradients, and physiological adaptations especially

concerning hydrostatic sensibility of enzymes, proteins,

and larval development (Chase et al. 1998; Zardus et al.

2006). The three clades differ not only in their COI

nucleotide sequence but also show substantial changes in

the COI amino acid sequences. Especially haplotypes of

clade III show a minimum of three amino acid replace-

ments with different polarity and charge giving a possible

indication for a manifestation of species’ separation in

physiology.

As stated earlier, only very little is known about distri-

bution of polychaetes in deep waters. We can only assume

that deep-sea glycerids develop through free-living larvae,

as do their shallow water relatives. The different water

layers structuring the Weddell Sea therefore play a major

role in dispersal of species as larval dispersal might be

restricted on a vertical scale by the boundary layers of

different water masses. The two sampled depth realms of

around 2,000 m (st. 17 and 39) and below 5,000 m (st. 33)

are isolated from each other by antipodal water currents.

The Weddell abyss is characterized by the northwards

flowing Antarctic Bottom Water (Knox and Lowry 1977)

resulting in a down-slope connection with the Atka Bay

slope but entire isolation from the Maud Rise plateau.

Maud Rise and the Atka Bay slope share a unidirectional

connection through the southward flowing North Atlantic

Deep Water/Circumpolar Deep Water (Foldvik and Gam-

melsrød 1988) which could serve as a possible pathway for

clade I-larvae to disperse from Maud Rise to the Atka Bay

slope on a short ecological time scale (Fig. 6). Neverthe-

less, considering the high genetic diversity and Maud

Rise’s hydrography, it comes as a surprise that clade I

found at Maud Rise was also found elsewhere. Maud Rise

represents a special feature in the Weddell Sea. An anti-

cyclonic westward current system has developed around

the sea mountain partially isolating the water masses within

(Bersch et al. 1992; Schröder and Fahrbach 1999).

Although this warm water current is still in exchange with

the surrounding water masses, a quasi stationary anomaly

of cold water masses characterizes the plateau of Maud

Rise (Bersch et al. 1992) giving reason to expect an ele-

vated degree of isolation in the faunal composition and

populations there.

The slopes connecting station 33 with stations 17 and 39

have not been sampled. Therefore, it cannot be ruled out

that along-slope gene flow existed or still exists and clade

III and clades I and/or II represent parapatric clades. Based

on the presented data, the clades’ origin is suggested to lie

in the abyssal Weddell Sea. Both, the COI and 28S anal-

yses suggest clade III as the basal group indicating that at

least one emergence event occurred in the past originating

from the deep sea (Fig. 6). The number and location of

emergence events remains uncertain. The presented anal-

yses suggest one event as clades I and II form a mono-

phyletic group sharing a common ancestor. However, the

presented dataset is too small to rule out the possibility of

several independent emergence events. Emergence and

submergence events, especially behind the background of

Fig. 6 Possible dispersal routes on ecological (short) and evolution-

ary (long) time scales of G. cf kerguelensis clades in the Weddell Sea
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the evolution of the Antarctic shelf benthos after the last

glacial maximum, have long been thought to cause a major

connection between the Antarctic shelf and the Antarctic

deep sea that strongly shaped the recent diversity of both

realms. Strugnell et al. (2008) presented detailed evidence

for a Southern Ocean shallow water origin of deep-sea

octopuses distributed even beyond the polar front while

Mincks et al. (2009) found molecular evidence for a deep-

sea origin of the shallow water spionid Auriospio foodb-

ancsia Mincks et al. 2009. To further investigate the his-

torical and present direction of gene flow in Southern

Ocean deep-sea polychaetes and related evolutionary pro-

cesses, numerous requirements have yet to be fulfilled. The

question most desirable to be answered is certainly that of

the reproduction and dispersal of Polychaeta in the deep

sea. Also, the great genetic distances frequently found

between clades and species in polychaetes have to be fur-

ther analyzed. Hebert et al. (2003) showed that COI

sequences offer a reliable tool to identify lepidopteran

species due to a clear gap between intra- and interspecific

divergences. Genetic distances defining species, especially

in vertebrates and insects, are expected to be found around

2–3% and higher (Avise and Walker 1999; Hebert et al.

2003). Dawson and Jacobs (2001), based on experience

from various marine invertebrates, consider genetic dis-

tances in COI of 10–20% as a benchmark for distinct

species. Distances in COI between well-defined polychaete

species are commonly reported to lie above 10% (Wiklund

et al. 2009), often even above 20% (p-distance, K2P, HKY)

(Barroso et al. 2010 and cited therein; Schulze et al. 2000;

Glover et al. 2005a; Martin et al. 2008; Virgilo et al. 2009),

which is distinctly higher than in other invertebrates and

especially mammals. Brett (2006) studied 16 morphologi-

cally identified polychaete species from New Zealand and

found that interspecific distances in polychaete COI

sequences ranged from 13.8 to 36.8% while intraspecific

distances lay between 0 and 5%. Further molecular studies

on polychaete COI showed that genetic differences

between closely related species or lineages of morpho-

species regularly lie between 6 and 22% while within

species/clades they seldom exceed 3% (Schulze et al. 2000;

Hurtado et al. 2004; Glover et al. 2005a; Braby et al. 2007;

Martin et al. 2008; Nygren et al. 2009; Wiklund et al. 2009)

giving substance to the suggestion of Barroso et al. (2010)

that COI evolves more quickly in polychaetes than in other

benthic invertebrates studied to date. Glover et al. (2005b)

found an unusual ration in unsynonymous to synonymous

substitution sites in COI sequences between two distinct

clades of the whale fall inhabiting polynoid Bathykurilia

guaymasensis Pettibone, 1989 giving rise to the assumption

that COI evolution might also underlie positive selection

processes in some case which could heavily influence the

rates of divergence. Sequences of deep-sea Glycera and

other polychaete species from the deep Southeast Atlantic

Ocean (Böggemann 2009) resulted in comparable distances

to shallow water polychaetes. Also, Glover et al. (2005a)

and Braby et al. (2007) found interspecific distances

between shallow and deep-water Osedax Rouse et al., 2004

species to lie between 8 and 25% with the highest inter-

specific distances between the deep-water species Osedax

rubiplumus Rouse et al., 2004 and Osedax ‘‘spiral’’, indi-

cating that evolution times in deep-sea polychaetes might

be comparable to that in shallow water species.

The presented data fall well within this bimodal distri-

bution of inter- and intraspecific divergences without

intermediates. Additionally, the level of genetic divergence

between the three clades found equals, and in some cases

even exceeds that known between COI sequences of

undisputed polychaete species. They also overlap with the

range of distances between Glycera species and the species

Goniada emerita that belongs to the sister family Goni-

adidae, underlining Barroso et al.’s (2010) hypothesis that

divergence of COI in polychaetes is supposedly higher on

an evolutionary time scale than expected from experiences

with other animal taxa. Held (2003) proposed the criterion

of bimodal distribution of divergence to be a prerequisite

for the detection of cryptic species. He also stated that the

genetic differentiation must be persistent in sympatry.

Clades I and II fulfill this requirement at station 17. It is

thus strongly suggested that the three different clades

represent cryptic, or considering the lack of application of

SEM in morphological investigations, at least pseudo-

cryptic, species. Also, the analyses of the nuclear, and

generally more conserved 28S rDNA also in polychaetes

(e.g., in Chrysopetalidae (Wiklund et al. 2009)), strongly

supports the separation of the three clades found. While

within clade divergence was basically undetected apart

from one substitution in clade I, among clades mean

divergences between 2.5 and 5.4% were found. However,

since the sample set was very small in the nuclear analyses,

the lack of intermediates might be misleading here. More

data from polychaetes are imperatively necessary to better

evaluate intra- and interspecific divergence in the COI

sequences of Polychaeta and truly judge about their vari-

ability and thus usefulness to ultimately distinguish species

rather than mere populations.

Implications for SO deep-sea invertebrate diversity

and distribution

Phylogeographic studies on Southern Ocean shelf species

of various invertebrate taxa have shown that cryptic spe-

ciation might be a common phenomenon in the shallow

Southern Ocean. Originally believed circum-Antarctic

distribution patterns are challenged by high genetic diver-

gences between distinct populations of e.g., Isopoda or

560 Polar Biol (2011) 34:549–564

123



Pycnogonida (Held 2003; Held and Wägele 2005; Raupach

and Wägele 2006; Mahon et al. 2008). Linse et al. (2007)

found circum-Antarctic distributions on the continental

shelf for the bivalve Lissarca notorcadensis Melvill and

Standen, 1907 possible but discovered a distinctly sepa-

rated genetic lineage for this species around the islands in

the Scotia Sea. Additionally, the Antarctic polar front has

been demonstrated to act as a barrier hindering gene flow

between the SO and the South American shelves in

numerous species (Hunter and Halanych 2008; Thornhill

et al. 2008; Krabbe et al. 2009). Most of these studies

revealed that despite a rather local restriction of genetic

populations/lineages, genetic divergences are seldom cor-

related with geographic distance. All in all, molecular

approaches to species diversity show that Southern Ocean

diversity might be largely underestimated while species’

distribution might be overestimated in several cases

(Mincks et al. 2009). Due to great difficulties especially

regarding suitable samples (quantity and quality), no

comparable studies from the Southern Ocean deep sea exist

to date. The presented study presents the first phylogeo-

graphic data on SO deep-sea polychaetes. The outcome of

the analyses lives up to the expectations adopted from SO

shelf studies in that populations from different regions

show higher genetic divergence than morphology suggests.

For polychaetes in general, many of the existing phyloge-

ographic studies world-wide suggest that wide distribution

ranges as suggested by taxonomy might not be always be

supported by genetic data (von Soosten et al. 1998;

Schmidt and Westheide 1999, 2000; Patti and Gambi 2001;

Bleidorn et al. 2006; Rice et al. 2008; Wiklund et al. 2009)

although some studies supporting cosmopolitan species

also exist (Schmidt and Westheide 2000; Westheide et al.

2003). Also, the presented results are in line with the

observation in molluscs and the amphipod Eurythenes

gryllus (Lichtenstein, 1822) that genetic variation and

divergence in the deep sea is greater on a vertical scale than

on a horizontal scale with higher diversities in around 2000

m depths than in the lower bathyal and abyss (France and

Kocher 1996; Chase et al. 1998; Quattro et al. 2001; Zardus

et al. 2006). Despite the frequent lack of clear topographic

structuring, the deep sea exhibits a yet undiscovered high

genetic diversity. Cryptic speciation might be as common a

phenomenon in deep waters as it is on the shelf, only that

there divergent populations are separated by physical and

environmental forces we have yet to uncover.
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Nygren A, Eklöf J, Pleijel F (2009) Arctic-boreal sibling species of

Paranaitis (Polychaeta, Phyllodocidae). Mar Biol Res

5:315–327

Nylander JAA (2004) MRMODELTEST v2. Program distributed by

the author. Evolutionary Biology Centre, Uppsala University,

Uppsala

Ockelmann KW, Vahl O (1970) On the biology of the polychaete

Glycera alba, especially its burrowing and feeding. Ophelia

8:275–294

Passamaneck YJ, Schander C, Halanych KM (2004) Investigation of

molluscan phylogeny using large-subunit and small-subunit

nuclear rRNA sequences. Mol Phylogen Evol 32:25–38

Paterson GLJ, Glover AG, Barrio Froján CRS, Whitaker M, Budaeva

N, Chimonides J, Doner S (2009) A census of abyssal

polychaetes. Deep-Sea Res II 56:1739–1746

Patti FP, Gambi MC (2001) Phylogeography of the invasive

polychaete Sabella spallanzanii (Sabellidae) based on the

nucleotide sequence of internal transcribed spacer 2 (ITS2) of

nuclear rDNA. Mar Ecol Prog Ser 215:169–177

Platt HM, Warwick RM (1988) Freeliving marine nematodes. Part II.

British Chromadorids. In: Kermack DM, Barnes RSK (eds)

Synopsis of the British Fauna (new series), 38. E.J. Brill and

Backhuys, Leiden, pp 14–21

Posada D (2008) jModelTest: phylogenetic model averaging. Mol

Biol Evol 25:1253–1256

Quattro JM, Chase MR, Rex MA, Greig TW, Etter RJ (2001) Extreme

mitochondrial DNA divergence within populations of the deep-

sea gastropod Frigidoalvania brychia. Mar Ecol 139:1107–1113
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