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Abstract The activity pattern of the moss Hennediella
heimii (Hedw.) Zand. was monitored over a period of
18 days during the austral summer season 2000/2001 at
the Canada Flush in Taylor Valley, continental Ant-
arctica. Provided with melt water from the massive
Canada Glacier, the moss showed a constant potential
photosynthetic activity during the entire measurement
period. Permanently hydrated, the moss faced high light
levels at surprisingly low moss temperatures, which is
commonly supposed a deleterious situation for plants.
The electron transport rate response of the moss to
photosynthetic photon flux densities was linear at all
temperatures and did not show a sign of saturation or
photoinhibition. H. heimii seems to be well adapted to
its environment and tolerates the ambient conditions
without apparent harm. This might be due to the fact
that mosses can acclimatise to high light conditions by
building up highly effective non-photochemical
quenching systems.

Introduction

The Dry Valleys, continental Antarctica (77°36'S;
163°02’E), are often described as being one of the driest
and coldest places on earth (Fritsen et al. 2000). Mean
annual temperature is —20°C (Fritsen et al. 2000) but
daily values can range from —46°C in the dark winter to
+7°C in January. Mean temperature of January, the
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warmest month, is —2.5°C. Precipitation is very low and
rarely amounts to more than 10 cm of snow per year and
this is combined with low air humidities (rH <50%;
Fritsen et al. 2000). As a result, lichens and mosses are
excluded from the valley except where melt water occurs
in the summer. The high insolation in the summer
months leads to high flows of melt water in a large
number of small streams in the valleys. The water source
is glacial tongues that are present on both valley sides
but reach the valley floor from the north side. Growth of
mosses can still only occur where there is a regular
supply of melt water, where the flow is not strong and
where there is protection from the high winds that can
blow along the valley from the polar plateau at any time
of the year.

One of the largest areas of mosses in southern Vic-
toria Land, the Canada Glacier flush, occurs adjacent to
the eastern side of the Canada Glacier, Taylor Valley
(Schwarz et al. 1992). This glacier not only provides melt
water during the summer growth period, up to 85 15! at
its peak (1995-1996), but its high, 20-30 m, cliffs act as a
most effective shelter from the winds. Two mosses
dominate the flush: Bryum subrotundifolium Jaeg., Ber.
S. Gall. (also described as B. argenteum Hedw.; Seppelt
and Green 1998) dominates the central wetter areas, and
Hennediella heimii (Hedw.) Zand. [previously known as
Pottia heimii (Hedw.) Hampe (Zander 1993)], which
forms the outer flanks of the vegetated zone (Schwarz
et al. 1992). H. heimii is distinguished as being a xeric
Antarctic moss species (Kappen and Schroeter 2002)
that grows in habitats with changing water availability
and is, therefore, exposed to alternating cycles of des-
iccation and rehydration. Mosses are typically poiki-
lohydric organisms and are able to desiccate to
extremely low water contents without any severe damage
(Kappen and Valladares 1999; Proctor and Tuba 2002).
In the desiccated state, most poikilohydric cryptogams
are resistant to extremely low temperatures (Kappen
1988; Kappen and Lange 1970, 1972; Smith 2000) and
high light intensities (Demmig-Adams et al. 1990;
Kappen and Valladares 1999; Kappen et al. 1998;
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Schlensog et al. 1997; Smirnoff 1993). Desiccation is
proposed as a strategy to avoid the harsh environmental
conditions in continental Antarctica (Schlensog and
Schroeter 2000; Schlensog et al. 2003a). In the case of
H. heimii during the Antarctic summers, it is wet during
the day when it can be exposed to high light intensities at
low temperatures. This is a combination of environ-
mental factors known to be damaging to the photo-
synthetic systems of higher plant leaves (Baker 1994;
Oquist 1983).

Although the photosynthetic performance of other
mosses has been studied in continental Antarctica, e.g.
B. subrotundifolium (Green et al. 1998, 1999, 2000a,
2000b), B. pseudotriquetum community (Ino 1990),
Grimmia antarctici (Lovelock et al. 1995), the only works
on H. heimii are the pioneering studies of Rastorfer
(1970) carried out in the laboratory, the work of Ino
(1983), who investigated the production rate of H. heimii
as a part of the moss community on East Ongul Island
(East Antarctica), and the microclimatic studies by
Longton (1974) on Ross Island. The species is, appar-
ently, not common as extensive patches elsewhere in the
continent and maritime zones. This study was carried out
at the Canada Glacier flush in order to investigate the
microclimate and its influence on the photosynthetic
potential of H. heimii. We wanted to learn if the moss did
avoid the combination of high light intensities and low
temperatures and, if not, was it deleteriously affected? In
order to monitor the activity pattern, we used the non-
destructive  chlorophyll-a-fluorescence  measurement
technique.

(AF/Fm’=®PSII, Genty et al. 1989) of the two samples was
measured every 20 min over a period of 18 days (16.12.2000—
3.1.2001). Permanent power was supplied by two hand-carry solar
panels (Siemens, Germany). The fibre optics were fixed to the
ground using fibre-optic holding devices described by Schlensog
and Schroeter (2001). These devices guarantee a fixed position of
the fluorescence probe in relation to the sample surface and were
installed so that shading of the sample by the device was negligibly
low. The measurement of a depression in maximal solar energy
conversion efficiency in PSII (Fv/Fm) is a successfully used stress
indicator of photosynthetic organisms subjected to excessive PPFD
(Gauslaa and Solhaug 1999; Lovelock et al. 1995). The measure-
ment procedure demands a pre-darkening of the samples until all
energy has passed the PSII. An artificial darkening would result in
a sudden drop of the moss-turf temperature and a temperature-
dependent decrease of Fv/Fm (Lovelock et al. 1995). We therefore
abandoned the attempt to measure Fv/Fm. However, additional
Fv/Fm measurements under controlled conditions could provide
valuable information on the phototolerance of this species.

The moss-turf temperature, as well as the photosynthetic pho-
ton flux density (PPFD, pmol photon m™>s™") at the surface of the
plant, were measured using the PPFD and temperature sensors
provided with the Mini-PAMs (Walz, Germany). The PPFD sen-
sors were calibrated against a cosine-corrected GaAsP photodiode
(Hamamatsu, J, see below). In addition, a Squirrel data logger
(SQ1021, Grant Instruments, UK) was installed at the site to re-
cord microclimate of the mosses every 5 min. PPFD was measured
with GaAsP-photodiodes (Hamamatsu, J) equipped with filter and
cosine correction according to Pontaillier (1990) that had been
calibrated against a quantum sensor (190 SB, Licor, USA) using an
Optical Radiation Calibrator (1800-02, Licor, USA). The sensors
were mounted to a rock with the same exposure as the moss, and in
order to register the ambient light conditions in a horizontal non-
shaded position. Air temperature was measured at 1 m above the
ground with shielded thermocouples, and turf temperature was
measured in the top layer (5 mm) of the moss-turf.

The relative electron transport rate through PSII (ETR in pmol
¢! m™2 s7!) was obtained by multiplying the measured PPFD with
the simultaneously calculated AF/Fm” (Bilger et al. 1995).

Materials and methods

The experimental site was located inside SSSI (Site of Special Sci-
entific Interest) no. 12 established in 1985 (77°37’S; 163°03’E at
84 m a.s.l; approximate area 1.47 km?), Taylor Valley, Southern
Victoria Land, Antarctica. The site contains the entire catchments
of melt water draining from the eastern side of the lower Canada
Glacier on the north shore of Lake Fryxell. In summer, a network
of streams runs through the area and coalesce to form the Canada
flush. The vegetated area (14,450 m?, for a detailed area descrip-
tion, see Schwarz et al. 1992) forms one of the largest areas of
plants in the Dry Valleys and southern Victoria Land. The vege-
tation itself is described as a ““short moss turf”” formation (Longton
1974). The bipolar moss H. heimii (Hedw.) Zand. [= Pottia heimii
(Hedw.) Hampe] forms large, mainly dark-pigmented, cushions
adjacent to B. subrotundifolium Jaeg., Ber. S. Gall. with small areas
of B. pseudotriquetrum (Hedw.) Gaertn., Meyer et Scherb. Two
samples of H. heimii were chosen growing on soil and gravel near a
melt-water stream. Both samples grew next to rather large rocks
(about half a metre square) in such a position that the moss turfs
were naturally shaded for a period during the day. The samples had
a healthy appearance and did not belong to the encrusted growth
form, which is covered by an algal/cyanobacterial assemblage
(Schwarz et al. 1992). The vegetation is wetted by the streams ra-
ther than by snowfall, which is only a few centimetres a year. At
times with high flow rates, the two samples were submerged in
slow-flowing side arms of the main melt stream.

Two portable pulse amplitude-modulated fluorometers (Mini-
PAM, Walz, Germany, for further information see Schreiber et al.
1994) were used as in-situ activity-monitoring devices (see Schro-
eter et al. 1999). The apparent quantum use efficiency of PSII

Results
Climatic conditions

Ambient

A wide range of climatic conditions occurred during the
measurements, from sunny days to overcast days with
light snow fall (Fig. 1A). Incident PPFD was never be-
low 59 pmol m™ s~! whilst PPFD between 500 and
1,000 pmol m™ s™! was most frequent at 30% of read-
ings and only 5% of readings were above 1,500 pmol
m > s~' (Fig. 1B). Ambient air temperatures tended to
track incident PPFD (Fig. 1B) and were < 0°C for 71%
of the measurement period. Minima, around -7.5°C,
occurred at times with overcast skies and snowfall dur-
ing the nights of 24, 30 and 31 December and, on 24
December 2000, PPFD levels did not exceed 969 pumol
m~%s~" and air temperature reached only —3.4°C.
Moss

Moss temperatures also tracked insolation (Fig. 2) and
the highest moss temperature, 10.5°C, occurred on 1
January 2001, but temperatures higher than 10°C

were rare and PPFD above 1,500 pmol m™2s™! was
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uncommon (1.4% of measurements). Moss tempera-
tures between —2°C and <2°C were most common
(67% of measurements) and the moss temperatures were
above 0°C for 60% of the time (Fig. 3). The mosses were
always much warmer than the air at night and moss
temperatures never fell below —2°C. This might reflect
the buffering action of the water in and around the moss,
and the steady turf temperature at 0°C on some nights
showed that freezing occurred.

The highest measured PPFD was 1,991 umol m2s!,
which is actually comparatively low for continental
Antarctic conditions probably because of the low albedo
of the valley-floor soils. One of the two moss turfs grew
very close to a rock, explaining why PPFD at the moss
surface was low during the first half of every sunny day
(data not shown) but would then rise rapidly as the
shadow cleared the moss. One example is 22 December
when, on a sunny day from 12.00 p.m. to 12.40 p.m.,
PPFD rose from 182 pmol m™2 s™! up to 941 pmol m™>
s! within 20 min.

Physiological activity

Both samples of H. heimii showed continuous photo-
synthetic activity throughout the entire measuring peri-

od, as indicated by an effective quantum yield of
photosystem II (AF/Fm’) around 0.4 and ETR
(AF/Fm’*PPFD) that tracked incident PPFD (Fig. 2).
Substantial flows of water from the glacier kept the
mosses continuously wet. There was a steady trend of
declining AF/Fm’ over the entire measuring period, from
around 0.4 to 0.3 at the end, which resulted in lower
ETR at identical PPFD. A maximal AF/Fm’ value of
0.48 at 125 pmol m~s™' PPFD was much lower than the
expected values of around 0.7 for unstressed plants at
comparable PPFD, and it is probable that low temper-
atures are actually depressing the efficiency of PSII at all
times. AF/Fm’ reached its lowest value during the
overcast and colder days of 23 and 24 December.

There was a very clear and linear relationship between
ETR and PPFD (+*=0.96) with no indication of satu-
ration at the highest PPFD (Fig. 4). However, if ETR
was plotted against moss-turf temperature, the relation-
ship was very poor with a clear boundary at freezing
point (Fig. 4). If the data were separated into tempera-
ture classes for the most frequent temperatures (Fig. 5),
ETR showed a linear relationship with nearly identical
slope for all temperature classes (linear regression with
a=0.37-0.42). There were no obvious photoinhibitory
effects in the lowest temperature class, —2°C to 0°C, not
even at PPFD above 1,000 pmol m™> s™".
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Fig. 2 Daily course of the microclimatic conditions (PPFD in pmol
m %', and moss-turf temperatures in °C) and the Chl-a-
fluorescence parameters AF/Fm’” and ETR of the moss Hennediella
heimii (Hedw.) Zand. between 16 December and 3 January,
measured at the research site near Canada Glacier [Taylor Valley,
Southern Victoria Land, Antarctica (77°37’S; 163°03’E at 85 m
a.s.l)]

Discussion

The chlorophyll-a-fluorescence data confirmed that
H. heimii was potentially photosynthetically active over
the entire 18-day measurement period. This agrees with
the results of Schlensog and Schroeter (2000) for
B. pseudotriguetrum at Leonie Island in the maritime
Antarctic, which also remained hydrated whilst the

neighbouring lichens went through desiccation/rehy-
dration cycles. Apparently, these plants are almost
continuously hydrated during the summer months.

Continental Antarctic melt streams may flow up to
8 weeks during the brief austral summer, with pro-
nounced diel variation (Howard-Williams and Vincent
1986). The discharge pattern of the Canada Glacier flush
corresponds to the average ambient temperature and
total incident radiation. During the austral summers
1993-1994 and 1994-1995, maximal flows were during
the period between 15 December and 25 January
(Moorhead 1996). When the face air temperature of the
Canada Glacier drops below 0°C, the stream flow de-
clines or even shuts down (Lewis et al. 1996). Such shut
downs took place several times during our measuring
period. The smaller side streams vanished or froze solid
at times with low insolation and, because of overcast
weather, even the main streams stopped flowing between
23 and 24 December, and again for 24 h on 31 Decem-
ber. Nevertheless, this did not result in inactivation of
the moss thalli through desiccation because of water
stored in the ground or the turf. Noakes and Longton
(1988) found that water uptake from the wet ground
kept mosses at nearly full turgor or even oversaturated
at 10°C and 40% rH. If H. heimii behaves as a typical
xeric species, as suggested by Kappen and Schroeter
(2002), this should be reassessed for the thalli at the site
presented here, especially if the summer ‘“‘growing”
season is considered.

As anticipated, the hydrated mosses faced very high
levels of incident PPFD; 1,000 pmol m—~ s was
reached at moss-turf temperatures between —2.0 and
0.0°C, and up to 2,000 pmol m™2 s™! at temperatures
above 6°C. The ETR response to PPFD was linear at all
temperatures and showed no sign of saturation. There-
fore the moss never operated at light saturation, and this
might be an indication that photoinhibition is not to be
expected. The plants seemed well able to tolerate the
ambient conditions without apparent harm. However,
the linear relationships indicate a near-constant AF/Fm’
of around 0.4 (the slope of the fitted lines in Figs. 4 and
5) and this is puzzling on two grounds. First, the value
for AF/Fm’, 0.4, was rather low in comparison to vas-
cular-plant leaves, being normally around 0.7 at similar

Fig. 3 Relative frequency 50 50
distribution of the moss-turf
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light intensities (Bilger et al. 1995; Bjoérkman and
Demmig 1987; Schreiber et al. 1994), and 0.6 for other
Antarctic mosses (Schlensog et al. 2003a, 2003b); sec-
ond, the lack of variation of AF/Fm’. Normally, there is
an inverse relationship between AF/Fm” and PPFD. One
possible explanation is that the photosystems of the
mosses were chronically depressed by the cold temper-
atures and this is suggested by the steady decline in
AF/Fm’ over the whole measurement period as ambient
temperatures also declined [AF/Fm”: 0.42+0.02 (16.12.—
20.12.2000); 0.35+0.03 (30.12.2000-2.01.2001)]. A more
likely explanation is that very strong non-photochemical
fluorescence quenching (NPQ) systems, i.e. the harmless
dissipation of absorbed radiation in the form of heat,
were activated and dominated electron quenching. This
could explain the linear response of ETR to PPFD at all
temperatures and is also suggested by the results of
Heber et al. (2000). They found a combination of cyclic

electron transport, P700 oxidation and, possibly, a
excitation transfer between the photosystems to produce
effective phototolerance in Grimmia alpestris. The tested
moss showed a much stronger capability to induce NPQ
than the investigated higher plants.

The temperatures of the moss samples were unex-
pectedly low; the majority of the time the plants were
between —2 and +2°C. It is very likely that they were
controlled by the temperature of the flowing water in the
day and by the low insolation when the water flow
stopped. The physiological optimal temperatures for net
photosynthesis for continental Antarctic mosses are
estimated to be between 4 and 15°C (Longton 1974:
B. argenteum; Kappen and Schroeter 2002). These tem-
peratures occurred for only 24% of the entire measuring
period, which suggests that the moss is under sub-opti-
mal conditions for most of the time. It is unfortunate
that we have no gas-exchange data to see if the depressed
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AF/Fm’ is also reflected in the net photosynthetic rate.
Results from B. subrotundifolium would suggest that low
AF/Fm” were related to low NPQ rates (Green et al.
2000a, 2000b). ETR in H. heimii, albeit low, does occur
at subzero temperatures and it would be interesting to
see if this is also a consequence of non-photochemical
quenching or does represent actual positive net photo-
synthesis. Kappen and Schroeter (2002) reported that
freezing of mosses leads to zero net photosynthesis.

This study has answered some questions; in particu-
lar, it is clear that H. heimii, like B. pseudotriquetrum in
the maritime Antarctic, is hydrated and potentially
photosynthetically active for extended periods over the
austral summer. Photoinhibition does not seem to occur
and high rates of non-photochemical quenching might
fully protect the photosystems at all PPFD and tem-
peratures measured. However, only Fv/Fm measure-
ments of pre-darkened samples under controlled
temperature conditions will provide reliable information
on the effectiveness of non-photochemical chlorophyll
fluorescence quenching. It does seem that the moss is
much colder than might be expected, probably because it
was continuously hydrated and the temperature was, on
many occasions, controlled by the water flowing through
the mosses. We will not obtain substantial answers
about daily and seasonal productivity until suitable gas-
exchange measurements have been made.
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