
Polar Biol (2007) 30:1059–1068 

DOI 10.1007/s00300-007-0265-3

ORIGINAL PAPER

Is the Scotia Sea a centre of Antarctic marine diversiWcation? 
Some evidence of cryptic speciation in the circum-Antarctic 
bivalve Lissarca notorcadensis (Arcoidea: Philobryidae)

Katrin Linse · Therese Cope · Anne-Nina Lörz · 
Chester Sands 

Received: 13 December 2006 / Revised: 31 January 2007 / Accepted: 4 February 2007 / Published online: 28 February 2007
©  Springer-Verlag 2007

Abstract The bivalve Lissarca notorcadensis is one of
the most abundant species in Antarctic waters and has
colonised the entire Antarctic shelf and Scotia Sea
Islands. Its brooding reproduction, low dispersal capa-
bilities and epizoic lifestyle predict limited gene Xow
between geographically isolated populations. Relation-
ships between specimens from seven regions in the
Southern Ocean and outgroups were assessed with
nuclear 28S rDNA and mitochondrial cytochrome oxi-
dase subunit I (COI) genes. The 28S dataset indicate
that while Lissarca appears to be a monophyletic
genus, there is polyphyly between the Limopsidae and
Philobryidae. Thirteen CO1 haplotypes were found,
mostly unique to the sample regions, and two distinct
lineages were distinguished. Specimens from the Wed-
dell and Ross Sea form one lineage while individuals
from the banks and islands of the Scotia Sea form the
other. Within each lineage, further vicariance was
observed forming six regionally isolated groups. Our
results provide initial evidence for reproductively iso-
lated populations of L. notorcadensis. The islands of
the Scotia Sea appear to act as centres of speciation in
the Southern Ocean.

Keywords Lissarca notorcadensis · Bivalvia · 
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Introduction

Antarctica represents an unrivalled laboratory for
undertaking evolutionary studies of the origins and
maintenance of biodiversity (Clarke 2000). The Ant-
arctic continent and islands are separated from neigh-
bouring landmasses by sheer distance and in the
marine realm the Polar Front acts as a barrier to dis-
persal. Within Antarctica, marine and terrestrial habi-
tats can be isolated by geological (e.g. distance,
fragmented landscapes), physical (e.g. oceanic gyres,
ice sheets/shelves, temperature) or ecological (e.g.
niche variety, food availability) barriers. Habitat frag-
mentation can hinder dispersal among populations,
limit gene Xow and lead to allopatric speciation (e.g.
Avise 2004; Frankham et al. 2004; Wagner and Liebh-
err 1992). The Antarctic fauna provides an excellent
opportunity to study colonisation and gene Xow
between separated habitats, along environmental gra-
dients and over evolutionary time-scales. Previously,
the marine and terrestrial Antarctic invertebrate fauna
had been considered to be low in species richness but
having a high level of endemism (e.g. Boenigk et al.
2006; Clarke and Johnston 2003; Gutt et al. 2000;
Maslen and Convey 2006; Stary and Block 1998).
Recent studies using molecular genetics have revealed
that the species richness in Antarctica is higher than
previously suggested (Allcock et al. 1997; Freckman
and Virginia 1997; Held and Waegele 2005; Lörz et al.
2006; Pawlowski et al. 2002; Stevens et al. 2006). On
land, glacial events are important in structuring the
genetic diversity of terrestrial arthropods (Allegrucci
et al. 2006; Frati et al. 2001; Stevens and Hogg, 2003,
2006). In the sea, ice-sheet cycles, covering the conti-
nental shelf, and separation of water masses are of
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great consequence in the make-up of marine biodiver-
sity and the radiation of species (Held 2000; Held and
Wägele 2005; Page and Linse 2002; Raupach et al.
2004; Raupach and Wägele 2006). Few studies have
analysed the intraspeciWc genetic variability in Antarc-
tic marine invertebrates (Held and Leese 2006; Held
and Wägele 2005; Raupach and Wägele 2006) and
none so far have focussed on molluscan species.

Since the early days of exploration of the Southern
Ocean, molluscs were a major subject of scientiWc
investigations (Dell 1990; Hain 1990; Powell 1951).
Overall the bivalve and gastropod fauna of Antarctic
waters is probably described more completely than any
other group of benthic marine invertebrates (Clarke
and Johnston 2003). Current biogeographic results
using SOMBASE, the Southern Ocean Mollusc Data-
base (GriYths et al. 2003), showed that the Scotia-Arc
and Peninsula region appears to be a hot spot of spe-
cies richness (Linse et al. 2006). In order to address
fundamental evolutionary questions pertaining to the
origins and diversiWcation of Antarctic marine fauna
(such as why the Scotia Arc region is so species-rich,
where the origin of Antarctic species is, how the isola-
tion of water masses supports radiation and what are
the roles of islands and shallow shelves as possible
stepping stones of colonisation and radiation in Ant-
arctica?), we queried SOMBASE for a suitable taxon/
species-complex. The ideal target species or group had
to have a circum-Antarctic and sub-Antarctic distribu-
tion. This might give the possibility to link the evolu-
tionary history of the species with plate tectonics
(Barker and Burrell 1977; Lawver and Gahagan 2003)
and oceanographic current systems such as the north-
bound currents along the western Antarctic Peninsula
towards the Scotia Arc islands (Hofmann et al. 1998),
its counter current in the BransWeld Strait (Stein and
Heywood 1994; Whitworth et al. 1994), and water mass
circulation in the Weddell Sea (Fahrbach et al. 1992,
1994; Orsi et al. 1993).

Among the species found to be suitable for this
study the small philobryid bivalve Lissarca notorcaden-
sis Melvill and Standen 1907 stood out because of its
wide distributional range (Dell 1990; Hain 1990),
reproductive mode (Prezant et al. 1992), ecological
success (Brey and Hain 1992; Brey et al. 1993) and
regional morphological diVerences (Cope and Linse
2006). The species is attached by byssus threads to the
spines of cidaroid sea urchins reaching densities of 350
individuals/cidaroid (Brey and Clarke 1993; Brey et al.
1993; Hain 1990). Morphometric population studies on
L. notorcadensis indicated that large-shelled adults live
on the top end of the spines while the juveniles live on
the more protected bases of the spines and lead to the

hypothesis that parents and oVspring live on the same
cidaroid (Brey et al. 1993). Following this hypothesis
gene Xow within and between populations would be
limited and genetic diVerences should be detectable
with molecular techniques.

The aim of this study is to test three hypotheses
using L. notorcadensis as the model species: (1) The
current species richness of bivalves in the Antarctic
and sub-Antarctic regions is higher than suggested
because of existence of cryptic species, (2) The isolated
Scotia Arc Islands have acted as centres for speciation
in the Scotia Sea region, and (3) the Weddell Sea Gyre
isolates Weddell Sea populations from populations of
the western Antarctic Peninsula and Scotia Arc
Islands.

Materials and methods

Specimen collection

Individuals of L. notorcadensis were collected during
research expeditions of RV “Polarstern” to the Scotia
Sea (ANT XIX 3–5: ANDEEP I/II & LAMPOS), to
the eastern Weddell Sea (ANT XXI-2: BENDEX) and
RV “Tangaroa” to the Ross Sea (TAN0402/BIOROSS
2004) (Fig. 1). The sampling included Shag Rocks
(SR), Saunders and Southern Thule of the South Sand-
wich Islands (SSI), Herdman Bank (HB), Discovery
Bank (DB), South Orkney Islands (SO), Elephant
Island (EI), the eastern Weddell Sea (WS) and the
northeastern Ross Sea (RS). When the samples
reached the deck, invertebrates were sorted by hand
with focus on L. notorcadensis. Specimens were imme-
diately Wxed in pre-cooled 96% ethanol, kept at –20°C
for at least 48 h and then refrigerated for later molecu-
lar analysis. Additionally specimens of Lissarca mili-
aris (Philippi 1845) were collected in the intertidal of
Signy Island/South Orkney islands.

DNA extraction, PCR ampliWcation and DNA 
sequencing

Genomic DNA was isolated from the entire specimen
in small individuals. DNA was extracted with the
DNeasy Tissue Extraction Kit (Qiagen, Crawley, West
Sussex, United Kingdom) as directed by the manufac-
turer.

Partial 28S rDNA (domain 2) was ampliWed using
the primers LSU 5 and LSU 3 (Littlewood 1994). The
fragment contains the domans 1–3. PCR ampliWcation
was performed in a 50 �l reaction volume, containing
the following: 50–100 ng of template DNA, 200 �M of
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each dNTP, 0.5 �M of each primer, 10 £ Qiagen PCR
BuVer and 5 £ Q-solution. Thermal cycling began with
a single denaturation step at 94°C for 5 min. Then
40 cycles were performed consisting of denaturation at
94°C for 30 s, annealing at 54°C for 30 s, and extension
at 72°C for 60 s. A single extension step at 72°C for
7 min was used to complete extension of DNA frag-
ments.

A fragment of the coding COI region was ampliWed
using the primers HCO 1490 and LCO 2198 (Folmer
et al. 1994). Thermal cycle conditions were 95°C for
4 min and then 5 cycles of 94°C for 60 s, 45°C for 90 s,
and 72°C for 9 s followed by 35 cycles of 94°C for 60 s,
52°C for 60 s, and 72°C for 60 s and Wnished with 72°C
for 5 min.

PCR products were puriWed with QIAquick Spin
Columns (Qiagen). Approximately 200 ng of double
stranded PCR product was used in cycle sequencing
reactions following the protocol outlined in the DYE-
namic ET Dye Terminator Cycle Sequencing kit for
MegaBACE DNA (Amersham Biosciences, Little
Chalfont, Buckinghamshire, United Kingdom). Unin-
corporated dyes were removed from sequencing reac-
tion products by using DyeEX 96 Kit (Qiagen)
following the manufacturer’s instructions. Reaction
products were visualised on a MegaBACE 500 auto-
mated DNA sequencer (Amersham Pharmacia, Little
Chalfont, Buckinghamshire, United Kingdom).

The sequences were aligned and proofread in
CodonCode Aligner Version 1.5.2 (CodonCode Copo-
ration 2006). Additional 28S and COI sequences from
GenBank were added as outgroups to the aligned data-

set, selected from the sister-taxon Cosa (Philobryidae)
and the related families Limopsidae (Empleconia and
Limopsis) and Arcidae (Barbatia and Scapharca)
(Table 1).

Ambiguous alignment positions associated with
gaps in the 28S sequences were omitted from the data-
set.

Phylogenetic analysis

Phylogenetic reconstruction was conducted using max-
imum parsimony (MP) optimality criterion and maxi-
mum likelihood (ML) in PAUP*b10 (SwoVord 2002).
A heuristic search was conducted with maximum trees
held set to 1,000, 50 random additions, tree bisection
reconnection (TBR) branch swapping, with Wve trees
held at each step and with “MulTrees” turned oV. One
thousand bootstrap pseudoreplicates were conducted
to assess the reliability of the reconstructed nodes. We
used an iterative optimisation approach to Wnd an
appropriate substitution model for ML analyses: the
data were used to construct a neighbour joining tree in
PAUP*b10. From this tree, parameters were estimated
and used for likelihood analysis (heuristic search, one
random addition, TBR). Parameters were re-estimated
and the process repeated until the likelihood scores
converged. The tree topology was assessed by a likeli-
hood search with 500 bootstrap pseudo-replicates.
Bayesian phylogenetic reconstruction was conducted
using Mr Bayes v3.1.2 (Ronquist and Huelsenbeck
2003, 2005). A six parameter model was used with a
gamma distribution and proportion of invariant sites

Fig. 1 Distribution records 
and sample sites of L. notor-
cadensis. White circles sample 
sites, black circles distribution 
records, black line Polar Front 
DB Discovery Bank, EI Ele-
phant Island, HB Herdman 
Bank, SG South Georgia, SO 
South Orkney Islands, SR 
Shag Rocks, SSI South Sand-
wich Islands (Figure modiWed 
from Cope and Linse 2006)
123



1062 Polar Biol (2007) 30:1059–1068
Table 1 Individual codes, GenBank accession numbers and sample location for examined Lissarca specimens 

Spec no. GenBank 
accession no.

Haplotype/
H group

Locality

28S rRNA COI

Philobryidae
Lissarca 

notorcadensis
EI_59_1 EF162480 h5/HG3 PS61/059–1, 61°25,42�S/056°08,90�W-61°26,30�S/056°06,21�W, 298–326 m

EI_73_1I1 EF162535 PS61/073-1, 61°00,10�S/055°55,96�W-61°01,68�S/055°56,49�W, 277–298 m
EI_73_1I2 EF162536 PS61/073-1, 61°00,10�S/055°55,96�W-61°01,68�S/055°56,49�W, 277–298 m
EI_251_3 EF162537 PS61/251-1, 61°23,79�S/055°26,87�W-61°23,75�S/055°26,71�W, 292–290 m
EI_251_4 EF162479 h5/H3 PS61/251-1, 61°23,79�S/055°26,87�W-61°23,75�S/055°26,71�W, 292–290 m
SR_607_2 EF162484 h6/HG4 PS61/164-1, 53°23,80�S/042°42,03�W-53°23,82�S/042°42,46�W, 312–321 m
SR_607_3 EF162525 PS61/164-1, 53°23,80�S/042°42,03�W-53°23,82�S/042°42,46�W, 312–321 m
SR_607_4 EF162527 PS61/164-1, 53°23,80�S/042°42,03�W-53°23,82�S/042°42,46�W, 312–321 m
SR_607_6 EF162526 PS61/164-1, 53°23,80�S/042°42,03�W-53°23,82�S/042°42,46�W, 312–321 m
SR_729_4 EF162529 PS61/164-1, 53°23,80�S/042°42,03�W-53°23,82�S/042°42,46�W, 312–321 m
SR_729_5 EF162530 PS61/164-1, 53°23,80�S/042°42,03�W-53°23,82�S/042°42,46�W, 312–321 m
SR_606_1 EF162483 h7/HG4 PS61/169-1, 53°22,94�S/042°41,37�W-53°22,89�S/042°41,50�W, 284–292 m
SR_606_2 EF162524 PS61/169-1, 53°22,94�S/042°41,37�W-53°22,89�S/042°41,50�W, 284–292 m
SR_606_3 EF162528 PS61/169-1, 53°22,94�S/042°41,37�W-53°22,89�S/042°41,50�W, 284–292 m
SSI_758_2 EF162514 EF162487 h3/HG1 PS61/194-1, 57°40,55’S/026°25,14’W-57°40,66’S/026°25,90’W, 308–289 m
SSI_761_2 EF162513 PS61/200-1, 57°40,78�S/026°24,91�W-57°40,84�S/026°24,98�W, 270–263 m
SSI_214_1 EF162511 EF162485 h1/HG1 PS61/214-1, 59°42,55�S/027°57,02�W-59°42,62�S/027°57,68�W, 333–341 m
SSI_214_2 EF162510 PS61/214-1, 59°42,55�S/027°57,02�W-59°42,62�S/027°57,68�W, 333–341 m
SSI_214_4 EF162512 EF162486 h3/HG1 PS61/214-1, 59°42,55�S/027°57,02�W-59°42,62�S/027°57,68�W, 333–341 m
HB_674_3 EF162481 h2/HG1 PS61/217-1, 59°54,98�S/032°28,33�W-59°54,79�S/032°28,93�W, 521–518 m
HB_674_4 EF162523 PS61/217-1, 59°54,98�S/032°28,33�W-59°54,79�S/032°28,93�W, 521–518 m
DB_801_1 EF162532 EF162477 h3/HG1 PS61/223-1, 60°08,16�S/034°55,59�W-60°08,39�S/034°54,96’W, 375–379 m
DB_801_2 EF162531 PS61/223-1, 60°08,16�S/034°55,59�W-60°08,39�S/034°54,96�W, 375–379 m
DB_801_4 EF162478 h3/HG1 PS61/223-1, 60°08,16�S/034°55,59�W-60°08,39�S/034°54,96�W, 375–379 m
DB_801_5 EF162533 PS61/223-1, 60°08,16�S/034°55,59�W-60°08,39�S/034°54,96�W, 375–379 m
DB_801_6 EF162534 PS61/223-1, 60°08,16�S/034°55,59�W-60°08,39�S/034°54,96�W, 375–379 m
SO_820_2 EF162508 PS61/231-1, 60°59,19�S/043°27,42�W-60°58,89�S/043°26,71�W, 402–399 m
SO_820_3 EF162509 PS61/231-1, 60°59,19�S/043°27,42�W-60°58,89�S/043°26,71�W, 402–399 m
SO_677_1 EF162506 EF162482 h4/HG2 PS61/241-1, 61°11,15�S/045°43,84�W-61°10,95�S/045°41,42�W, 323–322 m
SO_677_2 EF162507 PS61/241-1, 61°11,15�S/045°43,84�W-61°10,95�S/045°41,42�W, 323–322 m
SO_677_3 EF162505 PS61/241-1, 61°11,15�S/045°43,84�W-61°10,95�S/045°41,42�W, 323–322 m
WS_198_5 EF162515 PS65/090-1, 70°56,14�S/010°31,70�W-70°55,92�S/010°32,37�W, 274–288 m
WS_198_6 EF162516 PS65/090-1, 70°56,14�S/010°31,70�W-70°55,92�S/010°32,37�W, 274–288 m
WS_260_1 EF162518 PS65/132-1, 70°55,86�S/010°30,15�W-70°55,78�S/010°29,96�W, 243–238 m
WS_260_4 EF162517 PS65/132-1, 70°55,86�S/010°30,15�W-70°55,78�S/010°29,96�W, 243–238 m
WS_260_9 EF162519 PS65/132-1, 70°55,86�S/010°30,15�W-70°55,78�S/010°29,96�W, 243–238 m
WS_522_11 EF162521 PS65/253-1, 71°04,89�S/011°32,21�W-71°04,30�S/011°33,92�W, 295–309 m
WS_570_5 EF162489 h8/HG5 PS65/274-1, 70°52,16�S/010°43,69�W-70°52,15�S/010°42,16�W, 291–288 m
WS_570_6 EF162490 h9/HG5 PS65/274-1, 70°52,16�S/010°43,69�W-70°52,15�S/010°42,16�W, 291—288 m
WS_570_10 EF162488 h8/HG5 PS65/274-1, 70°52,16�S/010°43,69�W-70°52,15�S/010°42,16�W, 291–288 m
WS_682_2 EF162493 h8/HG5 PS65/292-1, 72°51,43�S/019°38,62�W-72°51,84�S/019°39,41�W, 598–577 m
WS_682_3 EF162522 EF162494 h8/HG5 PS65/292-1, 72°51,43�S/019°38,62�W-72°51,84�S/019°39,41�W, 598–577 m
WS_682_5 EF162495 h9/HG5 PS65/292-1, 72°51,43�S/019°38,62�W-72°51,84�S/019°39,41�W, 598–577 m
WS_682_9 EF162496 h9/HG5 PS65/292-1, 72°51,43�S/019°38,62�W-72°51,84�S/019°39,41�W, 598–577 m
WS_682_10 EF162491 h9/HG5 PS65/292-1, 72°51,43’S/019°38,62’W-72°51,84’S/019°39,41’W, 598–577 m
WS_682_11 EF162492 h9/HG5 PS65/292-1, 72°51,43�S/019°38,62�W-72°51,84�S/019°39,41�W, 598–577 m
WS_787_5 EF162498 h9/HG5 PS65/308-1, 72°50,18�S/019°35,94�W-72°50,09�S/019°35,82�W, 622–616 m
WS_787_8 EF162499 h10/HG5 PS65/308-1, 72°50,18�S/019°35,94�W-72°50,09�S/019°35,82�W, 622–616 m
WS_787_11 EF162497 h9/HG5 PS65/308-1, 72°50,18�S/019°35,94�W-72°50,09�S/019°35,82�W, 622–616 m
WS_787_12 EF162520 PS65/308-1, 72°50,18�S/019°35,94�W-72°50,09�S/019°35,82�W, 622–616 m
RS_k8 EF162500 h11/HG6 TAN0204/63, 72°19,30�S/170°28,72�E-72°19,30�S/170°28,72�E, 303-293 m
RS_k7_2 EF162503 h13/HG6 TAN0204/63, 72°19,30�S/170°28,72�E-72°19,30�S/170°28,72�E, 303–293 m
RS_118_1 EF162501 h11/HG6 TAN0204/118, 71°17,95�S/170°32,19�E-71°17,95�S/170°32,19�E, 312-323 m
RS_118_2 EF162538 TAN0204/118, 71°17,95�S/170°32,19�E-71°17,95�S/170°32,19�E, 312–323 m
RS_118_5 EF162541 TAN0204/118, 71°17,95�S/170°32,19�E-71°17,95�S/170°32,19�E, 312-323 m
RS_118_7 EF162539 TAN0204/118, 71°17,95�S/170°32,19�E-71°17,95�S/170°32,19�E, 312–323 m
RS_140_2 EF162502 h12/HG6 TAN0204/140, 70°00,81�S/170°46,47�E-70°00,81�S/170°46,47�E, 231-240 m
RS_140_8 EF162540 TAN0204/140, 70°00,81�S/170°46,47�E-70°00,81�S/170°46,47�E, 231–240 m

Lissarca miliaris SO_834_4 EF162504 PS61/Signy, 60°41S/045°34W-60°41S/045°34W, 1 m
Cosa waikikia AB101614 AB084107
Limopsidae
Limopsis enderbyensis AY321301
Limopsis marionensis AY319791
Limopsis lilliei AY319806
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(GTR + I + �) with Xat priors. 50,000,000 generations
with four chains were run, sampling every 50th genera-
tion.

Pair-wise distances were calculated in MEGA v 3
(Kumar et al. 2004). The evolutionary relationships
among COI haplotypes were reconstructed using sta-
tistical parsimony in TCS v1.21 (Clement et al. 2000).
In order to explore protein evolution, sequences were
translated into amino acids and phylogenies recon-
structed in MEGA.

Results

Partial sequences of the 28S rDNA and COI genes
were generated to examine the phylogenetic relation-
ships and population structure of L. notorcadensis. For
the Wrst 28S rDNA gene segment we determined
sequences of 36 L. notorcadensis and one L. miliaris
and added Genbank sequences of one phylobryid, four
limopsids and one arcid as outgroup taxa. The aligned

28S rDNA dataset comprised 806 characters of which
106 were variable and 55 were parsimony informative.
Within L. notorcadensis only 16 characters varied.
Average base frequencies were pi(A)21.5%,
pi(C) = 24.3%, pi(G) = 33.2% and pi(T) = 20.9%.

Within Lissarca there was not enough resolution to
identify any structure using ML, MP or Bayesian anal-
yses. However, between Lissarca and the included
phylobryids and limopsids, the three analysis tech-
niques yielded congruent results.

The ML Trees were rooted with the arcid Barbatia
to reveal the phylogenetic position of Lissarca within
the Limopsidae and Phylobryidae (Fig. 2). The topol-
ogy of the tree shows that neither of the sister families
is monophyletic but supports Lissarca as a monophy-
letic taxon.

For the COI segment we obtained sequences of 27
L. notorcadensis and added Genbank sequences of one
phylobryid, one limopsid and two arcids as outgroup
taxa. The length of the aligned COI dataset consisted
of 337 nucleotides of which 169 were variable and 93

Table 1 continued 

In bold are GenBank accession number of the outgroup taxa

h haplotype, HG haplotype group, spec no. specimen number

Spec no. GenBank 
accession no.

Haplotype/
H group

Locality

28S rRNA COI

Empleconia cumingii AB101610 AB076930
Arcidae
Barbatia barbata AF120845 
Barbatia virescens AB105356
Scapharca globosa AB254194

Fig. 2 Molecular phylogeny 
of single gene analysis of the 
28S rDNA gene for the re-
duced L. notorcadensis se-
quence set. Tree was 
produced by ML analysis. 
Support values in italics are 
ML bootstrap values of 1,000 
replicates. Bayesian support 
values (posterior probabili-
ties) are underlined

51
64

100

56

100 100

54

70

80
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were parsimony informative. Within L. notorcadensis,
the COI fragment revealed 27 variable sites and thir-
teen haplotypes forming six haplotype groups
(Table 1). Of the 27 detected nucleotide substitutions,
21 were third codon, 5 second codon and 1 Wrst codon.
The unusual ratio, due to a comparatively high number
of second codon changes, prompted us to investigate
the geographic associations of second position varia-
tion. Of the Wve second position changes, three of them
separate WS and RS from the SA. Within the Weddell
Sea/Ross Sea group there were ten variable sites, all
third positions. Within the Scotia arc group there were
nine variable sites; one Wrst position, two second posi-
tion and six third position changes. The second posi-
tion changes form two groups; ESA and SO form one
group while SR and EI form a second.

Tree topologies from MP, ML and Bayesian analy-
ses were congruent and revealed two major, highly
supported lineages in L. notorcadensis; lineage A com-
prising individuals from the banks and islands of the
Scotia Sea, and lineage B individuals from the Weddell
and Ross Seas (Fig. 3). Within Lineage A, four well
supported haplotype groups (HG) were identiWed:
HG1 includes individuals from around the South Sand-
wich Islands, Discovery Bank and Herdman Bank.
HG2 contains a single haplotype from South Orkneys,
HG3 contains a single haplotype from Elephant Island,
and HG4 contains two haplotypes from Shag Rocks
near South Georgia. Lineage B consists of two strongly
supported haplotype groups, Weddell Sea and Ross
Sea with three haplotypes each. Pair-wise genetic
diVerences highlight within-lineage variabilities

(Fig. 4). The East Scotia Arc (ESA) group is clearly
diVerent from the Elephant Island and Shag Rock
groups. The statistical parsimony networks in Fig. 5
graphically display the genetic and geographic associa-
tions of haplotypes (Fig. 5).

Discussion

The work presented here has detected population struc-
ture within L. notorcadensis and explored unresolved
issues in the systematics of the Philobryidae and Lim-
opsidae. Based on shell and soft part morphology,
Tevez (1977) suggested the ancestry of the Philobryidae
to be traced to the Limopsidae. On a molecular level,
the relationships between these two families have not
been adequately studied. Matsumoto (2003), in his phy-
logeny of the Pteriomorpha using the CO1 gene, cited
Cosa waikikia (Dall, Bartsch and Rehder 1939) and the
limopsid Empleconia cumingii (Adams 1863) as exam-
ined species in his dataset but only the latter was used in
his analysis. The Matsumoto 28S and CO1 sequences
for Cosa and Empleconia were included in our analyses.
As the position of the philobryid Cosa within the Lim-
opsidae questions the monophyly of these families, only
further analyses including more species of the philobr-
yid genera, like Adacnarca, Philobrya and Cratis, will
resolve this question.

Our primary goal was to establish a model to
address the three a priori hypotheses relating to (1) the
underestimation of biodiversity in Antarctic and sub-
Antarctic Mollusca, (2) the Scotia Arc is a source of

Fig. 3 Molecular phylogeny 
of single gene analysis of the 
COI mtDNA gene for L. not-
orcadensis. Tree was pro-
duced by ML analysis. ML 
and MP support values are 
bootstrap values of 1,000 rep-
licates, MP values are in bold, 
ML values are in italics. 
Bayesian support values (pos-
terior probabilities) are 
underlined. A lineage A, B 
lineage B, HG haplotype 
group
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biodiversity, and (3). the Weddell Sea gyre isolates
Weddell Sea populations from those of the Scotia Sea.

The 28S data set was not informative enough to con-
Wdently distinguish geographic diVerences, the CO1

results clearly identiWed two deeply diverged lineages
separating continental Antarctic from Scotia Sea
samples, and six geographically explicit haplotype
groups indicating discrete populations, one each in the

Fig. 4 Pair-wise genetic 
diVerences within and be-
tween the lineages A and B of 
COI haploype groups of L. 
notorcadensis. n number of 
specimens

Scotia Arc n = 11
c/in Dist = 0.014

Weddel Sea n = 12

c/in Dist = 0.005

Ross Sea n = 4
c/in dist = 0.003

Dist = 0.054

Dist = 0.020

Dist = 0.050

Shag Rocks n = 2

East Scotia Arc n = 6

South Orkneys n = 1
Elephant Island n = 2

0.029

0.024

0.010

0.036

0.040

0.016

Fig. 5 Statistical parsimony 
networks displaying the ge-
netic and geographic associa-
tions of haplotypes. Dashes 18 
steps separating networks, EI 
Elephant Island, ESA East 
Scotia Arc, SO South Orkney 
Islands, SR Shag Rocks, WS 
Weddell Sea, RS Ross Sea

ESA

SO

EI

SR

WS

RS
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Weddell and Ross Seas, and four in the Scotia Sea.
These lineages are also supported by phenotypic data.
Cope and Linse (2006) found signiWcant diVerence in
the shell length/height ratios between Scotia Sea speci-
mens and Weddell/Ross Sea specimens. Whether or
not the populations from the Weddell Sea and Ross
Sea are typical of a linked circum-Antarctic distribu-
tion is not tested here. Even so, the Antarctic Penin-
sula appears to be associated with a barrier for the
Antarctic lineage sampled, so the samples we exam-
ined from the Weddell Sea and the Ross Sea are likely
to be at the extremes of the range of this population
and thus should reXect the greatest genetic distance.
However, the variation within the Scotia Sea lineage
exceeds that within the continental Antarctic Lineage
(Fig. 4). A study on the isopod Glyptonotus antarcticus
Eights, 1852 found a strikingly similar pattern regard-
ing the genetic versus the geographic distances
between Ross Sea, Weddell Sea and Antarctic Penin-
sula populations (Held and Wägele 2005). Using mito-
chondrial 16S sequences from specimens collected in
the eastern Weddell Sea, at Elephant Island, Adelaide
Island/Antarctic Peninsula and in the Ross Sea, Held
and Wägele (2005) found 11 unique haplotypes form-
ing four haplotype groups. One group contained the
haplotypes from Elephant Island and Adelaide Island
and another the Ross Sea individuals while two haplo-
type groups occurred in the Weddell Sea. The pair-
wise genetic diVerences between the Ross Sea group
and the Weddell Sea groups were smaller than those
between the former groups and the Elephant/Adelaide
Island group. As suggested by Held and Wägele (2005)
in the case of the isopod, we Wnd it likely that the conti-
nental Antarctic and Scotia Sea populations may in
fact denote cryptic species and supports the premise of
the Wrst hypothesis.

Within the Scotia Sea lineage genetic variation is
congruent with the general morphological diVerences
found by Cope and Linse (2006) between Shag Rock
and other Scotia Sea specimens. The depth of the
divergence between these groups lends support for the
second hypothesis. The diversity present among diVer-
ent island groups of the Scotia Arc may be strongly
aVected by deep water separating habitats and prevent-
ing migration. This was found to be the case with the
octopod Pareledone turqueti where deep water
between South Georgia and Shag Rocks presented a
barrier to geneXow resulting in profound population
structure (Allcock et al. 2007). As L. notorcadensis is a
brooding species and restricted to shelf upper slope
waters (Cope and Linse 2006), the deep water is likely
to prevent or substantially restrict migration between
shallow water habitats. It is interesting to note the pat-

tern of divergence, with Elephant Island specimens
more similar to Shag Rock than South Orkney and
East Scotia Arc specimens despite greater geographic
distance of deep waters separating Elephant Island and
Shag Rock relative to that between South Orkney. To
further investigate the patterns, processes and depth of
divergence between these putative populations, a more
intense geographical sampling regime is required
together with a multilocus genetic analysis approach.

Our third hypothesis stated that the Weddell Sea
gyre partially acted as a barrier to geneXow between
Eastern Weddell Sea populations and those of the Ant-
arctic Peninsula and the Scotia arc. Using mitochon-
drial 16S sequence data Raupach and Wägele (2006)
found strong diVerentiation between Eastern and
Western Weddell Sea samples in the isopod Acanthas-
pidia drygalski VanhöVen, 1914. This pattern is similar
to that of the isopod Glyptonotus antarcticus men-
tioned above (Held and Wägele 2005) which does
indeed indicate restricted geneXow between the east
and west Weddell Sea. Interestingly, divergence
between groups within the Weddell Sea was greater
than that between the Weddell Sea and the Ross Sea.
Our results clearly indicate that Weddell Sea samples
are genetically distinct from those of the Scotia arc.
However, as there is a similar diVerence between the
Ross Sea and Scotia arc we Wnd no speciWc evidence
supporting the premise that the Weddell Sea gyre is the
sole mechanism preventing geneXow.

An interesting question relates to the genetic diVer-
ences between haplotypes from the geographically
well-separated Weddell and Ross Seas that are smaller
than those between the neighbouring and connected
Weddell and Scotia Seas in our study and in that of
Held and Wägele (2005). Not only molecular data
show close relations between the Weddell and the Ross
Seas. The most recent biogeographic analysis of bival-
ves and shelled gastropods at various systematic levels
showed that the relationships between these two seas
are closer than either ‘s relationship to the Scotia Sea
islands (Linse et al. 2006). The processes behind these
patterns are yet unknown. Possible explanations lie
either in the past of the Antarctic continent or in its
more recent oceanography. A linking seaway between
the Weddell and Ross Seas may have been present dur-
ing the Eocene to mid-Miocene (50–15 Ma BP), con-
necting the two and separating them from the West
Antarctic, microcontinental fragments that later on
formed the Antarctic Peninsula and Scotia arc islands
(Lawver and Gahagan 2003). Scherer et al. (1998) pro-
posed a Pleistocene collapse of the West Antarctic Ice
Sheet providing seaways between the Weddell and
Ross Seas which may have facilitated geneXow
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between these populations. The present large-scale
features in Antarctic oceanography are the clockwise
Antarctic circumpolar current (ACC) system, separat-
ing the warmer water masses north of the Polar Front
from the colder Southern Ocean, the continental, anti-
clockwise counter current and the Weddell Gyre
(Fahrbach et al. 1994; Orsi et al. 1993, 1995). The conti-
nental counter current used as a migration tool could
explain the lower genetic variability between the Wed-
dell and Ross Seas under the assumption that related
haplotypes occur along the East Antarctic coastline.
The strong Xowing ACC, initiated in the Early Oligo-
cene (30 Ma BP) (Lawver and Gahagan 2003), is likely
to be important for the closer haplotype relationships
within the Scotia Sea.

In this study we have identiWed strong genetic struc-
ture in the brooding bivalve L. notorcadensis between
Antarctic and sub-Antarctic groups, and within the
sub-Antarctic specimens sampled throughout the Sco-
tia arc. We have found evidence for cryptic species and
it may be that more detailed phylogeographic studies
with intensive sampling and multiple single copy loci
could uncover the true nature of the genetic structure
and identify the processes underlying the patterns.
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