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Abstract
Key message Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the 
accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways.
Abstract 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and 
catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and 
development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank 
Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), sali-
cylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, 
in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease 
symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher 
expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum 
and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the 
ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione 
S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analy-
sis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone 
transduction signaling and plant–pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene 
in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and 
presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.
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Introduction

Sugarcane (Saccharum spp.) is the main crop for sugar 
production in China, contributing to over 85% of the total 
sugar yield (Ruan et al. 2018; Li and Yang 2015; Dotaniya 
et al. 2016). It is susceptible to a fungal disease called 
sugarcane smut, caused by Sporisorium scitamineum. The 
pathogenic mycelium of the smut fungus invades cane 
shoots and spreads through intercellular filaments, affect-
ing the growing point, resulting in mutations and the pro-
duction of black whips, which even hinders stem formation 
in the cane (Rajput et al. 2021; Shamsul et al. 2021; Que 
et al. 2014). Developing and cultivating sugarcane varie-
ties that are resistant to smut is the primary strategy to 
combat this disease. Therefore, exploring disease-resistant 
genes not only provides a genetic resource but also estab-
lishes a theoretical foundation for molecular breeding in 
sugarcane.

Jasmonates (JAs), which include jasmonate acid (JA) and 
its derivative methyl jasmonate (MeJA), are crucial signaling 
molecules derived from hydroxyl lipids in plants (Waster-
nack and Hause 2013; Campos et al. 2014). Generally, the 
synthesis of JAs occurs in the chloroplast and peroxisome. 
Within the chloroplast, unsaturated fatty acids are oxygen-
ated by lipoxygenase (LOX) to produce 12-oxo-phytodienoic 
acid (12-OPDA) through the actions of allene oxide synthase 
(AOS) and allene oxide cyclase (AOC) (Chini et al. 2018; 
Mou et al. 2019). In the peroxisome, 12-OPDA is converted 
into JA by 12-oxo-phytodienoic acid reductase (OPR) and 
three β-oxidation steps of the carboxylic acid side chain 
(Chini et al. 2018; Mou et al. 2019). JA is catabolized in 
the cytoplasm to produce structures like methyl jasmonate 
(MeJA), jasmonoyl-l-isoleucine (JA-Ile), cis-jasmone (CJ), 
and 12-hydroxyjasmonic acid (12-OH-JA) (Chini et  al. 
2018; Mou et al. 2019). Research indicates that OPR, a fla-
vin mononucleotide (FMN)-dependent oxidoreductase, cata-
lyzes OPDA into JA precursor, marking the final step of JA 
synthesis (Mou et al. 2019; Tani et al. 2008; Breithaupt et al. 
2006). OPRs are a multiprotein family with two classes, 
OPR I and OPR II, based on their substrate preference. Nota-
bly, OPR II has the ability to convert (9S, 13S)-OPDA into 
( +)-7-epi-JA precursor, while OPR I has different substrate 
preferences and may aid in substrate (Schaller et al. 1998; 
Strassner et al. 2002). It was found that after simultaneous 
mutation of two OPR3 homologous genes by CRISPR/Cas9, 
the mutant showed complete male sterility and the fertil-
ity could be easily restored by exogenous MeJA treatment 
(Cheng et al. 2023). Besides, a meta-analysis of barley tran-
scriptome datasets revealed that OPR3 was involved in JA 
biosynthesis (Soltani et al. 2023). Furthermore, OPR3-inde-
pendent JA biosynthesis pathway is ancient and predates the 

emergence of the OPR3-independent pathway (Chini et al. 
2023). The first plant OPR gene was isolated from Arabidop-
sis thaliana in 1997, and subsequent research has identified 
numerous OPR genes (Schaller and Weiler 1997). Currently, 
there are 3 OPRs in Arabidopsis and Lycopersicon escu-
lentum (Breithaupt et al. 2006; Schaller and Weiler 1997; 
Biesgen and Weiler 1999), 5 in Citrullus lanatus (Guang 
et al. 2021), 6 in Pisum sativum (Matsui et al. 2004), 8 in 
Zea mays (Zhang et al. 2005), 13 in Oryza sativa (Li et al. 
2011), and 48 in Triticum aestivum (Mou et al. 2019).

In plants, the OPR gene family is extensively involved in 
regulating growth and development, resistance to pathogen 
infection, and tolerance to adversity stress, while the spe-
cific function varies among different family members (Pon-
ting et al. 2002; Liu et al. 2020; Tan et al. 2013; Pratiwi 
et al. 2017; Wang et al. 2016). For example, the Brassica 
campestris BcOPR3 gene was found to be up-regulated at a 
higher rate in disease-resistant plants compared to suscepti-
ble plants after infection with Hyaloperonospora parasitica 
(Wen et al. 2017), and its expression could be triggered by 
the stresses of JA, abscisic acid (ABA), and salicylic acid 
(SA) (Wen et al. 2017). In Z. mays, ZmOPR1 and ZmOPR2 
contributed to defense against several pathogens (Zhang 
et al. 2005). Moreover, maize opr2 mutants exhibited differ-
ing sensitivity to various pathogens (Huang et al. 2023). In 
Gossypium hirsutum, virus-induced gene silencing (VIGS) 
revealed that the plants with GhOPR9 knockout were more 
susceptible to Verticillium dahlia infection (Liu et al. 2020). 
Similarly, in Solanum lycopersicum, silencing of the SlOPR3 
gene resulted in a lower accumulation of OPDA and JA-lle 
after infection with Botrytis cinerea, making the plants more 
susceptible to this pathogen (Scalschi et al. 2015). Beyond 
doubt, these findings strongly support the significant role of 
OPRs in plant responses to pathogen stress.

A ScOPR1 gene (GenBank Accession Number: 
MG755745) was identified and characterized in our previ-
ous study from the sugarcane cultivar ROC22, and its gene 
expression was up-regulated by MeJA, SA, and S. scita-
mineum stresses. Here in our study, transient overexpression 
of ScOPR1 in Nicotiana benthamiana were performed and 
three  T4 generation stable transgenic lines were selected. 
The phenotype, vegetative index, SA and JA contents, glu-
tathione S-transferase (GST) enzyme activity, and immune 
response-associated gene expression were assessed in trans-
genic plants post-inoculation with two pathogens, Ralstonia 
solanacearum and Fusarium solanacearum var. coeruleum. 
Additionally, RNA-Seq in transgenic plants post-inoculation 
with F. solani var. coeruleum was conducted. The present 
study aims to establish a theoretical foundation for genetic 
engineering by ScOPR1 gene for smut resistance improve-
ment in sugarcane breeding.
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Materials and methods

Bioinformatics analysis of ScOPR1

The conserved domain prediction of the ScOPR1 protein 
was conducted using the NCBI (https:// www. ncbi. nlm. nih. 
gov/ cdd). The promoter sequence (2000 bp upstream) of 
two ScOPR1 homologous genes, SsPON.05G0025620-1B 
and Sh_227A23_contig-1_t000020, were extracted from S. 
spontaneum (Zhang et al. 2018) and sugarcane cultivar R570 
genomes (Garsmeur et al. 2018), respectively. The PlantCARE 
(http:// bioin forma tics. psb. ugent. be/ webto ols/ plant care/ html/) 
was used to predict the cis-regulatory elements (CREs) and the 
TBtools was used for visualization (Chen et al. 2020).

Transient overexpression of ScOPR1 in Nicotiana 
benthamiana

Referred to our previous study (Sun et al. 2020), an OPR 
gene was screened from the sugarcane transcriptome unigene 
library constructed by our group, and a full-length cDNA 
sequence, named ScOPR1 (GenBank Accession Number: 
MG755745), was amplified from ROC22 buds inoculated with 
smut pathogen for 48 h using RT-PCR. The recombinant vec-
tor pEarleyGate 203-ScOPR1 (35S::ScOPR1) and the control 
vector (35S::00) were produced using the Gateway technique. 
They were then transiently overexpressed in N. benthamiana 
leaves via the Agrobacterium-mediated delivery (Choi et al. 
2012; Wang et al. 2020). Subsequently, R. solanacearum and 
F. solani var. coeruleum were inoculated into the leaves of 
6-week-old N. benthamiana that transiently overexpressed 
35S::ScOPR1 and 35S::00 for 1 d, respectively. Then, the phe-
notypic changes were tracked and photographed (Dang et al. 
2013). Post inoculation with pathogen for 1 d and 6 d, the N. 
benthamiana leaves were collected for 3,3′-diaminobenzidine 
tetrahydrochloride (DAB) staining to measure the accumulated 
hydrogen peroxide  (H2O2) content (Choi et al. 2012; Sohn 
et al. 2007; Wang et al. 2020; Wu et al. 2023). The expres-
sion of the ScOPR1 gene in transiently N. benthamiana plants 
was analyzed through reverse transcription PCR (RT-PCR) 
with the primers ScOPR1-gate-F/R (Table S1). The expres-
sion levels of five immune-related marker genes, consisting 
of two hypersensitive response (HR) genes (NbHSR201 and 
NbHSR515) and three SA-related genes (NbPR2, NbPR3, and 
NbPR1-a/c) (Wang et al. 2023a, b), were analyzed using real-
time quantitative PCR (RT-qPCR), respectively (Table S1). 
Data normalization to the expression level of NbEF-1a 
(Brogue et al. 1991; Zhang et al. 2019; Wu et al. 2023). All 
treatments were performed with three biological replicates. 
The relative expression levels were determined utilizing the 
 2−ΔΔCT approach (Livak and Schmittgen 2001), and the sta-
tistical analysis, including significance (P < 0.05) and standard 

error, was conducted using DPS 7.05 with Duncan’s new mul-
tiple range test.

Generation of transgenic N. benthamiana plants 
overexpressing ScOPR1 gene and the evaluation 
of its disease resistance

Agrobacterium tumefaciens GV3101 cells harboring 
pEarleyGate 203-ScOPR1 were delivered into N. bentha-
miana utilizing the leaf-disk methodology, followed by 
the screening of transgenic plant materials in a subculture 
medium (4.4 g/L MS, 8 g/L agar, pH = 5.8) containing 
0.01% basta (Burow et al. 1990). Positive transgenic N. 
benthamiana lines were screened by RT-PCR using prim-
ers ScOPR1-gate-F/R (Table S1). Subsequently, three T4 
generation transgenic N. benthamiana plants were gen-
erated, referred to as ScOPR1-OE1, ScOPR1-OE2, and 
ScOPR1-OE3. The pathogens of R. solanacearum and F. 
solani var. coeruleum were inoculated into the leaves of 
ScOPR1-OE and wild-type (WT) plants with three bio-
logical replicates, respectively. All the subjected materials 
were grown at 28 °C under a light/dark cycle of 16 h/8 h 
and 75% relative humidity. The phenotypic changes of the 
leaves were tracked and observed. Besides, GST activity, 
as well as SA and JA contents were evaluated using ELISA 
kits (Shanghai Enzyme-linked Biotechnology, China) at 0 
d and 2 d post-inoculation with pathogens, following the 
manufacturer’s instructions. Furthermore, the expression 
levels of eight immune-related marker genes, including 
HR marker genes NbHSR201 and NbHSR515, SA-related 
genes NbPR2 and NbNPR1, JA-related genes NbLOX1 
and NbDEF1 (Torres 2010), and reactive oxygen species 
(ROS)-related genes NbGST1 and NbAPX (Lai et al. 2013) 
(Table S1) were analyzed by RT-qPCR using NbEF-1α as 
an internal reference gene (Brogue et al. 1991; Zhang et al. 
2019; Wu et al. 2023).

RNA sequencing and data analysis

The N. benthamiana leaf samples after inoculation with 
F. solani var. coeruleum at the beginning (0 d, control, 
CK) and 2 d (treatment, T), resulting in four sample sets 
(WT-CK, ScOPR1-CK, WT-T, and ScOPR1-T) with 
three biological replicates, were collected for RNA-Seq. 
Then, total RNA extraction, cDNA library construction, 
Illumina sequencing, data analysis, reference N. bentha-
miana genome mapping, differentially expressed genes 
(DEGs) identification (fold change ≥ 2 and P-value < 0.05) 
and DEGs annotation were referred to our previous 
studies (Wu et al. 2022a, 2022b; Wang et al. 2023a, b; 
Sun et  al. 2023). Seven candidates DEGs including 

https://www.ncbi.nlm.nih.gov/cdd
https://www.ncbi.nlm.nih.gov/cdd
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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NPR1 (Niben101Scf19043g00002), DELLA (Niben-
101Scf15437g02006), HDT1 (Niben101Scf09416g05012), 
CPK28 (Niben101Scf05805g02006), CTL1 (Niben-
101Scf03036g03023), BKI1 (Niben101Scf03420g01001), 
and MPK4 (Niben101Scf07241g00013) were randomly 
screened for RT-qPCR validation.

Results

Sequence characteristics of sugarcane ScOPR1

As depicted in Fig. 1A, the sugarcane ScOPR1 encoded 
371 amino acids (AA) and contained a conserved 

OYE_like_FMN domain from 10 to 349 AA. This gene 
showed 99.19% and 94.34% similarity with the homolo-
gous gene in S. spontaneum (SsPON.05G0025620-1B) and 
sugarcane cultivar R570 (Sh_227A23_contig-1_t000020) 
(Fig. S1). Besides, both genes contained cis-regulatory ele-
ments related to growth and development, light response, 
and hormone response, with the unique presence of stress-
responsive elements, while Sh_227A23_contig-1_t000020 
specifically contained stress-responsive elements (Fig. 1B), 
suggesting a potential involvement of ScOPR1 gene in vari-
ous aspects of plant growth and response to environmental 
stresses. Meanwhile, the expression levels of the ScOPR1 
gene were increased under SA, MeJA, and S. scitamineum 
stresses. Moreover, compared with the control, its expression 

Fig. 1  Characterization of ScOPR1 gene in sugarcane. A Conserved 
domains of ScOPR1 protein. B Cis-regulatory element (CREs) analy-
sis of the ScOPR1 homologous gene SsPON.05G0025620-1B in S. 
spontaneum and Sh_227A23_contig-1_t000020 in R570. Different 
color boxes corresponded to different CREs. C Expression patterns of 

ScOPR1 in sugarcane under MeJA, SA, and S. scitamineum stresses. 
Color bars represent the normalized values  (log2 Relative exprssion), 
ranging from blue (low expressionlevel) to red (high expression 
level). D Jasmonate biosynthetic pathway
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was up-regulated and reached a peak at 48 h with 2.62-fold 
compared to the control (0 h) in the smut-resistance variety 
YC05-179, but down-regulated at 24 h in the susceptible 
variety ROC22 (Fig. 1C) (Sun et al. 2018). These results 
suggested a role of the ScOPR1 gene in conferring resistance 
to S. scitamineum through JA and SA biosynthesis pathways 
in sugarcane (Fig. 1D).

Transient overexpression of ScOPR1 led 
to an enhancement in the disease resistance

As shown in Fig. 2A, the ScOPR1 gene was successfully 
transiently overexpressed in N. benthamiana. Following 
inoculation with R. solanacearum for 1 d, the disease symp-
toms and DAB staining color had no significant difference 
between 35S::ScOPR1 and the control (35S::00) (Fig. 2B). 
However, after 6 d, the symptoms in the leaves of 35S::00 

were more severe compared to 35S::ScOPR1. Furthermore, 
the DAB staining color of 35S::ScOPR1 was darker than 
the control, indicating a significantly higher  H2O2 content in 
the 35S::ScOPR1 plants (Fig. 2B). Furthermore, the expres-
sion levels of genes related to HR and SA pathways were 
significantly increased in 35S::ScOPR1 plants after infected 
with R. solanacearum compared to the control. Especially, 
6 days after injection with R. solanacearum, the expression 
levels of NbHSR201, NbHSR515, NbPR-1a/c, and NbPR2 
were 4.40-, 9.41-, 46.76-, and 11.56-fold higher than the 
control, respectively (Fig. 2C). Similarly, there was no sig-
nificant difference in phenotypes between 35S::ScOPR1 
and 35S::00 after inoculation with F. solanacearum var. 
coeruleum, while a high content of  H2O2 accumulated in 
the 35S::ScOPR1 plants (Fig. 2D). Besides, the expression 
of HR marker and SA-related genes were significantly up-
regulated in 35S::ScOPR1 leaves at 1 d or 6 d, with the 

Fig. 2  Transient overexpression of the ScOPR1 gene in N. bentha-
miana. A RT-PCR results of ScOPR1 in N. benthamiana leaves 
after transient overexpression for 1 d. 35S::ScOPR1, pEarleyGate 
203-ScOPR1; 35S::00, the empty vector pEarleyGate 203. B, D 
Phenotype and DAB staining of N. benthamiana leaves transiently 
overexpressing 35S::ScOPR1 and 35S::00 after inoculation with 

R. solanacearum and F. solani var. coeruleum for 1 d and 6 d. C, 
E The expression levels of HR marker and SA-related genes in N. 
benthamiana leaves following inoculation with R. solanacearum 
and F. solani var. coeruleum at 1 d and 6 d. All data points represent 
means ± standard error (n = 3). The significant differences are repre-
sented by different letters
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NbPR-1a/c gene showed the 10.83-fold higher than 35S::00 
(Fig. 2E).

Stable overexpression of ScOPR1 positively 
regulated the defense response against pathogen 
infection

Totally, three  T4 lines of ScOPR1 genetically modified N. 
benthamiana plants were successfully acquired and verified 
by RT-PCR (Fig. 3A, B). After inoculation with F. solani 
var. coeruleum 23 d and R. solanacearum 16 d, the WT 
leaves showed more obvious disease spots and yellowing 
than that of the transgenic plants (Fig. 3C, F). Compared to 
the control, the contents of JA and SA, and the activity of 
GST in ScOPR1-OE2 plants were significantly increased 
post infection with both two pathogens (Fig. 3D, G). In addi-
tion, the expression levels of ROS-, HR-, JA- and SA-related 
genes were also up-regulated in the transgenic plants after 
challenging with pathogens (Fig. 3E, H). These results indi-
cated that the stably overexpression of the ScOPR1 gene 
could enhance the disease resistance of N. benthamiana to 
pathogen infection by promoting the expression of several 
genes involved in HR, JA, SA, and ROS signaling pathways.

Transcriptome difference between ScOPR1 
overexpressing transgenic lines and WT plants 
in the process of disease response

Since the WT-CK1 dataset showed a weak correla-
tion with the other biological replicates (Fig. 4A), it was 
excluded from further analysis. A total of 98.64 GB of 
high-quality data was obtained, with Q30 above 93% and 
GC content exceeding 41%, indicating that the sequenc-
ing quality of these libraries was excellent and suitable for 
further analysis (Table S2). Additionally, a total of 2667 
(1033 up- and 1634 down-regulated) and 187 DEGs (118 
up- and 69 down-regulated) were found in the treatment 

(ScOPR1-CK_vs_ScOPR1-T) and the control group (WT-
CK_vs_WT-T), respectively (Fig. 4B, Tables S3, S4). There 
were 20 common up-regulated and 29 common down-reg-
ulated DEGs in both groups. In addition, the control group 
had 98 specific up-regulated and 40 specific down-regulated 
DEGs, while the treatment group had 1013 specific up-reg-
ulated and 1605 specific down-regulated DEGs (Fig. 4C). 
GO enrichment showed that the specific DEGs of ScOPR1-
CK_vs_ScOPR1-T were enriched in the JA signaling path-
way (GO: 2,000,022), plant-type HR (GO: 0010363), SA 
metabolic process (GO: 0010337), defense response to 
fungus (GO: 1,900,150), immune response (GO: 0050776), 
and response to ABA (GO: 0009737) (Fig. 4D, Table S5). 
KEGG pathway enrichment indicated that the DEGs specific 
to treatment group primarily participated in plant–patho-
gen interaction (ko04626) and several metabolic pathways 
(ko00860, ko00780, ko00500, ko00520, ko00564, and 
ko00591) (Fig. 4E, Table S6). These results demonstrated 
that ScOPR1 transgenic plants could activate more abundant 
DEGs in biological processes and metabolic pathways in 
defense against pathogen infection.

ScOPR1 expression‑mediated several signaling 
pathways in the defense response to pathogen 
infection

According to the results of KEGG enrichment, three 
disease resistance pathways including plant hormone 
signal transduction, MAPK signaling pathway-plant, 
and plant–pathogen interaction were selected to make 
a straightforward molecular network. Notably, three 
WT-CK_vs_WT-T special regulated DEGs, namely 
PP2CA, EIN2, and MTB1 were up-regulated (Fig. 5A, 
Table S7). Besides, 11 regulated DEGs (LECRK2, SCL15, 
MMK2, MMK2, MMK2, PYL4, JAR6, NPR1, PR1, CAT1, 
and CAT3) specific to ScOPR1-CK_vs_ScOPR1-T were 
also up-regulated (Fig. 5A, Table S7). While 16 regulated 
DEGs specific to ScOPR1-CK_vs_ScOPR1-T, including 
SD31, FLS2, XA21, At3g47570, NLP2, NSP2, CIGR1, 
SCL23, SCL3, PAT1, TIFY10B, MAKR1, WRKY33, 
At1g67720, and RBOHA, were down-regulated (Fig. 5A, 
Table S7). Additionally, six common regulated DEGs 
(CPK32, CHI14, CTR1, GID1B, LRR1, and At2g23950) 
and eight common regulated DEGs (CPK32, GID1B, 
CXE11, SD25, LRK10, and PR5K) were up-regulated in 
the WT-CK_vs_WT-T and ScOPR1-CK_vs_ScOPR1-T 
group, respectively. However, there were night common 
regulated DEGs consist of CPK32, CPK28, CPK1, CTL1, 
STY46, At1g07650, IRK, CRK33, and LECRK1, were 
down-regulated in ScOPR1-CK_vs_ScOPR1-T group 
(Fig. 5A, Table S7). Interestingly, the regulatory mecha-
nisms were different in WT and ScOPR1-OE during the 

Fig. 3  Disease resistance evaluation of  T4 generation of transgenic N. 
benthamiana overexpressing the ScOPR1 gene. A  T4 transgenic N. 
benthamiana seeds on MS plates with herbicides. WT, wild-type N. 
benthamiana; OE1–OE3, three ScOPR1 transgenic N. benthamiana 
lines. B RT-PCR detection of  T4 generation transgenic N. benthami-
ana plants. M, 2000 bp DNA marker; CK, blank control; NC, nega-
tive control; PC, positive control. C, F Phenotypes of transgenic N. 
benthamiana after inoculation with F. solani var. coeruleum 23 d 
and R. solanacearum 15 d. D, G Determination of SA and JA con-
tents, and GST activity in transgenic N. benthamiana after inocula-
tion with F. solani var. coeruleum and R. solanacearum for 0 d and 2 
d. E, H Expression pattern of ROS-, HR-, JA- and SA-related genes 
in transgenic N. benthamiana after inoculation with R. solanacearum 
and F. solani var. coeruleum for 0 d and 2 d. All data points were 
means ± standard error (n = 3). Significant differences are calculated 
by Duncan’s new multiple range test (P-value < 0.05) and represented 
by different letters

◂



 Plant Cell Reports (2024) 43:158158 Page 8 of 15

resistance against pathogen infection. Furthermore, seven 
DEGs (NPR1, DELLA, HDT1, CPK28, CTL1, BKI1, and 
MPK4) involved in the MAPK signaling, plant–pathogen 
interaction, and plant hormone signal transduction path-
ways were randomly selected and verified by RT-qPCR 

(Fig. 5B, C). It was obvious that the relative expression 
trend of these seven genes was consistent with (R2 = 0.997) 
the expression trend of  log2 (fold change) in the transcrip-
tome (Fig. 5B, C, and Fig. S2).

Fig. 4  Transcriptome variances between ScOPR1-overexpressing 
transgenic lines and wild-type plants during the process of disease 
response. A The correlation heat map. WT-CK, WT-T, ScOPR1-CK, 
and ScOPR1-T represent the wild-type N. benthamiana and trans-
genic N. benthamiana overexpressing ScOPR1 after inoculation with 

Fusarium solani var. coeruleum for 0 d (CK) and 2 d (T), respec-
tively. B, C The number of DEGs in WT-CK_vs_WT-T and ScOPR1-
CK_vs_ScOPR1-T. D, E GO and KEGG enrichment of specific 
DEGs in WT-CK_vs_WT-T and ScOPR1-CK_vs_ScOPR1-T
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Fig. 5  Expression patterns of DEGs in disease resistance-related 
pathways. A Expression patterns of DEGs uniquely or common regu-
lated in the ScOPR1-CK_vs_ScOPR1-T or the WT-CK_vs_WT-T 

group. B, C  Log2 (fold change) values and relative expression levels 
of seven key genes in WT and ScOPR1 transgenic N. benthamiana 
inoculated with F. solani var. coeruleum for 2 d
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Transcription factors and protein kinases played 
an important role in disease resistance

As reported, transcription factors (TFs) and protein kinases 
(PKs) played an important role in plant resistance to the 

pathogen (Sun et al. 2023). A total of 147 TFs and 126 
PKs from the specifically regulated DEGs in ScOPR1-
CK_vs_ScOPR1-T, were predicted (Fig. 6A, Tables S8, 
S9). These 126 PKs (45 up- and 81 down-regulated) were 
mainly enriched in the CAMK_CDPK, RLK-Pelle_DLSV, 

Fig. 6  Expression patterns of TFs and PKs in transgenic lines overexpressing ScOPR1 were closely related to enhanced disease resistance. A 
The number counts of TFs and PKs. B, C  Log2 (fold change) variance of TFs and PKs in ScOPR1-CK_vs_ScOPR1-T group
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RLK-Pelle_LRR-III, RLK-Pelle_LRR-XI-1, RLK-Pelle_
RLCK-VIIa-2, and RLK-Pelle_SD-2b families (Fig. 6C, 
Table S8), with the fact that CAMK_CDPK was mainly 
acted on regulating plant growth and development through 
a series of cascading signaling processes (Harmon et al. 
2001). Notably, RLK-Pelle was abundant in plants and the 
RLK-Pelle_DLSV, RLK-Pelle_RLCK-VIIa-2, and RLK-
Pelle_SD-2b families were closely related to the plant 
immune system, involving plant protection from pathogen 
attack. Interestingly, 147 TFs (57 up- and 90 down-reg-
ulated) were closely related to ABA signaling (bZIP and 
NAC), JA signaling (bHLH), and ethylene (ET) signaling 
(AP2/ERF) pathways (Fig. 6B, Table S9).

Discussion

Till now, an increasing number of OPR genes have been 
discovered in various plants due to their significant roles 
in response to biotic stress (Matsui et al. 2004; Zhang et al. 
2005; Nie et al. 2022). According to the results of promoter 
analysis, the ScOPR1 gene was involved in plant growth and 
development, as well as response to both biotic and abiotic 
stresses. Meanwhile, the expression of ScOPR1 gene was 
not only triggered by the phytohormone signaling molecules 
MeJA and SA but also could actively respond to S. scita-
mineum stress (Sun et al. 2018), suggesting that ScOPR1 par-
ticipated in the response to pathogen invasion in sugarcane. 
Similarly, two maize OPR genes ZmOPR1 and ZmOPR2, 
seemed to be involved in defense mechanisms against C. 
carbonum, C. heterostrophus, and F. verticillioides (Zhang 
et al. 2005). Likewise, the mutation of ZmOPR2 resulted in 
decreased resistance to corn smut (Zhang et al. 2005). In 
the present study, the temporary overexpression of ScOPR1 
increased the resistance of N. benthamiana to F. solani var. 
coeruleum and R. solanacearum (Fig. 2B, D) by up-regu-
lating HR- and SA-related genes (Fig. 2C, E), indicating its 
positive role in plant disease resistance. Notably, this fact 
could also be confirmed by the stable overexpression of 
ScOPR1 in transgenic N. benthamiana (Fig. 3).

Previous studies have found that it is important to regu-
late the concentration of ROS at an appropriate level for 
normal plant growth (Sofo et al. 2015). As an indicator of 
ROS,  H2O2 can rapidly react with DAB under the catalysis 
of peroxidase to form brown compounds, thereby position-
ing  H2O2 in plant tissues (Mittler et al. 1998). In our study, 
the DAB staining in the leaves of transgenic tobacco plants 
overexpressing ScOPR1 was darker compared to the control 
when they were subjected to pathogen inoculation for 6 days 
(Fig. 2B, D). Furthermore, we observed an increase in ROS 
metabolism, including  H2O2 accumulation, in ScOPR1-OE2 
plants after inoculation with F. solani var. coeruleum for 2 d 
(Fig. 5A). When plants are attack by pathogens, those genes 

related to ROS scavenging systems, such as CAT , GST, and 
APX, play a crucial role in plant disease resistance (Kumar 
2014; Boatwright and Pajerowska-Mukhtar 2013; Chan and 
Lam 2014; Zhang et al. 2016). Likewise, the contents of 
GST and CAT enzyme of ScOPR1-OE2 were significantly 
higher after inoculation with pathogens compared to the 
control (Figs. 3D, G,  5A). It can be reasonably deduced that 
overexpression of ScOPR1 could activate the ROS signaling 
pathway during the response of plant to exogenous patho-
gens. Thordal-Christensen et al. (1997) speculated that ROS 
was involved in the HR pathway, which is a defense mecha-
nism of plants against pathogen infection in the host-parasite 
incompatibility relationship. Here in our study, under patho-
gen stresses, the expression of HR marker genes (NbHSR515 
and NbHSR201) was significantly up-regulated in ScOPR1-
OE2 plants compared to the control (Fig. 3E, H), indicating 
that N. benthamiana plants overexpressing ScOPR1 could 
facilitate the occurrence of HR.

Lipid metabolism is closely related to the synthesis and 
transport of JA and SA, and OPR3 is a crucial enzyme in 
JA synthesis (Mou et al. 2019; Tani et al. 2008; Breithaupt 
et al. 2006). Recent studies demonstrated that plant OPR 
genes were involved in various defense signaling pathways 
(Zhang et al. 2005; Sun et al. 2018). In A. thaliana, OPR3 
mutants ddel and opr3 both lacked the function of synthe-
sizing JA (Tan et al. 2013). When stimulated by SA, JA, 
and ET, the expression levels of ClOPR2 and ClOPR4 were 
notably increased in watermelon (Guang et al. 2021). In cot-
ton, GhOPR9 was identified as a regulator of JA pathway-
related gene expression during Verticillium wilt infection, 
highlighting its crucial role in cotton’s resistance to V. wilt 
(Liu et al. 2020). The antagonistic relationship between SA 
and JA in biotrophic and hemibiotrophic pathogen resistance 
has been extensively documented (Kumar 2014; Boatwright 
and Pajerowska-Mukhtar 2013). Huang et al. (2023) discov-
ered that SA could counteract JA by utilizing ZmOPR2 to 
inhibit JA biosynthesis during plant–pathogen interactions in 
maize. In the present study, the expression levels of SA- and 
JA-related genes in ScOPR1-OE2 were markedly elevated 
compared to the control group (Fig. 3E, H). Besides, the 
enzyme activity assay revealed an increase in the contents 
of JA and SA (Fig. 3D, G). Overall, the results suggested 
that transgenic overexpression of ScOPR1 could enhance 
resistance to external pathogen infection by up-regulating 
genes associated with the JA and SA pathways. However, 
it is still unclear why SA and JA do not act antagonisti-
cally in pathogen resistance in transgenic ScOPR1-OE2. It 
is thus hypothesized that the exact in vivo substrates and end 
products of OPR1 enzyme action are still unknown, warrant-
ing further research to elucidate the underlying mechanism. 
Nonetheless, RNA-seq results showed that DEGs related 
to SA signaling (NPR1 and PR1) were up-regulated, and 
the JA pathway was also activated, as evidenced by the 
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down-regulation of JAZ and the up-regulation of both MYC2 
and JAR1 (Fig. 5A), suggesting a synergistic relationship 
between the JA and SA signaling pathways.

The OPR3 gene expression can be triggered by various 
stimuli, including touch, wind, wounding, UV-light, and 
brassinosteroids (BRs) (Schaller et al. 2000). Brassinoster-
oids are a type of steroid hormone that plays a significant 
role in plant growth, development, and response to stress 
(Wang et al. 2022). When plants are under stimuli, BRs bind 
and activate BRI1 and BAK1, and the activated BRI1 can fur-
ther transmit signals by phosphorylating different substrates 
(Wang et al. 2022). Similarly, our transcriptome analysis 
confirmed that BRs participated in disease resistance by acti-
vating BRI1 and BAK1 (Fig. 5A). Studies have shown that 
flg22, a flagellin epitope and PAMP, weakens the hypersensi-
tive cell death, resistance, and biomass reduction induced by 
Pseudomonas syringae (Pst) AvrRpt2 in Arabidopsis (Wang 
et al. 2023a, b). It attaches to the receptor-like kinase FLS2, 
initiating the influx of  Ca2+ across the plasma membrane 
(PM) (Chi et al. 2021). It is widely acknowledged that the 
FLS2 receptor and ROS burst exhibit sensitivity adaptation 
upon flg22 stimulation, which is referred to as desensitiza-
tion and resensitization, to prevent excessive responses to 
pathogen infection (Chi et al. 2021). In this study, we dem-
onstrated that flg22 bound to FLS2, resulting in the influx 
of  Ca2+ into the PM. CDPK, serving as a  Ca2+ receptor, 
gets activated, leading to the expression of ROS burst and 

disease-related factors such as PR1, WRKY33, and FPK1, 
all of which together contribute to plant resistance against 
pathogen infection (Fig. 5A). Recent study has shown that 
the ET and JA signaling pathways, along with MPK3/MPK6 
signaling pathway, synergistically stimulate camalexin syn-
thesis to enhance plant disease resistance (Zhou et al. 2022). 
Furthermore, we observed that following inoculation with F. 
solanacearum var. coeruleum, both ET and JA signals were 
activated and contributed to disease resistance (Fig. 5A). 
These results suggested that ScOPR1 functions in enhanc-
ing plant resistance against pathogen infection by coordinat-
ing the activation of BRs,  Ca2+, MAPK, and ET signaling 
pathways.

Conclusions

By integrating phenotypic observations, DAB staining, 
physiological and biochemical changes, immune-related 
gene expression, and RNA-seq analysis, our study revealed 
that the ScOPR1 overexpression in N. benthamiana plants 
post-pathogen infection facilitated the interaction between 
pathogen-associated molecular proteins (PAMPs) and RLK 
proteins, which activated the MAPK cascade signaling path-
way. This activation then induced the expression of AP2/
ERF-ERF, bHLH, NAC, C2H2, MYB, bZIP, and WRKY 
transcription factors and DEF1, LOX1, PR2, NPR1, and 

Fig. 7  A functional model of ScOPR1 overexpression-mediated 
defense response of transgenic plants to pathogen infection. PAPMs 
pathogen-associated molecular proteins; CDPKs calcium-dependent 
protein kinases; RKLs receptor-like kinases; MAPK mitogen-activated 

protein kinase; JA jasmonic acid; ABA abscisic acid; ROS reactive 
oxygen species; ET ethylene; TFs transcription factors; ScOPR1 over-
expressing transgenic lines, respectively
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GST1 defense-related genes involved in JA, SA, ET, and 
ABA pathways, thereby increasing the disease resistance 
of tobacco to pathogens. At the same time, the binding of 
PAMPs to RLK triggered a release of  Ca2+ and activation 
of CDPKs calcium receptor proteins. Furthermore, patho-
gen infection resulted in the production of ROS, which to 
some extent induced an immune response known as HR in 
the plant itself, ultimately leading to increased resistance. 
Finally, a functional mechanism model of ScOPR1 overex-
pression-mediated defense response of transgenic plants to 
pathogen infection was depicted (Fig. 7). This study offered 
valuable insights into the role of the ScOPR1 gene in con-
ferring pathogen resistance and highlighted its molecular 
mechanisms in sugarcane.
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