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Abstract

Increasing crop production to meet the demands of a growing population depends largely on crop improvement through
new plant-breeding techniques (NPBT) such as genome editing. CRISPR/Cas systems are NPBTs that enable efficient
target-specific gene editing in crops, which is supposed to accelerate crop breeding in a way that is different from geneti-
cally modified (GM) technology. Herein, we review the applications of CRISPR/Cas systems in crop breeding focusing on
crop domestication, heterosis, haploid induction, and synthetic biology, and summarize the screening methods of CRISPR/
Cas-induced mutations in crops. We highlight the importance of molecular characterization of CRISPR/Cas-edited crops,
and pay special attentions to emerging highly specific genome-editing tools such as base editors and prime editors. We also
discuss future improvements of CRISPR/Cas systems for crop improvement.
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Introduction

Feeding a growing population in a sustainable way is a great
challenge to current crop-breeding efforts (Schaart et al.
2016). Traditional breeding technology based on crossing
and selection without any knowledge about genetics, even
aided by marker-assisted selection, is a very labor-intensive
and time-consuming process, which also shows drawbacks
with complex genetic outputs (Schaart et al. 2016). Mutation
breeding technology based on chemical and physical geno-
toxins dramatically increases the mutation rate above natural
levels; however, artificially induced changes are unquestion-
ably uncontrolled, requiring complex and expensive screen-
ing and selection procedures (Pacher and Puchta 2017). Due
to the random modification in the crop genome, outcomes
of both natural mutation and mutational breeding are unpre-
dictable. The transgenic breeding technique transfers desired
trait-coding genes via an exogenous T-DNA cassette into
the elite cultivars; its outcome is relatively predictable.
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However, time and expenses for research and development
of a genetically modified (GM) crop with desirable traits free
of unexpected insertions are huge to meet demands from
safety regulations and social acceptance (Araki and Ishii
2015; Schaeffer and Nakata 2015).

In contrast, site-directed nucleases (SDNs)-based
genome-editing technologies increase significantly the pre-
cision of gene modification in crop systems (Jaganathan
et al. 2018). SDNs include zinc finger nucleases (ZFNs),
transcription-activator-like effector nucleases (TALENS),
and clustered regulatory interspaced short palindromic
repeats associated protein 9 (CRISPR/Cas9) (Lusser et al.
2012; Zhu et al. 2017). They precisely cut the genomic DNA
at the targeted loci to generate double-strand breaks (DSBs),
which triggers specialized repair pathways, either homolo-
gous recombination (HR) or non-homologous end-joining
(NHEJ), and results in indel mutations (Jinek et al. 2012).
Besides, simultaneous introduction of several DSBs by
genome editing allows to break genetic linkages, to reshuf-
fle entire chromosome orientations, to create inversions, and
to permit reciprocal chromosomal translocations or chromo-
some fragment exchanges (Pacher and Puchta 2017). Thus,
SDN-based genome editing holds a great potential for pre-
cise crop improvement.

Each SDN has its particular characteristics. ZFNs are
artificially engineered chimeric restriction enzymes com-
posed of site-specific DNA binding zinc finger proteins
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(ZFPs) fused with the non-specific DNA cleavage domain
of the FokI restriction enzyme (Guo et al. 2010). Typically,
ZFNs consist of three-four lower-affinity ZFPs and two tail-
to-tail ZFP-binding sites separated by a 5- to 7-bp spacer
sequence, therefore, not all crop sequences can be efficiently
targeted (Li et al. 2019b). ZFNs have been reported to induce
efficient site-directed mutagenesis in several crop species,
including maize (Ainley et al. 2013) and soybean (Curtin
et al. 2011). However, due to limitations such as low tar-
get specificity, time-consuming, and narrow available tar-
get sites (Chen and Gao 2013), ZFNs have given way to
other SDNs. TALENSs have similar principles to ZFNs but
harbor different site-specific DNA binding proteins, named
transcription activator-like effectors (TALEs). Each effec-
tor domain recognizes a single nucleotide pair in TALEN,
therefore, compared with ZFNs, TALENSs show higher target
specificity (Baltes and Voytas 2015). TALENs have been
successfully applied to edit several crop species including
tobacco (Zhang et al. 2013), rice (Li et al. 2012), and maize
(Liang et al. 2014). Despite its advantages over ZFNs, using
of TALENSs as genome-editing tools still needs the assembly
of complex tandem repeats to bind targeted DNA sequences.
In addition, large size and tedious nature make the transfer
of the TALEN system to plant cell a challenge (Baltes and
Voytas 2015).

CRISPR/Cas9 is a RNA-guided nuclease, and its specific-
ity is single-guide RNA (sgRNA) dependent. Theoretically,
CRISPR/Cas9 can bind to any DNA sequence that contains
a protospacer adjacent motif (PAM) site when sgRNA is pre-
sent for identifying the target (Jinek et al. 2012). Unlike pro-
tein-guided nucleases such as ZFNs and TALENs, CRISPR/
Cas9 introduces a blunt DSB, in the case of SpCas9, the
cleavage occurs at a site three nucleotides upstream of the
PAM (Jinek et al. 2012). Due to its high target specificity,
simplicity, ease of use, CRISPR/Cas9 technique has been
widely used as a dominant technique of SDNs for gene edit-
ing in crops, humans, and animals (Doudna and Charpentier
2014). In crops, CRISPR/Cas9-induced DSBs are repaired
mainly via NHEJ; as a result, indel genetic variations are
generated (Zhu et al. 2017). So far, CRISPR/Cas9 system
has been widely used for crop improvement in rice, sor-
ghum, wheat, maize, soybean, tomato, potato, apple, and
banana (Osakabe and Osakabe 2015; Jaganathan et al. 2018;
Tripathi et al. 2020). With advancements in the improve-
ment of CRISPR/Cas systems (Anzalone et al. 2019), such
as CRISPR/Cpfl (Chen et al. 2019; Kim et al. 2017) and
nucleotide substitutions tools (Shimatani et al. 2017; Zong
et al. 2017), CRISPR systems are becoming to be more effi-
cient for crop improvement (Gao 2021; Hong et al, 2021;
Miladinovic et al. 2021). Its applications in crops range from
boosting yield, resisting against pests and diseases (Wang
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et al. 2014), to improving nutritive value (Table 1) (Li et al.
2016, 2018b; Ma et al. 2016; Do et al. 2019; Dong et al.
2020). The objective of this review is to summarize the cur-
rent developments and applications of CRISPR/Cas systems
in crop improvement, discuss the regulatory landscape of
genome-edited crops, and to propose future prospects.

Current applications of CRISPR/Cas systems
in crop breeding

Providing the world with diverse, abundant, nutritive plants
and plant-derived products in a sustainable manner cannot be
achieved without better understanding of plant biology under
both normal and stressful conditions. CRISPR/Cas-medi-
ated genome editing not only revolutionizes crop biology
but also providing means for crop improvement (Chen et al.
2019; Kumar et al. 2020a; EI-Mounadi et al. 2020). Current
applications of CRISPR/Cas systems in crop improvement
regarding yield, quality, biotic and abiotic stress tolerance,
and herbicide resistance are summarized in Table 1, albeit
the fact that increasing excellent reviews are emerging (Gao
2021; Miladinovic et al. 2021). Outputs of CRISPR/Cas9-
edited crops, whether targeting a single gene or multiple
genes, include mainly small indels or single nucleotide
base substitutions; however, high frequency of large dele-
tions and/or reorganizations are also reported (Zhu et al.
2017; Li et al. 2019b; Biswas et al. 2020a). Nevertheless,
all mutations can pass faithfully to subsequent generations
without any novel modifications (Zhu et al. 2017; Biswas
et al. 2020a). Thus, CRISPR/Cas9 finds its way with high
potential to be widely adopted for crop breeding (Fig. 1),
because it is blurring the boundaries in the GM regulations
(Araki and Ishii 2015).

Crop domestication

Compared with their wild ancestors, currently cultivated
crops have reduced genetic diversity and resilience to
biotic and abiotic stresses (Doebley et al. 2006). On the
other hand, compared with cultivated crops, wild crops
and/or orphan crops could harbor desired high yield/nutri-
tion traits and favorable resilience that could readily to
adapt to changing climates. Therefore, domestication of
wild species/orphan crops could be a fascinating way to
secure food supply. Conventional domestication is a time-
consuming and laborious process (Fernie and Yan 2019;
Yu et al. 2021), and the CRISPR/Cas9 system, with its pre-
cise, accurate and multiplex genome modification capac-
ity, could accelerate the process of crop domestication.
In tomato, targeting six genes of agronomic importance
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Table 1 Applications of CRISPR/Cas systems for major crop improvement (since 2019)

Purpose Target gene Technology Mutation type Mutation position Factors affect References
Improving yield  OsLOLGS CRISPR/Cas9 s  Base deletion Exon: frame shift Increased grain ~ Wang et al.
mutation numbers and (2020b)
weight (1000
seed weight)
OsPIN5b CRISPR/Cas9 Base deletion Exon 1: frame Increased tiller Zeng et al. (2019)
shift mutation numbers and
longer panicles
0sGS3, OsGW2, CRISPR/Cas9 Base deletion Exon 2, Exon Increased grain Zhou et al. (2019)
OsGNla 1, and Exon length, width
4: frame shift and numbers
mutation (1000 seed
weight)
Improving qual-  OsAAPI10 CRISPR/Cas9 Base insertion/  Exon 1; frame Improve eating ~ Wang et al.
ity deletion shift mutation and cooking (2020a)
quality (ECQ)
Wx BE Base substitution Exon 3; missense Low amylose Xu et al. (2020)
mutation content
OsGBSS1 CRISPR/Cas9 Base insertion/ Promoter and Low amylose Zeng et al. (2020)
deletion 5'UTR content
Waxy BE Base substitution Exon 5; missense Low amylose Li et al. (2020d)
mutation content
SSU-crtl and CRISPR/Cas9 Base insertion Genomic safe Enriched Dong et al. (2020)
ZmPsy harbors (GSHs)  carotenoid
region
OsPLDal CRISPR/Cas9 Base deletion Exon; truncated  Reduced phytic ~ Khan et al. (2019a)
mutation acid
Biotic stress SWEETI1,13and  CRISPR/Cas9 Base insertion/ Promoter region ~ Bacterial blight ~ Xu et al. (2019)
resistance 14 deletion resistance
Abiotic stress OsSRL1, OsSRL2 CRISPR/Cas9 Base deletion Exon; frame shift Drought Liao et al. (2019)
resistance mutation tolerance
OsRR22 CRISPR/Cas9 Base insertion Exon 1; frame Salinity tolerance Zhang et al.
shift mutation (2019a)
OsDST CRISPR/Cas9 Base deletion Exon; frame shift Drought and Kumar et al.
mutation salinity (2020b)
tolerance
Herbicide OsALS1 BE Base substitution Exon; missense Herbicide Kuang et al.
tolerance mutation bispyribac- (2020)
sodium
tolerance
OsALS1 CRISPR/Cas9 Base substitution Exon; missense Herbicide Ali et al. (2020)
mutation bispyribac-
sodium tolerance
OsACCase BE Base substitution Exon; missense Herbicide Li et al. (2020c¢)
mutation haloxyfop
tolerance
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Table 1 (continued)

Crop species  Purpose Target gene Technology Mutation type Mutation position Factors affect References
Rice Herbicide toler- OsACCase BE Base substitution  Exon; missense Herbicide Liu et al. (2020a)
ance mutation haloxyfop-
R-methyl
tolerance
OsSF3B1 CRISPR/Cas9 Base deletion and Exon; frame shift Herbicide Butt et al. (2019)
substitution mutation and GEX1A
missense muta- tolerance
tion
OsTubA2 BE Base substitution  Exon; missense Herbicide Liu et al. (2020b)
mutation trifluralin and
pendimethalin
tolerance
Wheat Improving yield  TaCKX2 CRISPR/Cas9 Base deletion Exon 1; frame Increased grain ~ Zhang et al.
shift mutation numbers (2019b)
TaGW2 CRISPR/Cas9 Base insertion/ Exon 8; frame Improved seed Zhang et al.
deletion shift mutation weight (2018b)
Improving quality a—gliadin CRISPR/Cas9 Base deletion Exon; frame shift Low-gluten Sanchez-Le6n
mutation content et al. (2018)
Biotic stress TaNFXLI CRISPR/Cas9 Base insertion/ Exon; frame shift Resistance to Brauer et al. (2020)
resistance deletion mutation Fusarium
graminearum
Abiotic stress TaDREB2, CRISPR/Cas9 Base insertion/ Exon; frame shift Drought Kim et al. (2018)
resistance TaERF3 deletion mutation tolerance
Herbicide EPSPS CRISPR/Cas9 Base insertion/ Exon 2; frame Herbicide Arndell et al.
tolerance deletion shift mutation glyphosate (2019)
tolerance
Barley Improving yield ~HvCKXI CRISPR/Cas9 Base insertion/ Exon 1; frame Increased tiller Holubova et al.
deletion shift mutation and grain (2018)
numbers
Improving quality HvGBSSla CRISPR/Cas9 Base insertion/ Exon 6; frame Low amylose Zhong et al.
deletion shift mutation content (2019b)
D-hordein CRISPR/Cas9 Base insertion/ Exon; frame shift Increased Yang et al. (2020)
deletion mutation glutenins
content
Biotic stress HvMORCI CRISPR/Cas9 Base insertion/ Promoter Resistance to Kumar et al.
resistance deletion Fusarium (2018)
graminearum
WDV genome CRISPR/Cas9 - - Resistance to Kis et al. (2019)
WDV
Maize Improving yield ZmPHYCI, CRISPR/Cas9 Base insertions/  Exon 1; frame Improved early ~ Li et al. (2020b)
ZmPHYC2 deletions shift mutation flowering
Improving quality GBSSI CRISPR/Cas9 Base deletion Promoter region ~ Waxy corn Gao et al. (2020)
and 3" UTR
Crop species Purpose Target gene Technology Mutation type Mutation position Factors affect References
Maize Abiotic stress ZmHKTI1 CRISPR/Cas9 Base deletion Exon 1; frame Salinity tolerance Zhang et al.

resistance

shift mutation

(2018a)
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Table 1 (continued)

Crop species  Purpose Target gene Technology Mutation type Mutation position Factors affect References
Tomato Improving yield  SIENO CRISPR/Cas9 Base insertion/ Exon; frame shift Increased in fruit Yuste-Lisbona
deletion mutation locule number et al. (2020)
and fruit size
Improving quality SISGRI, SIBlc CRISPR/Cas9 Base insertion/ Exon; frame shift Increased Li et al. (2018b)
deletion mutation lycopene
content
Biotic stress SIJAZ2 CRISPR/Cas9 Base deletion Exon; frame shift Bacterial speck  Ortigosa et al.
resistance mutation resistance (2019)
elF4E1 CRISPR/Cas9 Base deletion Exon 1; frame Enhanced Yoon et al. (2020)
shift mutation resistance to
Pepper mottle
virus
Abiotic stress SINPRI CRISPR/Cas9 Base insertion/ Exon; frame shift Drought Li et al. (2019a)
resistance deletion mutation tolerance
SIHKTI;2 CRISPR/Cpf1 Base substitution Exon 1; missense Salinity tolerance Vu et al. (2020)
mutation
Herbicide toler-  ALS BE Base substitution Exon; missense Herbicide Veillet et al.
ance mutation chlorsulfuron (2019a)
tolerance
Potato Improving quality StGBSSla CRISPR/Cas9 Base insertion/ Exon; frame shift Low amylose Veillet et al.
deletion mutation content (2019b)
StSBE1, StSBE2  CRISPR/Cas9 Base insertion/ Exon; frame shift High amylose Tuncel et al.
deletion mutation content (2019)
Biotic stress PVY CRISPR/Cas13a  Knockdown Conserved cod- Resistance to Zhan et al. (2019)
resistance ing region Potato virus Y
Soybean Improving quality GmFAD?2 CRISPR/Cas9 Base deletion Exon 2; frame High oleic acid Do et al. (2019)
shift mutation contents
Abiotic stress Drb2a, Drb2b CRISPR/Cas9 Base deletion Exon; frame shift Drought and Curtin et al. (2018)
resistance mutation salinity toler-
ance
Oilseed rape  Improving quality BnITPK CRISPR/Cas9 Base insertion/ Exon; frame shift Decreased phytic Sashidhar et al.
deletion mutation acid content (2020)
BnTTS8 CRISPR/Cas9 Base insertion/ Exon; frame shift Improved seed Zhai et al. (2020)
deletion mutation oil and protein
content
BnSFAR4,5 CRISPR/Cas9 Base insertion/ Exon; frame shift Improved seed Karunarathna et al.
deletion mutation oil content (2020)
Crop species Purpose Target gene Technology Mutation type Mutation posi-  Factors affect References
tion
Oilseed rape Biotic stress BnCRTIla CRISPR/Cas9 Base insertion/  Exon; frame Resistance to Probsting et al.
resistance deletion shift mutation Verticillium (2020)
longisporum
Cassava Biotic stress nCBP-1, nCBP- CRISPR/Cas9 Base insertion/  Exon; frame Decreased Gomez et al.
resistance 2 deletion shift mutation virus load and (2019)
symptom
Watermelon Biotic stress Clpskl CRISPR/Cas9 Base insertion/  Exon 1; frame Resistance to Zhang et al.
resistance deletion shift mutation Fusarium (2020b)
oxysporum
f.sp. niveum
(fon)
Herbicide toler- ALS BE Base substitu- Exon; missense  Herbicide Tian et al. (2018)
ance tions mutation tribenuron
tolerance
BE base editor
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present in cultivated tomato by CRISPR/Cas9 system
resulted in successful de novo domestication of wild
tomato Solanum pimpinellifolium, fruit size and fruit num-
bers in edited wild tomato were significantly increased and
lycopene accumulation in edited was remarkably enhanced
(Zsodgon et al. 2018). Taking advantage of multiple tar-
geting capacity of CRISPR/Cas9 (targeting SP5G, SP,
SICLV3, and SIGGP1), several desirable traits were created
into four stress-tolerant wild tomatoes; Cas9-free CRISPR/
Cas9-edited tomato plants showed domesticated desirable
traits (early harvest, determinate shoot architecture, large
fruit size, and improved nutritional benefits) while main-
tained bacterial spot disease and salt tolerance (Li et al.
2018a). Targeting known domestication loci in African
landrace Kabre with superior endemic pest resistance and
drought and nutrient deficiency tolerance resulted in the
reduction of plant stature (targeting HTD1) and increase of
yields (targeting GS3, GW2 and GNIA) in rice (Lacchini
et al. 2020). Targeting two domestication-related genes
(gSH1 for shattering and An-I for awn length) and two
agronomic trait associated genes (SDI for height and GS3
for grain length) through CRISPR/Cas9 demonstrated suc-
cessful rapid domestication of wild rice polyploidy rice 1
(PPR1), a wild allotetraploid rice Oryza alta (CCDD) (Yu
et al., 2021). Similarly, simultaneously targeting Ghd7 and
DTH?7 using a multiplex CRISPR/Cas9 editing approach
in PPR1 significantly altered their heading date (Yu et al.
2021). Those pioneer studies not only proved the concept
but also paved the way to utilize the genetic diversity hid-
den in wild crops for molecular based breeding to achieve
rapid de novo domestication of wild crops into staple
foods.
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In addition, using one-step CRISPR/Cas9 targeting regu-
lator genes of stem length (S/ER), rapid flowering (SP5G)
and precocious growth termination (SP), vine-like tomato
was reconstructed to compact and early yielding plants suit-
able for urban agriculture (Kwon et al. 2020). This could be
a novel application direction of CRISPR/Cas9 for horticul-
tural crop research and development.

Heterosis

Heterosis (hybrid vigor) is the genetic phenomenon in
which hybrid offsprings display better performance (in
yields/nutrition; stress tolerance, or adaptability) than their
parents (Birchler et al. 2010). Heterosis has been widely
utilized in modern agriculture, contributing remarkably
to food supply worldwide (Schnable and Springer 2013).
Heterosis can be maintained only in F1 generation. Farm-
ers have to buy hybrid seeds every year; on the other hand,
producing hybrid seeds is time-consuming, laborious, and
costly. Thus, fixing desirable hybrid traits is the most chal-
lenging neck bottle for using heterosis in crop breeding.
CRISPR/Cas systems show particular promising appli-
cations in this area. If the heterozygosity of F1 hybrid
can be fixed while haploid seeds can be produced, hetero-
sis can be maintained via self-propagation through such
seeds. Genome editing of three meiotic genes (RECS,
PAIRI and OSDI) using multiplex CRISPR—-Cas9 sys-
tem produced clonal diploid gametes and tetraploid seeds
while editing a fertilization gene (MATRILINEAL, MTL)
produced haploid seeds in hybrid rice. Thus, simultane-
ously editing of all four genes (RECS, PAIRI, OSD1, and
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MTL) in hybrid rice through CRISPR—Cas9 fixed favorite
F1 traits (Wang et al. 2019). Overexpressing of BBM1 (a
sperm cell-specific expressed AP2 transcription factor) in
egg cells in a triple knockout mutant simultaneously tar-
geting three meiotic genes (RECS, PAIRI and OSD]I) has
successfully replaced meiosis by mitosis, which resulted in
asexual propagation of hybrid rice through seeds (Khanday
et al. 2019). These studies demonstrated the feasibility to
maintain hybrid rice clonally through seed propagation
with the help of CRISPR/Cas systems.

Haploid induction

Haploid induction (HI), the first step of doubled haploid
technology, aims to regenerate haploid or spontaneous
doubled haploid plants based on intraspecific crossing. Tra-
ditional HI, depending on species, is achieved by several
approaches, such as androgenesis, gynogenesis or parthe-
nogenesis. It takes time, needs substantial personnel and
equipment, and always has unavoidable variability in effi-
ciency (Hooghvorst and Nogués 2020). Targeting genes
involved in natural fertilization of female gametic cells
using CRISPR/Cas9 impeded fertilization and resulted
in haploid embryos generated through egg cells (Hoogh-
vorst and Nogués 20200). CRISPR—Cas9-based HI systems
avoided wide ranging adaptation of protocols to different
genotypes. Currently, genes involved in chromosome seg-
regation (MATL, CENH3, and DMP) are well-known tar-
gets for HI in both monocots and dicots. Targeting MALT
by CRISPR/Cas9 in wheat obtained 18.9% haploid progeny
(Liu et al. 2019a; b). Similarly, targeting DMP in maize by
CRISPR/Cas9 achieved maternal haploids with the efficacy
of 0.1-0.3% (Zhong et al. 2019a, b). To obtain doubled
haploid homozygous lines, traditional HI needs six to eight
generations, genome-editing mediated HI needs only 1 year
(Hooghvorst and Nogués 2020), thus, CRISPR/Cas9 acceler-
ates crop breeding via haploid induction.

Another HI-editing technology (HI-Edit) has been devel-
oped to directly edit elite inbred lines of diverse monocot
and dicot species by a single cross. In MALT-based maternal
HI system, the cross between CRISPR/Cas9-edited sperm
cells and elite line egg cells leads to successful fertilization
off egg cells and edited elite doubled haploid whose chro-
mosomes are exclusively derived from the female parent. In
CENH3-based paternal HI system, the cross between elite
line (pollen donor) with CRISPR/Cas9-edited line results in
female genome elimination and doubled haploid (Kelliher
et al. 2019). Compared with existed HI systems, HI-Edit
avoids the delay and high cost of introgression due to its
faster and more effective delivery of edits to advanced breed-
ing materials. HI-Edit provides transgene-free edited inbred
lines lacking haploid-inducer parental DNA and the editing
machinery as well (Kelliher et al. 2019).

Synthetic biology

Plant synthetic biology integrates engineering principles
with biology to design and produce novel biological devices
or systems (Wurtzel et al. 2019; Tian et al. 2020). Genome-
editing technology could be used for targeted metabolic
engineering to produce desirable products through direct
knocking out or overexpressing of specific genes, or through
the introduction of a combination of existing enzymes. Actu-
ally, genome-editing technology could play essential roles
in plant synthetic biology to introduce new reactions/path-
ways that are not present in nature through de novo design,
and to renovate endogenous signaling pathways (Tian et al.
2020; Zhang et al. 2020a). Currently, several redesigned/or
synthesized novel biological devices or systems have been
reported. For example, the rubisco subunits with RAF1 to
enhance photosynthesis in maize (Salesse-Smith et al, 2018),
a synthetic CETCH cycle constituting a reaction network
of 17 enzymes from 9 different organisms of all 3 domains
of life to continuously fix CO, (Schwander et al. 2016), a
synthetic glycolate metabolic pathway to increase C; crop
yield (South et al. 2019). However, none of them was intro-
duced into plant systems using genome-editing approach.
One reason is that CRISP/Cas system has been almost exclu-
sively employed for gene knocking out and deletion but not
for gene insertion. A recent study successfully re-oriented a
75.5-Mb-long targeted chromosomal region in maize using
CRISPR/Cas9 approach (Schwartz et al. 2020), showing a
great potential for the application of CRISPR/Cas9 in syn-
thetic biology for chromosomal engineering to introduce
large synthetic device or systems to plants, particularly in
the case of overexpression of multiple stacking traits.

Molecular characteristics of genome-edited
crops

The outcomes of CRISPR/Cas9 system in crops are affected
by various factors, including Cas9 activity, gRNA expres-
sion, transformation procedure, callus culture time, and
gRNA protospacer sequence (Mikami et al. 2015; Doench
et al. 2016; Zhu et al. 2017). While most of the studies focus
mainly on transient or early stable transformants (Feng et al.
2014; Wang et al. 2014; Zhang et al. 2014; Zhou et al. 2014;
Zhu et al. 2017), very few pay attention to molecular char-
acteristics in the consecutive generations. So far, mutation
patterns and inheritability have been investigated mainly in
Arabidopsis and rice (Feng et al. 2014; Zhang et al. 2014;
Cermak et al. 2015). In Arabidopsis, a small incidence of
homozygous mutation can be identified in the T generation,
and rarely off-target mutation is reported (Fauser et al. 2014;
Feng et al. 2014; Ma et al. 2015). On the other hand, in rice,
homozygous and biallelic mutations appear even in T, plants
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(Ma et al. 2015), and pass stably to next generations follow-
ing laws of Mendel inheritance (Zhang et al. 2014).

The isolating transformants and identifying expected
mutations are not the only task for molecular characteri-
zation of genome-edited crops, particularly for breeding
purposes. Generally, exogenous T-DNA elements and Cas9
could be eliminated as early as in T, generation (Xu et al.
2015; Zhou et al., 2014). However, if they are not elimi-
nated intentionally at earlier stages, the presence of them in
T, generation is still high (Biswas et al. 2020a). The pres-
ence of exogenous element Cas9 in genome-edited plants
could make new mutations in every subsequent generation,
making it difficult for mutations transmission analysis and
hampering inherit stability. Moreover, it may potentially
cause off-target mutations. On the other hand, the presence
of other exogenous elements rather than Cas9 in the genome-
edited plants could be facing regulatory issues, making it
difficult for moving forward to commercialization, because
transgene-free is a prerequisite for regulatory approval of
commercial utilization of genome-edited plants (He et al.
2018). There are close connections between the presence of
exogenous elements and the presence of Cas9 (Biswas et al.
2020a), therefore, screening for the absence of Cas9 in T,
could help to eliminate the exogenous elements. Neverthe-
less, the screening for Cas9 cannot replace the screen for
other exogenous elements in T, or T, generation (Biswas
et al. 2020a). A potential commercialized product could be

Vector construction with
targeted sgRNA

Transformation

Regeneration

T, and later generations of homozygous
plants

"

Monitoring

Production and
extension

T, transgenic plants

-

heritable, exogenous genetic elements-free, target-modified,
and with expected traits that can be influenced by various
factors that need to be characterized accordingly (Fig. 2).

Methods for the screening of CRISPR/
Cas9-induced mutations in crops

The development of efficient, reliable, and inexpensive
methods to effective screening for on-target and off-target
genome-edited mutations from a pool of mutants in the early
stages helps to speed up further basic and applied studies. To
date, many different methods for the screening of genome
editing-induced, specifically CRISPR/Cas9-induced indels,
have been developed and applied in crops (Table 2).

These methods mentioned in Table 2 are generally PCR
based, which are reported to be effective under certain
circumstance, and thus, each has its own intrinsic limita-
tions. For example, all of them can reveal mutated geno-
types (insertion, deletion or substitution) but cannot reveal
the exact nucleotide changes (which nucleotide is inserted,
deleted or substituted) without Sanger sequencing. In con-
trast, many methods based on targeted deep sequencing,
such as AGEseq, Cas-Analyzer, CRISPR-GA, CRISPResso
and Hi-TOM, have been developed to identify simultane-
ously mutated genotypes and exact nucleotide changes with
high accuracy and sensitivity (see review in Liu et al. 2019a,

Transgene free T, mutant

gt

Segregation

Mutant screening

Molecular
characterization

T, homozygous plants

-

Molecular
characterization

Performance
analysis

Fig.2 Molecular characterization of genome-edited crops along the process from the lab to the field
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b). Obviously, as compared with targeted deep sequencing-
based methods, PCR-based methods are cheaper and more
suitable for screening purpose. Combined with Sanger
sequencing, these abovementioned screening methods can
also be used for identification purpose. In this case, desirable
mutation genotypes (homozygous insertion, deletion or sub-
stitution mutants) are first screened from plenty of lines by
these PCR-based methods and then confirmed with Sanger
sequencing. Among methods mentioned in Table 2, multi-
plex ligation-dependent probe amplification (MLPA)-based
method, when combined with Sanger sequencing, could be
the most suitable and accurate approach to screen mutants.
It has multiplex capabilities (about 60 different target sites
in a single assay), high sensitivity (down to=+ 1 bp and single
nucleotide replacement) and reliability (suitable for different
targets), and multiple functions (on- and off-target detection
simultaneously) (Biswas et al. 2020b).

Newly emerging genome-editing tools
in crops

During past few years, several new CRISPR systems have
been developed to improve the specificity and overcome
the bottlenecks of the CRISPR/Cas9 system for more effec-
tive genome editing (Fig. 3), which continue to drive major
advances in crop sciences and breeding. These emerging
technologies could be essential tools for molecular crop-
breeding purposes are discussed in below.

Cas12a/Cpf1 nuclease

The class 2 type V-A Cas protein Cpfl, also known as
Cas12a with RNA-guided DNA endonuclease activity, has
been widely applied in genome editing (Chen et al. 2019;
Kim et al. 2017). Cpfl uses a T-rich PAM sequence to rec-
ognize the target site in genomic DNA, which prolongs the
editing sites behind those of G-rich PAM preferred by Cas9.
The guide RNA of Cpf1 is shorter (about 43 bp) than sgRNA
of Cas9 (about 100 bp), and the Cpfl target site is posi-
tioned distal and downstream of the PAM sequence (Chen
et al. 2019; Kim et al. 2017). Cpf1 produces staggered-ended
DSBs at the distal location of a PAM, which provides further
benefits than Cas9 due to knock-in strategies and enhances
efficiency for the NHEJ-based gene insertion (Kim et al.
2017; Moon et al. 2018). Genome editing using Cpf1 system
in crops has been reported in rice and soybean (Kim et al.
2017; Xu et al. 2017). Whole-genome sequencing analysis
results indicated that neither Cas9 nor Cpfl generates bona
fide off-target mutations due to continued expression of Cas9
or Cpfl in T, rice (Tang et al. 2018). Notably, in vitro stud-
ies show that Cpf1 has robust non-specific activated nicking
activities, which may lead to off-target editing (Murugan

et al. 2020). Further investigations are needed to evaluate
the specificity of Cpf1 in vivo in other crops and to improve
current Cas12a-based applications (Schindele and Puchta
2020).

Cas12b/C2c1 nuclease

CRISPR-associated Cas12b, a class 2 type V-B nuclease,
prefers T-rich PAM, creates staggered ends of DNA DSBs,
and requires a crRNA and a trans-activating crRNA (com-
bined as a sgRNA). In addition, Cas12b protein is smaller
than Cas9 or Cas12a, which has been regarded as the prom-
ising CRISPR system for genome editing in crops. In rice,
it recognizes VITV PAMs, more preferring ATTV and
GTTG PAMs. The successful establishment of a compel-
ling Cas12b transcriptional activation system in rice indi-
cated that Cas12b is more adaptable for versatile guide RNA
engineering (Ming et al. 2020). Cas12b/C2c1 has been suc-
cessfully used to induce mutations including to create large
deletions at multiple loci, and to perform multiplex genome
editing in Arabidopsis, which does not show any mutations
at potential off-target sites (Wu et al. 2020). Nevertheless,
Cas12b requires higher temperature for optimal activity
(Teng et al. 2018), which needs to be modified to make it
more practically for crop applications.

Cas13/C2c2 nuclease

Cas13, also known as C2c2, is a newly identified CRISPR
effector, specifically cutting single-stranded RNA in eukar-
yotic cells (Wolter and Puchta 2018). Cas13 protein is
assigned into class 2 type VI, which acts solely on RNA
because of its unique HEPN (higher eukaryotes and prokary-
otes nucleotide-binding) domains are exclusively associated
with RNase activity. Notably, there is no strict requirement
for PAM sequence for some Cas13 orthologues (Wolter and
Puchta 2018). To date, three different Cas13 protein classes,
such as Cas13a, Cas13b, and Cas13d, have been applied for
RNA editing in plants (Schindele et al. 2019), mainly to
target RNA for cleavage, for combating RNA viruses (Aman
et al. 2018; Wolter and Puchta 2018). Combining Cas13 with
other DNA-directed Cas nucleases opens new opportunities
for crop breeding by targeting at both DNA and RNA levels.

Cas14/Cas12f nucleases

Casl4a, a highly compact class 2 type V nuclease, is an
RNA-guided DNA nuclease that can be utilized for target-
specific single-stranded DNA (ssDNA) cleavage (Harrington
et al. 2018; Khan et al. 2019b). Cas14a does not require
restrictive sequence to target and cleave ssDNA, which is
different from other known class 2 systems (Harrington et al.

@ Springer
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Fig.3 Genome-editing tools in crop improvement. a Cas9 protein
forms a crRNA-tracrRNA complex with the sgRNA to bind upstream
of the G/C-rich PAM sequence and initiates DSB through its RuvC
and HNH domains. b Cpfl and crRNA form a complex to bind the
downstream of the A/T-rich PAM sequence and introduces DSB via
a RuvC-like nuclease domain. ¢ Casl3 targets a single strand RNA
(ssRNA) molecule at the outer nuclease surface guided by crRNA
in the absence of a PAM recognition site. d, e Cytosine base editor
and adenine base editor, respectively. The complex of nickase Cas9
(nCas9-D10A) fused with cytidine deaminase/deoxyadenosine deam-

Cas9 nickase (D10A)

2018). Casl4a is the smallest functional CRISPR system
to date, which is only one-third size of Cas9 (Harrington
et al. 2018). The CRISPR/Cas14a system shows potential
application in crops in defense against ssDNA viruses or
mobile genetic elements. It has been used to create resist-
ance against ssDNA viruses, including Geminiviridae and
Nanoviridae families, in crops (Khan et al. 2019b).
Altogether, these abovementioned several nucleases
(Table 3) enable a wide range of genome-editing applica-
tions in crops, with their unique characteristics either at
DNA or RNA level. It is worthy to note that except Casl4a
(Harrington et al. 2018), LwaCas13a and PspCas13b (Wolter
and Puchta 2018), other nucleases require specific PAM
sequences for their functions. Two recent studies demon-
strate that using SpRY, a modified SpCAS9, does not need
all those specific PAM sequences, and realizes PAM-less
genome editing in rice (Ren et al. 2021; Xu et al. 2021),
which greatly extends the application of CRISPR system in
crop genome, and facilitates moving genome-edited crops
towards commercialization. Nevertheless, the identification
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Cas9 nickase (D10A)

Cas9 nickase

inase converts cytosine (C) or adenine (A) in the target site to uracil
(U) or inosine (I), resulting C-T and A-G replacement, respectively. f
Prime editor. The nCas9-RT complex formed between Cas9 nickase
and engineered reverse transcriptase domains targets to editing sites
by engineered prime editing guide RNAs (pegRNAs), and nicks the
PAM-containing DNA strand by Cas9 nuclease. HEPN higher eukar-
yotes and prokaryotes nucleotide-binding domains; HNH His-Asn-
His; pegRNA prime editing guide RNA; sgRNA single-guide RNA;
UGT uracil glycosylase inhibitor

of novel CRISPR—Cas genome-editing systems free of off-
target editing activity while maintaining robust on-target
editing efficiency and compatibility with crop genomes
continues to be a challenge in the future.

Base editors

Different from abovementioned nucleases, base editors
(BEs) precisely generate targeted mutations without require-
ment of DSBs or donor DNA, and independent on homol-
ogy-directed repair (HDR), providing efficient, simple,
well-accepted techniques for specific base replacement at the
target site (Chen et al. 2019). BEs are extremely useful when
base editing of interested protein-coding genes is needed to
generate genetic variants with improved agronomic traits
(Li et al. 2020c). Currently, there are two classes of BEs:
cytosine base editor (CBE) and adenine base editor (ABE).
CBE converts of C-G base pair to T-A base pair while ABE
converts of A-T base pair to G-C base pairs (Komor et al.
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2016; Gaudelli et al. 2017). CBEs use cytidine deaminases
to convert cytosine to uracil (Komor et al. 2016) while ABEs
use TadA deoxyadenosine deaminases to convert adenosines
to inosines (Gaudelli et al. 2020). Activities of both BEs
depend largely on PAM availability, because they both use
CRISPR-Cas DNA binding proteins to allow the targeted
deamination of single nucleotides at the targeted sites. BEs
install transition point mutations but cannot install trans-
version point mutations, precise insertions or deletions.
Both CBE and ABE have been tested in rice, and genome-
wide sequencing data indicated that CBE not ABE induces
substantial genome-wide off-target mutations, highlight-
ing needs to optimize fidelities of CBEs (Jin et al. 2019).
Progresses have been made to increase genome-targeting
scope and fidelity of BEs (Anzalone et al. 2020; Yan et al.
2021); hopefully, BEs will play more roles in both random
mutagenesis and targeted random mutagenesis (Li et al.
2020c) in crop breeding.

Prime editors

Prime editing, an emerging genome-editing tool, can pre-
cisely introduce all possible types of point mutations, and
small insertions/deletions without donor DNA or DSBs
(Anzalone et al. 2020). Prime editors (PEs) are fused pro-
teins of Cas9 nickase domains with engineered reverse tran-
scriptase domains. PEs target to editing sites by engineered
prime editing guide RNAs (pegRNAs), nick the PAM-con-
taining DNA strand by Cas9 nuclease, and prime reverse
transcriptions using extensions in the pegRNAs as templates
(Anzalone et al. 2020). Plant PEs have been successfully
developed and applied to precisely edit several endogenous
genes in rice and wheat protoplasts (Lin et al. 2020; Tang
et al. 2020), to achieve stable edited lines with desired edits
in both exogenous and endogenous genes (Butt et al., 2020);
Li et al., 2020e). Nevertheless, this new technology is still
at the experimental stages, more studies are needed to apply
PEs in crop for different trait improvement.

Safety regulations of genome-edited crops

There is an ongoing argument whether a genome-edited
organism obtained by the CRISPR technology is or is not
regarded as a genetically modified organism (GMO), and
regulated or not regulated as a GMO (Es et al. 2019). In
fact, similar to GMO, genome-edited crops are regulated
globally in either technology-based or final product-based
manner (Table 4) (Eckerstorfer et al. 2019; Van Vu et al.
2019). Some countries, including European Union (EU),

New Zealand, and India, recognize and regulate genome-
edited crops as GMOs based on technologies used to gener-
ate them (Jouanin et al. 2018; Fritsche et al. 2018; Friedrichs
et al. 2019). On the other hand, Argentina, Australia, Brazil,
Canada, Chile, Japan, and the USA, recognize and regulate
genome-edited crops based on the final products, and if they
are free of transgene, they are regarded as non-GMOs (Lema
2019; Eckerstorfer et al. 2019; Eriksson et al. 2019; Smyth
2017; Van Vu et al. 2019; Razzagq et al. 2019). Several coun-
tries like Nigeria and Kenya are in their way of developing
regulatory policy on genome-editing crops, but many coun-
tries have not yet confirmed their positions (Tripathi et al.
2020; Eckerstorfer et al. 2019). In China, according to the
current law, GE plants fall in the regulation scope of GMO,
specific laws regarding genome-edited products are not yet
announced (Gao et al. 2018).

Different countries take different initiative policies
regarding regulatory landscapes on genome-edited crops,
resulting in an inconsistent global regulatory system, which
somehow hinders commercial utilization of genome-edited
crops and pragmatic technological improvement. There is a
need to establish a more optimistic and more realistic regula-
tory system regarding genome-edited plants globally, bring
the world under the one safety regulation umbrella.

Conclusions and future directions

In addition to applications in basic researches in crops sci-
ences, CRISPR/Cas systems find ways in many aspects of
crop breeding. With advances in the development of novel
CRISPR/Cas systems that are more specific, accurate, effi-
cient and feasible, CRISPR/Cas systems will play more roles
in securing global food supply in a sustainable manner.

However, to be fully applied to crop improvement, fur-
ther improvements on these versatile tools are needed.
These include: (1) the fidelity, where the incidence of
off-target effect should be null; (2) the applicability,
where the activity is independent on PAM and the sys-
tem is free of donor DNA; (3) the compatibility, where
the delivery into crop cells is independent on species;
and (4) the traceability, where any modifications in the
genome should be traceable. Molecular characterization
of crops generated from any genome-editing tools should
be performed before any filed trials. Last but not the
least, development of a pragmatic product-based global
regulatory policy on genome-edited crops is necessary
for speeding up the applications of these tools in crop
breeding.
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Table 4 Current regulatory approaches on genome-edited crops in different countries

Country Agency Regarded Basis References

United States USDA Non-GMO Product based Razzaq et al. (2019)
Canada CFIA Non-GMO Product and novel trait Smyth (2017)
Argentina CONABIA Non-GMO: if final product is free of transgene Product based Lema (2019)

Australia OGTR Non-GMO: if final product is free of transgene Product based Eckerstorfer et al. (2019)
Japan MHLW Non-GMO: if final product is free of transgene Product based Van Vu et al. (2019)
Brazil CTNBio Non-GMO: if final product is free of transgene Case-by-case Eriksson et al. (2019)
Chile SAG Non-GMO: if final product is free of transgene Case-by-case Eriksson et al. (2019)
European Union EFSA GMO Process based Jouanin et al. (2018)
New Zealand HSNO GMO Process based Fritsche et al. (2018)
India FSSAI GMO Process based Friedrichs et al. (2019)
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