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Abstract
Proteases are ubiquitous in prokaryotes and eukaryotes. Plant proteases are key regulators of various physiological processes, 
including protein homeostasis, organelle development, senescence, seed germination, protein processing, environmental stress 
response, and programmed cell death. Proteases are involved in the breakdown of peptide bonds resulting in irreversible 
posttranslational modification of the protein. Proteases act as signaling molecules that specifically regulate cellular function 
by cleaving and triggering receptor molecules. Peptides derived from proteolysis regulate ROS signaling under oxidative 
stress in the plant. It degrades misfolded and abnormal proteins into amino acids to repair the cell damage and regulates the 
biological process in response to environmental stress. Proteases modulate the biogenesis of phytohormones which control 
plant growth, development, and environmental stresses. Protein homeostasis, the overall balance between protein synthesis 
and proteolysis, is required for plant growth and development. Abiotic and biotic stresses are major factors that negatively 
impact cellular survivability, biomass production, and reduced crop yield potentials. Therefore, the identification of vari-
ous stress-responsive proteases and their molecular functions may elucidate valuable information for the development of 
stress-resilient crops with higher yield potentials. However, the understanding of molecular mechanisms of plant protease 
remains unexplored. This review provides an overview of proteases related to development, signaling, and growth regulation 
to acclimatize environmental stress in plants.
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Abbreviations
ROS	� Reactive oxygen species
ETC	� Electron transport chain
PCD	� Programmed cell death
RCD	� Regulated cell death
ASPG1	� Aspartic protease in guard cell 1
SUMO	� Small ubiquitin-like modifier
WT	� Wilf type
ERD1	� Early response to dehydration 1
FtsH	� Filamentous temperature sensitive H protease
HR	� Hypersensitive response
IAA	� Indoleacetic acid

Introduction

Proteases play a crucial role in plant growth, reproduction, 
development, photosynthesis, programmed cell death (PCD), 
immune response, and defense against unwanted stress. They 
also play an essential role in regulated cell death (RCD) 
and respond to environmental stimuli (Zamyatnin 2015). 
Protease regulates the protein quality and homeostasis in 
different plant organelles (Schuhmann and Adamska 2012) 
by degrading photodamaged proteins. Protein homeostasis 
is maintained by controlling the rate of protein synthesis and 
protein degradation by the plant’s regulatory mechanism (Li 
et al. 2017). Plant protease is involved in development and 
nutrient recycling by degrading misfolded proteins (García-
Lorenzo 2007). Protease degrades photoinhibition proteins 
and plays a crucial role in repairing plant cells (Bailey et al. 
2002), and controls the protein quality by removing damaged 
proteins (Komenda 2006).

Plant proteases are ubiquitous enzymes that function in 
various processes. They play an essential role in nutrient 
remobilization (Van der Hoorn 2008) and controls protein 
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localization in cells, and acts as a signaling molecule (Turk 
2006). Proteases are substrate-specific, they are present in 
different subcellular compartments, and their activity is 
highly regulated temporally and spatially (Martins et al. 
2019). Proteases cleave misfolded or damaged proteins at 
the N-terminal (aminopeptidases), C-terminal (carboxy-
peptidases), or internal peptide bonds. Different plants have 
different numbers of proteases. For example, Arabidopsis 
thaliana contains over 800 proteases in 60 families, and rice 
(Oryza sativa) contains 600 proteases (Van der Hoorn 2008). 
Cysteine protease plays an essential role in signaling, PCD, 
protein maturation, nutrient remobilization, hormone syn-
thesis, and degradation of misfolded proteins (Rocha et al. 
2017).

The MEROPS database provides information on plant 
proteases. Proteases have been divided into five classes as 
serine, aspartate, cysteine, threonine, and metalloproteases 
based on their structural properties and activities (Rawlings 
et al. 2018). Serine, aspartic, cysteine, and metalloproteases 
are the major catalytic classes of plant protease (Schaller 
2004).

Plants face environmental stress such as heat, ultravio-
let light, drought, cold, pesticides, pathogens, and salinity, 
which are the major factors that reduce crop yield poten-
tial and negatively impact their survival (Costa and Far-
rant 2019). Climate change decreases the productivity of 
crops, such as maize, rice, and wheat (Tigchelaar 2018). 
Plants have various strategies to adapt and acclimate to the 
changing environmental conditions by activating different 
protective mechanisms that trigger physiological, morpho-
logical, and biochemical changes (Bernstein 2019; Hiray-
ama and Shinozaki 2010). Environmental stresses enhance 
the production of reactive oxygen species (ROS) such as 
O2

– (superoxide), O2 (singlet oxygen), and H2O2 (hydrogen 
peroxide) in different cellular compartments like mitochon-
dria, chloroplasts, and peroxisomes. Production of ROS is 
very common in the plant during all types of stress (Jas-
pers and Kangasjärvi 2010). ROS triggers programmed 
cell death by creating adverse conditions in the organelles 
(Petrov et al. 2015). ROS leads to oxidative stress in different 
cellular compartments, which damage the proteins, lipids, 
metabolites, and nucleic acids, affecting multiple biological 
processes (Hasanuzzaman et al. 2012). Molecular chaperon 
refolds proteins, while protease rapidly degrades the mis-
folded and aggregated proteins by proteolysis. Proteolysis 
is necessary to remove misfolded or unwanted proteins and 
regulate signaling molecules.

This review demonstrates the role of plant protease as a 
growth regulator and signaling molecule in response to envi-
ronmental stress in crops. It also provides a comprehensive 
assessment of plant protease to identify various proteases in 
crop plants for a better understanding of the biological pro-
cesses for improving crop yield and upcoming applications.

Relationship of proteases with reactive 
oxygen species

ROS is produced in response to abiotic and biotic stresses. 
ROS triggers oxidative stress involving various biological 
processes, such as autophagy, apoptosis, and necrosis. Under 
environmental stress conditions, plants generate ROS, which 
affects the different biochemical and physiological reactions. 
ROS is an important signal molecule of a plant for control-
ling growth and development (Cappetta et al. 2020). Several 
studies have been demonstrated the relations between ROS 
and protease in the plant. The peptide molecule is involved 
in the ROS signaling process. The Peptides derived from 
proteolysis regulate ROS signaling under oxidative stress 
in the plant (Møller and Sweetlove 2010). Photosystem 
II (PSII) of chloroplast produces ROS, which accelerates 
the damage of the D1 protein of PSII. The FtsH protease 
has been involved in removing the damaged D1 protein in 
the plant (Nixon et al. 2010). In addition, Deg protease, an 
ATP- dependent serine protease, has been linked in the deg-
radation of D1 protein with the cooperative action of FtsH 
protease (Kato and Sakamoto 2018). MtbHLH2 and MtCP77 
in Medicago truncatula showed a crucial role in ROS accu-
mulation, PCD, and nodule senescence (Deng et al. 2019). 
OsNAC2 induces the expression of caspase‐like protease 
OsAP37 and leads to PCD producing ROS (Mao et al. 2018). 
The cysteine protease HopN1 reduces the production of ROS 
in the chloroplast (Rodríguez‐Herva et al. 2012). Therefore, 
protease has an essential role in the regulation of ROS in 
the plant.

Proteases in response to abiotic and biotic 
stresses

Plants encounter various stress during their growth phase. 
Environmental stress includes drought, salinity, cold, tem-
perature, UV- B radiation, pathogen, pesticides, and metal 
toxicity, which delays plant growth and yield potentials. 
Plants acclimatize the environmental stress at physiological, 
molecular, and biochemical levels, primarily via proteolysis 
machinery (Table 1).

Drought

Drought is often considered a major environmental factor 
that reduces crop yield and negatively impacts plant sur-
vival. The effects have particularly been accentuated with 
global warming, especially in crop plants such as maize, 
rice, and wheat (Furlan et al. 2016). Nevertheless, plants 
have developed various strategies to minimize the damage 
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due to drought (Shah et al. 2017). Plants commonly respond 
to drought stress by producing ROS, which causes oxidative 
stress in different cellular compartments. Oxidative stress 
damages proteins, nucleic acids, metabolites, and lipids. 
Dehydration stress increases the number of misfolded, 
aggregated, and post-translationally modified proteins, 
which, in turn, activate the chaperone system. Chaperones 
refold the proteins damaged by oxidation, and proteases 
degrade the misfolded and aggregated proteins (Pulido et al. 
2017). Plant protease significantly contributes to a drought 
stress response. Protein homeostasis and nutrient remobi-
lization are essential for plant responses to drought stress. 
Protease plays an essential role in many events, including 
removal of damaged, denatured, and aggregated proteins, 
remobilization of amino acids, and signal transduction (Van 
der Hoorn 2008).

Drought induces aspartic protease activity, mainly in 
beans (Phaseolus vulgaris and Vigna unguiculata) (de Car-
valho et al. 2001). ASPG1 (Aspartic protease in guard cell 
1) plays an essential role in drought avoidance in A. thaliana 
(Yao et al. 2012). Overexpression of APA1 in A. thaliana 
ensures drought tolerance compared to the Wild-type (WT) 
plant. Overexpressing APA1 causes lower stomatal density 
and smaller stomatal aperture compared to that in WT plants 
(Sebastián et al. 2020). Lon protease is an ATP-dependent, 
nuclear-encoded, mitochondrial protease that belongs to the 
serine protease family (Pinti et al. 2016). Lon protease is 
necessary for cellular homeostasis and many developmental 
changes that have been induced by stress (Pinti et al. 2016). 
Lon protease has been involved in mitochondrial homeosta-
sis. Lon protease (Atlon4) in modified A. thaliana makes 

the plant more tolerant to drought stress than the wild-type 
plant (Li et al. 2010). SUMO (small ubiquitin-like modi-
fier) protease belongs to the cysteine protease family, found 
in plants, eukaryotes, and yeast, and is crucial for stress 
tolerance. SUMO protease influences drought tolerance in 
wheat (T. aestivum) (Le Roux et al. 2019) by SUMOyla-
tion, which is also crucial for plant development. The ERD1 
(Early response to dehydration 1) of A. thaliana induces 
the expression of the ClpA and ClpB protein levels during 
dehydration stress (Kiyosue et al. 1993). In addition, it has 
been reported that ASPG1 protease plays an essentials role 
in drought avoidance in A. thaliana (Yao et al. 2012).

Salinity

Soil salinity is a critical environmental stress factor that 
reduces the quality and yield of crops worldwide. Hyper-
salinity has multiple impacts on plants, such as genotox-
icity, nutrition deficiency, oxidative stress, osmotic stress, 
and ionic imbalance (Shah et  al. 2017). Consequently, 
this decreases photosynthesis rate, generates an excessive 
amount of ROS, and affects the electron transport chain. 
Nevertheless, plants adopt various strategies, like exclusion 
and salt compartmentalization (Wang et al. 2016). In plant 
cells, both enzymatic and non-enzymatic systems operate 
to minimize salinity stress. Many proteins and genes are 
involved in these resistance mechanisms for increasing 
tolerance to salinity, which includes H + -pyrophosphate, 
OsMYB3R-2, and AtSOS1 (Dai et al. 2007). Plant pro-
tease activity significantly increases in response to high 
salinity stress. Salt stress reduces the synthesis of proteins, 

Table 1   Effect of the abiotic and biotic stress on the plant

Stress Effects References

Drought Chlorophyll loss, leaf water potential decrease
Effect on root length density
ABA biosynthesis
Flowering, carbohydrate accumulation
Denatured floral buds

Nayyar et al. (2005); Kashiwagi et al. (2005); Tan et al. (1997)
Pingping et al. (2017)
Shi et al. (2019)

Temperature Sugars, amino acids
Reduced flowering, increase leaf
Synthesis of heat shock proteins

Went (1953); Menzel and Simpson (1988); Belanger et al. (1986)

Salinity Reduction shoot growth
Reduced photosynthetic pigments
Osmotic potential
Damage leaf area
Protein content

Munns and Tester (2008); Taffouo et al. (2010); Rodriguez et al. 
(1997);  Yilmaz and Kina (2008); Sultana et al. (1999)

Cold Delay in flowering
Seedlings

Suzuki et al. (2008)
Turk et al. (2020)

UV radiation Nucleic acids, proteins, amino acids, hormone, lipids, 
membrane, photosynthesis

Seed germination

Hollósy (2002); Popp and Brown (1933)

Pathogen Induced oxidative stress
Metabolism and morphology of chloroplast

Mithöfer et al. (2004); Goodman et al. (1986)
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carbohydrates, lipids, DNA, and RNA and increases the 
degradation of damaged or harmful proteins by proteases 
(Parida et al. 2004). Salt stress affects various physiological 
and metabolic processes such as ion transport, synthesis and 
accumulation of osmotic solute, protein turnover, osmotic 
adjustment, nitrogen metabolism, and compartmentation.

Plant protease significantly contributes to the salt stress 
response. Cysteine protease, also called thiol protease, is 
an essential family of plant protease. Plant Protease plays a 
vital role in plant growth and development by degradation 
of endogenous proteins through proteolysis (Van Wyk et al. 
2014). Salt stress enhances the level of ROS and oxidized 
proteins in different cell compartments. Degradation of 
oxidized proteins is necessary for recycling, which ensures 
plant growth and development under salt stress. Cysteine 
protease often plays a crucial role in the degradation of 
oxidized proteins and regulates ROS levels (Van der Hoorn 
2008). RD21a and RD19a are cysteine proteases that belong 
to the papain-like family, and these two genes are induced 
by dehydration and salinity stress (Koizumi et al. 1993). 
The Cyp15a gene in peas (Pisum sativum) is a cysteine pro-
tease that induces and modulates mRNA levels in plants in 
response to high salt stress (Jones and Mullet 1995). The 
SPCP2 gene demonstrated tolerance during salinity and 
drought stress (Chen et al. 2010). Many of the cysteine pro-
tease genes are involved in altering physiological responses 
during salinity stress. Therefore, cysteine protease plays an 
essential role in the signaling pathway and the coping mech-
anism against salt stress. The serine protease gene HtrA in 
Halothece sp. PCC7418 is highly upregulated in response to 
salt stress (Patipong et al. 2020). The ClpD1 protein expres-
sion in A. thaliana has been increased in response to high 
salinity stress compared to the wild-type (Mishra and Grover 
2016). Cyp15a gene of pea (Pisum sativum) is a cysteine 
protease induced and modulates mRNA levels in the plant in 
response to high salt stress (Jones and Mullet 1995).

Cold

One-third of the global land area is used for agriculture, 
and 42% of the land temperature is less than –20 °C (Miura 
and Furumoto 2013). There are two types of cold stress 
like chilling (0 to –15 °C) and freezing (< 0 °C). Plants in 
cold areas are constantly exposed to chilling and freezing 
temperatures. So, they require specialized mechanisms to 
survive in such low temperatures. Cold stress restricts crop 
production, development, and growth. The harmful impact 
of cold stress on photosynthesis and metabolic function fur-
ther affects the production, metabolism, and growth of the 
plants. Phenotypic symptoms in cold stress response include 
wilting, chlorosis, necrosis, stunted seedlings, poor germi-
nation, and reduced leaf expansion. Therefore, the develop-
ment of cold stress tolerance in crops is vital to increase crop 

production. Light is converted to chemical energy by photo-
synthesis to form carbohydrates, and this process is sensitive 
to cold stress. The PSII efficiency and photosynthetic rate 
are altered at low temperatures. RuBisCo is the most crucial 
protein for carbon assimilation during photosynthesis.

The production of the large subunit of RuBisCo is 
reduced during cold treatment. It indicates that cold stress 
reduces the photosynthetic efficiency mainly by degrad-
ing the large subunit of RuBisCo. Several novel proteins 
such as GroEL, FtsH-like protein, the 26S proteosome unit, 
and legumin play a crucial role in response to cold stress 
(Susin et al. 2006). Transcription factor ZmFtsH2B has been 
upregulated in leaves, whereas ZmFtsH2A has been consti-
tutively expressed in the roots and leaves under cold stress 
(Yue et al. 2010). FtsH, Clp, and DegP are the prominent 
protease families located in the chloroplast. These proteases 
display constitutive gene expression and are involved in pro-
tein quality control and maintenance of homeostasis, rather 
than degrading proteins (van Wijk 2015). Under low tem-
perature, Clp protease expression has been increased in rice 
(Oryza Sativa) (Cui et al. 2005).

Temperature

The ambient temperature has a significant impact on growth, 
development, and plant productivity. Consequently, plants 
can acclimate rapidly and evolve various mechanisms to 
detect their environment and respond with physiological, 
developmental, and cellular changes for efficient reproduc-
tion and optimal growth. High temperatures affect the physi-
ological, metabolic, molecular, and biochemical changes in 
plants. In addition, high temperature induces cellular homeo-
stasis and alters multiple genes of plants.

The Clp protease is constitutively expressed in plant tis-
sues, primarily in the chloroplasts of green leaves. Many 
proteases function as molecular chaperones, such as the 
ClpB, ClpC, and ClpD protein subunits. The ClpB gene in 
A. thaliana has been constitutively expressed in chloroplasts 
and mitochondria during high-temperature stress response 
(Lee et al. 2007). In addition, the ClpB gene in O. sativa 
has been upregulated in response to heat stress (Singh et al., 
2010). The ClpB gene in lima beans (Phaseolus lunatus) has 
been constitutively expressed in chloroplasts during high-
temperature stress (Keeler et al. 2000).

The metalloprotease FtsH (Filamentous temperature-
sensitive H protease) is essential for photosynthesis at high 
ambient temperatures. Mutant FtsH causes a filamentous 
temperature-sensitive phenotype in E. coli (Begg et  al. 
1992). FtsH is crucial for plant survival during high-temper-
ature stress (Langer 2000). The mutant FtsH11 gene reduces 
the photosynthetic efficiency of PSI and PSII at high tem-
peratures. FtsH11 in A. thaliana plays a vital role in thermo-
tolerance (Chen et al. 2018). The matrix metalloproteinase 
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(MMP) Gm1-MMP has been found in the plasma membrane 
and is highly expressed in mature leaves, mature seeds, and 
old leaves associated with seed development. Gm1-MMP is 
essential for high-temperature tolerance and has been over-
expressed during the development of leaves and roots in A. 
thaliana at high temperatures (Liu et al. 2017). Hence, it is 
well established that protease is essential for thermotoler-
ance in many organisms.

Pathogen

Pathogen infection, which accounts for many harmful dis-
eases, reduces crop yield and affects food security globally. 
Pathogens affect plant physiology, including respiration, 
pathogenesis, cell membrane permeability, transcription and 
translation, and translocation of water and nutrients. Plants 
have developed several conserved and sophisticated strate-
gies to protect from pathogens. Plants create many antimi-
crobial compounds and physical barriers to deal with most 
of the pathogens. When plants perceive PAMPs (pathogen-
associated molecular patterns), such as chitin, by membrane-
localized PRRs, multiple immune responses are triggered 
within a cell. The success of the defense response depends 
on how soon the plant detects the invasion signals, which 
leads to the initiation of the defense response.

Protease is an integral part of the immune system of 
plants. These processes are influenced by proteases in dif-
ferent cellular compartments. Apoplastic serine protease 
SBT3.3 (Subtilase 3.3) in A. thaliana regulates the defense 
response. The mutant protease sbt3.3 gene in A. thaliana is 
hyper susceptible to bacterial pathogen Hyaloperonospora 
arabidopsidis and Pseudomonas syringae ( Ramírez et al. 
2013).

Cathepsin-B is a papain-like cysteine protease that gen-
erates a hypersensitive response (HR). CathB is necessary 
for the hypersensitive response activated by co-expression 
of the potato gene R3a and the Phytophthora infestans gene 
Avr3a (Gilroy et  al. 2007). Aspartic protease OsCDR1 
(Oryza sativa) expressed in A. thaliana enhanced resist-
ance against fungal and bacterial pathogens (Prasad et al. 
2009). The papain-like proteases Rcr3 and Pip1 are both 
inhibited by Avr2 secreted by the fungal pathogen Clad-
osporium fulvum (Shabab et al. 2008). In plants, deletion of 
Pip1 causes hypersusceptibility to Pseudomonas syringae, 
Cladosporium fulvum, and Phytophthora infestans (Ilyas 
et al. 2015). AtMC1 and AtMC2 are cytosolic metacaspase 
protease in A. thaliana, regulating hypersensitive response 
in an antagonistic manner. AtMC1 acts as a positive regu-
lator of the HR during cell death caused by Pseudomonas 

syringae, and AtMC2 acts as a negative regulator (Coll et al. 
2010).

Threonine protease PBA1 is an essential protease that is 
triggered by Pseudomonas syringae (Hatsugai et al. 2009). 
Vacuolar processing enzymes (VPEs) have caspase-1-like 
activity and are crucial for virus-induced HR upon infection 
by TMV (Tobacco mosaic virus) in Nicotiana benthamiana 
( Hatsugai et al. 2004). C14 and RD21 are both orthologous 
papain-like cysteine proteases found in Arabidopsis thaliana 
and Solanum lycopersicum, respectively (Thomas and Van 
der Hoorn 2018).

Light

Light plays a vital role in the growth and development of 
plants. It is required for photosynthesis, whereby plants 
convert energy from sunlight to chemical energy. Two pro-
teins, D1 and D2, are found at the core of the PSII subunit 
(Hankamer et al. 2001). Deg2 is a serine protease that pri-
marily cleaves photodamaged D1 proteins of PSII at high 
light intensity (Haußühl et al. 2001). The metalloprotease 
FtsH1 is responsible for the degradation of the D1 protein 
(Andersson and Aro 2001; Adam et al. 2005).

Nevertheless, it is not yet clear how FtsH functions in reg-
ulation. Prohibitin-like proteins form a large complex with 
FtsH homohexamers and modulate its proteolytic activity 
in E. coli (Kihara et al. 1996). Prohibitin-like proteins prob-
ably form a 2MD complex with the mitochondrial FtsH in 
A. thaliana (Piechota et al. 2010). Besides, the RC47 com-
plex interacts with the FtsH protease, and this interaction is 
essential for the degradation of the D1 protein by the FtsH 
protease (Komenda et al. 2006; Kato et al. 2009; Krynická 
et al. 2015). EngA is a unique family of GTPase protease 
(Verstraeten et al. 2011) located on the thylakoid membrane. 
EngA interacts with the ATPase domain of the FtsH pro-
tease and affects its turnover. This interaction is essential for 
the degradation of the D1 protein. FtsH turnover is acceler-
ated under high light stress in Chlamydomonas reinhardtii 
(Wang et al. 2017). It is well established that Deg and FtsH 
proteases are essential for tolerance to light-induced stress.

Protease in signaling and phytohormone 
mediated regulations during stress

The Arabidopsis mitochondrial FtsH3, FtsH4, and FtsH10 
are involved in the biogenesis of oxidative phosphorylation 
(Marta et al. 2007). Loss of AtFtsH4 gene showed mor-
phological and physiological abnormality of Arabidopsis 
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during short-day conditions (Gibala et al. 2009). It has 
been found that FtsH protease acts through the produc-
tion of ROS to change the leaf morphology (Kato et al. 
2009). Protease rapidly degrades misfolded and aggregated 
proteins by proteolysis under stress. ROS acts as a signal-
ing molecule to manage numerous biological processes, 
including PCD, pathogen defense, and stomatal develop-
ment; thus, controlling the growth and development of the 
plant in response to environmental stress (Apel and Hirt 
2004). Under stress, a close association occurs between 
ROS and plant hormones, such ABA, salicylic acid, jas-
monic acid, GA, and ethylene (Bright et al. 2006; Gudes-
blat et al. 2007). The homeostasis and signaling of auxin 
have been induced by the apoplastic reactive oxygen spe-
cies (Blomster et al. 2011). ROS negatively affects the 
auxin response in Arabidopsis thaliana. The expression of 
the auxin-inducible genes has been downregulated due to 
the mutation of mekk1 and mpk4 (Nakagami et al. 2006). 
The morphology of the plant aggravates due to the pro-
duction of ROS and its impact on auxin signaling (Potters 
et al. 2007). ROS mediates the interaction between auxin 
and ABA signaling (He et al. 2012). Auxin homeostasis 
alters by hydrogen peroxide and promotes change in the 
gene expression of PINOID, which disturbs the polar 
transport of auxin (Pasternak et al. 2005). It has been sug-
gested through various morphological studies that ROS 
interacts with auxin to control growth and development in 
the plant. Therefore, comprehensive studies are required to 
elucidate the interaction between ROS and auxin to dissect 
the molecular mechanism.

FtsH4 is an ATP-dependent AAA-protease having pro-
teolytic activity. FtsH4 is associated with plant dwarfism, 
and mutation of FtsH4–4 shows numerous axillary branches 
due to a decrease of IAA concentration. It has been hypoth-
esized that the FtSH4 is involved in auxin synthesis to reg-
ulate plant growth and development (Zhang et al. 2014a, 
b). FtsH4-dependent assembly of various proteins inhibits 
hydrogen peroxide (H2O2) production, which affects the reg-
ulation of Indole-3-acetic acid (IAA) metabolism, signaling, 
and transport of auxin.

Aspartic protease plays a crucial role in response to stress 
(Guo et al. 2013). It is a large family of proteolytic enzyme 
involved in programmed cell death, senescence, and repro-
duction. Overexpression of aspartic protease induces the 
expression of various genes, which promote ABA synthesis 
and signaling (Fig. 1). Additionally, the overexpression of 
APA1 in A. thaliana confers drought tolerance (Sebastian 
et al. 2020).

There is a close relation between ROS, signaling mol-
ecule, and phytohormones such as abscisic acid (ABA), sali-
cylic acid (SA), gibberellic acid (GA), jasmonic acid (JA), 
nitric oxide, and ethylene (Bright et al. 2006; Desikan et al. 
2008; Galvez-Valdivieso et al. 2009; Gudesblat et al. 2007). 
Mitochondrial FtsH4 in Arabidopsis thaliana regulates the 
expression of WRKY gene through modifying the ROS 
level, and WRKY genes control the salicylic acid synthesis 
and signaling (Zhang et al. 2017).

Therefore, the identification of various stress-responsive 
protease and their phytohormone function may elucidate 
valuable information for the preparation of crops with higher 
stress tolerance and increase yield potentials (Table 2).

Protease in plant development

Protease, Proteolytic enzyme, Proteinase, and Pepti-
dase are the enzymes that hydrolyze the peptide bond of 
stress-damaged proteins (Mótyán et al. 2013). Protease is 
a crucial component of plants, distributed in the different 
subcellular compartments, such as vacuole, chloroplast, 
endoplasmic reticulum, cytoplasm, nucleus, mitochondria. 
Protease plays a significant role in stress responses, path-
ogen recognition, systematic defense response, stomata 
development, and plastid development (Fig. 2). Protease 
participates in the various cellular process, including the 
signaling pathway, which moderates multiple biological 
functions such as PCD (Thomas and Van der Hoorn 2018; 
Moschou et al. 2016).

Papain-like cysteine proteases (PLCP) are involved 
in proteolysis and various physiological process. The 
HvPap-1, a GA-induced PLCP, is involved in protein 
remobilization during barley seed germination (Cambra 
et al. 2012). Other PLCPs proteolytic enzymes like CEP1 
play an essential role in tapetal programmed cell death 
and pollen development in Arabidopsis thaliana (Zhang 
et al. 2014a, b). In addition, PLCPs play a crucial role in 
protein degradation via proteolysis during leaf senescence, 
such as SAG12, AtRD19A, RD21A (Gepstein, et al. 2003; 
Lohman et al. 1994; Yamada et al. 2001). PLCPs such 
as ATRD21A and ATRD19A are two essential protein-
marker that plays a vital role in the adaption of dehydra-
tion, salt, and drought stresses (Koizumi et al. 1993). The 
malfunctioning of protease leads to various pleiotropic 
effects in the plant, such as reduced plant growth, impaired 
chloroplast development, leaf variegation, and photosyn-
thesis (Sjögren et al. 2006).
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Conclusion and future perspectives

Protease plays a crucial role in all living organisms. Pro-
tein turnover requires for the growth and differentiation 
facilitated by the specific proteolytic enzymes. Protease 
plays other essential functions, including amino acids 
recycling by the degradation of non-functional pro-
teins and regulation of regulatory proteins and essential 
enzymes. Most of the previous studies have been accom-
plished in the model plant. However, the role of the pro-
tease of crop plants is mostly unexplored. Therefore, 

exploration of the underlying molecular mechanism of 
crop plant protease is very crucial to adapt the environ-
mental stress. Plant productivity decreases severely with 
increasing environmental stresses, which must be a signifi-
cant concern in the present scenario. With the increasing 
world population, crop production needs to be increased 
several folds in the near future. Therefore, the identifica-
tion of novel protease would contribute a significant role 
in plant science. The plant protease would facilitate the 
development of stress tolerance crop plants for improving 
growth and yield potentials during environmental stress 

Fig. 1   Correlation between the Aspartic protease (APA1) and Absci-
sic acid (ABA) signaling in response to environmental stress. Envi-
ronmental stress induces ABA production that triggers the expres-

sion of APA1, Hb7, and Hb12. Besides, RD29/RAB18 activates the 
expression of NCED2, involving ABA biosynthesis
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Table 2   Proteases reported in plant and their function

Name of Protease Function of protease References

FtsH Proteolysis Wagner et al. (2012)
GGTs Degradation of glutathione Martin et al. (2007)
DEK1 Early embryogenesis Tran et al. (2017)
Rcr3 Fungal pathogen Krüger et al. (2002)
Lon Proteolysis Tsitsekian et al. (2019)
AraSP Development of chloroplast Bölter et al. (2006)
IAR3 Decreased sensitivity to IAA-Ala Dixon et al. (2000)
VAR1/ VAR2 Degrade photodamaged protein in PSII Sakamoto et al. (2002)
ILR1 Insensitive for indole acetic acid-Leu Bartel and Fink (1995)
At2MMP Early senescence, late flowering Golldack et al. (2002)
MPA1 Meiotic chromosome segregation Sánchez-Morán et al. (2004)
Clp1 Shoot development Kuroda and Maliga (2003)
Clp4 Leaves development Shen et al. (2007)
Clp6 Chlorotic rosette leaves Sjögren et al. (2006)
SNG1 Secondary metabolites Lehfeldt et al. (2000)
SNG2 Decreased activity sinapoylglucose:choline sinapoyltransferase Shirley et al. (2001)
AtSPP Pollen function Han et al. (2009
ESD4 Pleiotropic effect and the early flowering Sun et al. (2007)
SUMO Decreased Stomatal pore aperture Castro et al. (2016)
DEG5/ DEG8 Photosystemɪɪ repairing Sun et al. (2007)
BRS1 Enhanced brassinosteroids sensitivity Li et al. (2001)
NbVPE Programmed cell death Hatsugai et al. (2006)
AtPARL Plant development Kmiec-Wisniewska et al. (2008)
SASP ABA signaling Wang et al. (2018)
UBP1/2 Resistance to canavanine Yan, et al. (2000)
UBP3/4 Pollen development and transmission Doelling, et al. (2007)
UBP15 Leaf development Liu, et al. (2008)
AtDEK1 Alter epidermal cell interdigitation Johnson et al. (2008)
UCH1/2 Shoot development and inflorescence architecture Yang et al. (2007)
NbDEK1 Cell proliferation and differentiation Ahn, et al. (2004)
DEK1 Cell division and elongation Perroud et al. (2020)
CRSP Negative regulate of stomata development Hunt and Gray (2009)
NbCathB Hypersensitive response McLellan et al. (2009)
EGY1 Chloroplast development Barry et al. (2012)
EGY2 Hypocotyl elongation Chen, et al. (2012)
AtRBL1 Cleve EGFR Kanaoka, et al. (2005)
AtRBL2 Proteolytic activity Kanaoka, et al. (2005
AtRBL8 Flower development Thompson et al. (2012)
McɪɪPa During embryogenesis, reduced cell death Bozhkov et al. (2005)
SDD1 Negative regulation of stomata development Liu et al. (2015
EPF1/ EPF2 Negative regulation of stomata development Shimada et al. (2011)
EPFL9 Positive regulation of stomata development Shimada et al. (2011)
Mir1 Defend against insect herbivores Lopez et al. (2007)
ALE1/ PASPA3 Programmed cell death Fourquin et al. (2016)
VPE3 Vacuole rupture Lu et al. (2016)
Plsp1 Protein folding McKinnon et al. (2019)
ASPG1 ABA signaling Yao et al. (2012)
RLR1/2 Primary root development and lateral root formation Soares (2017)
Gm1-MMP Growth and development of leaf and seed Liu et al. (2017)
Cs1-MMP Involved in PCD and senescence Delorme et al. (2000)
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conditions. Understanding plant protease in response to 
stress will provide a vast field to develop climate-resilient 
crop plants.
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Table 2   (continued)

Name of Protease Function of protease References

Pta1-MMP Seed germination and seedling elongation Delorme et al. (2000)

Fig. 2   Plant protease in promoting growth, development, and degra-
dation of misfolded protein in the different organelle. Misfolded pro-
tein is mainly cleaved by proteases and repairs cell damage during 

stress. Proteolysis plays a crucial role in removing toxic proteins and 
provides amino acids for the synthesis of new protein
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