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Abstract
Key message  Nitric oxide is a dynamic gaseous molecule involved in signalling, crosstalk with stress regulators, and 
plant abiotic-stress responses. It has great exploratory potentials for engineering abiotic stress tolerance in crops.
Abstract  Nitric oxide (NO), a redox-active gaseous signalling molecule, though present uniformly through the eukaryotes, 
maintain its specificity in plants with respect to its formation, signalling, and functions. Its cellular concentrations are decisive 
for its function, as a signalling molecule at lower concentrations, but triggers nitro-oxidative stress and cellular damage when 
produced at higher concentrations. Besides, it also acts as a potent stress alleviator. Discovered in animals as neurotransmit-
ter, NO has come a long way to being a stress radical and growth regulator in plants. As a key redox molecule, it exhibits 
several key cellular and molecular interactions including with reactive chemical species, hydrogen sulphide, and calcium. 
Apart from being a signalling molecule, it is emerging as a key player involved in regulations of plant growth, development 
and plant-environment interactions. It is involved in crosstalk with stress regulators and is thus pivotal in these stress regu-
latory mechanisms. NO is getting an unprecedented attention from research community, being investigated and explored 
for its multifaceted roles in plant abiotic stress tolerance. Through this review, we intend to present the current knowledge 
and updates on NO biosynthesis and signalling, crosstalk with stress regulators, and how biotechnological manipulations of 
NO pathway are leading towards developing transgenic crop plants that can withstand environmental stresses and climate 
change. The targets of various stress responsive miRNA signalling have also been discussed besides giving an account of 
current approaches used to characterise and detect the NO.

Keywords  Nitric oxide · Signalling molecule · Abiotic stress · Genetic engineering · Transcription factors · miRNA · 
Crosstalk

Introduction

Being sessile organisms, plants experience several chal-
lenging and stressful external conditions throughout their 
life cycles that include abiotic (drought, salinity, extreme 
temperatures, and heavy metals, beside other) and biotic 
stress factors (bacterial, fungal, viral, and herbivory). 
Plants respond to these conditions via inducing a series 
of different molecular, cellular and physiological changes 
(Yadav et al. 2020). A common consequence and response 
is generation of reactive chemical species that at low cel-
lular concentrations act as signalling molecules regulating 
secondary messengers, enzyme activities and expression 
of key genes (Farnese et al. 2016). However, these reactive 
species may turn toxic to cells and organelles if their con-
centrations increase beyond threshold levels (Khare et al. 
2020). These reactive species in plants include reactive 
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oxygen species (ROS), reactive nitrogen species (RNS), 
reactive sulphur species (RSS) and reactive carbonyl spe-
cies (RCS) (Zhou et al. 2021). Amongst different reactive 
species, ROS and RNS have gained significant attention 
because of their prevalent presence and dual roles in cel-
lular metabolism, as signalling molecules or as oxidative 
burst causing-agents; based on their concentration in cell 
(Patel et al. 2019). Notable work has been done to under-
stand and explore the roles of ROS in plant cells such 
as involvement in stomatal guard cell opening (Yamauchi 
et  al. 2019), plasma membrane fluidity (Møller et  al. 
2007), male-sterility and tapetal programmed cell death 
(PCD) signalling (Neill et al. 2002; Miller et al. 2010; 
Suzuki et al. 2011). The RNS biology, however, is emerg-
ing as a topic of great interest with linear increase in the 
reports coming on various aspects of RNS in plants. Mem-
bers in RNS family include nitric oxide (NO), S–nitroso-
thiols (RSNOs), S–nitrosoglutathione (GSNO), and per-
oxynitrite (ONOO−). From such diverse members with 
contrasting characters, the only unifying character among 
RNS members is their derivation from nitric oxide (NO). 
Hence, it was necessary to investigate and decipher the 
NO biochemistry and physiological roles played by it to 
get better insights on RNS.

NO is a small diatomic gaseous molecule, with a short 
half-life. In early years, NO was thought to be involved 
mainly in air pollution and acid rains. It was not earlier than 
1987, when role of NO as endothelium-derived relaxation 
factor (EDRF) in mammalian cells and synthesis of NO from 
amino acid L–arginine by enzyme NO synthase were identi-
fied (Ignarro et al. 1987; Palmer et al. 1987, 1988). Since 
then, extensive work has been carried out to identify the 
roles and functions of NO in both animals and plants. Dur-
ing stress, NO affect enzymes and proteins predominantly 
by covalently attaching to cysteine thiols by S–nitrosyla-
tion, along with other modifications such as nitrosylation of 
metalloproteins and tyrosine residues (Lindermayr 2018). 
Redox signal of NO by S–nitrosylation has recently emerged 
as a pioneer signal transmitter of NO bioactivity (Fernando 
et al. 2019). S–nitrosylation is a selective covalent post-
translational modification, through which a nitrosyl group 
is added to reactive thiol group of a cysteine to ultimately 
form S–nitrosothiol, a key mechanism in transferring NO-
mediated signals (Fernando et al. 2019). NO is also known 
to be involved in signalling for plant defence (Bellin et al. 
2013), antioxidant and inhibitor of PCD (He et al. 2019a), 
plant-rhizobium infection (Fukudome et al. 2016), plant-
fungal and oomycetes interactions (Jedelská et al. 2020), 
besides, symbiotic associations (Martínez-Medina et al. 
2019). Along with this, NO has also been reported to be 
involved in plant responses to abiotic stresses such as salinity 
(Hasanuzzaman et al. 2018), drought (Montilla-Bascón et al. 
2017), and metal stress (Sharma et al. 2019).

This review discusses the current knowledge and updates 
on biosynthesis, transport, and scavenging of NO in plants. 
A critical look on how NO interact with different stress reg-
ulators like secondary messengers, reactive chemical spe-
cies, and phytohormones has been provided. Besides, this 
review discusses how these interactions can be used for crop 
improvement especially in creating abiotic stress (or climate) 
resilient crops using genetic engineering approaches. Recent 
trends in characterisation of NO along with idea of micro-
RNA (miRNAs) signalling and regulations due to NO during 
stress conditions and adaptations are also discussed.

Nitric oxide: a dynamic entity involved 
in plant growth and stress responses

For the initial years after its discovery, NO was known as 
the ‘nitrous air’ or more commonly the ‘laughing gas’ and 
thus was extensively studied in mammals for its potential 
neurological impacts. The research shifted to plants after the 
report of NO generation/biosynthesis in plant cells (Klep-
per 1975). The NO research in animals got the Nobel Prize 
when Robert F. Furchgott, Louis J. Ignarro, and Ferid Murad 
shared the Nobel Prize in 1998 for their discoveries concern-
ing NO as a signalling molecule in the cardiovascular system 
(Nicholls 2019). Gradually, NO’s role in plants shifted from 
being a reactive species and a signalling molecule, to its 
involvement in plant defence system, changing the paradigm 
from cytotoxic to beneficial compound (Sahay and Gupta 
2017). The role of NO varies across the strata of the organ-
isms. For instance, it acts as a neurotransmitter in animals 
and regulates muscular, immunological, and respiratory 
responses (Esplugues 2002). In plants, it has displayed the 
involvement in stress response/signalling, plant growth and 
development and the PCD (Gupta et al. 2011). Evidence is 
also there that NO may protect some bacteria against oxi-
dative stress (Gusarov and Nudler 2005). Figure 1 depicts 
the involvement and roles of NO in plant development and 
plant-environment interactions.

Being an important player in modulating plant growth 
under stress, NO has been reported to coordinate the activi-
ties required for plant organogenesis by participating in the 
pathways for production of plant hormones like jasmonic 
acid (JA), and brassinosteroids (BRs) (Raya-González et al. 
2019). Auxins (AUX), a class of plant hormones are known 
to stimulate NO production in plant roots which results in 
lateral root development (Moni et al. 2018). Another possi-
ble mechanism is the methane-induced accumulation of NO, 
which leads to the increased formation and development of 
adventitious roots (Qi et al. 2017). Beside these roles, NO 
plays a vital role as a signalling molecule during the root 
development, nitrogen fixation, root-fungal interactions and 
promotion of high microbial diversity in the rhizospheric 
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environment (Ma et al. 2020). In Tagetes erecta, NO donor 
sodium nitroprusside (SNP) showed indirect organogen-
esis of shoot and root from callus, showing its role in plant 
growth (Jafari and Daneshvar 2020).

The role of NO in seed germination has also been 
described in many reports. The pre-treatment of seeds with 
SNP have been extensively explored. For instance, exog-
enous application of SNP to seeds of Brassica chinensis 
exerted positive effects on seed germination rate and seed-
ling growth under saline conditions via enhanced scaveng-
ing activity of enzymatic antioxidants including superoxide 
dismutase (SOD), catalase (CAT) and peroxidase (POX) 
(Ren et al. 2020). In Brassica juncea, SNP pretreated seeds 
showed improved seed germination rates under copper (Cu) 
stress due to induced antioxidant defense and increased 
amylase activity (Rather et  al. 2020). Under chromium 
(Cr) stress, exogenous application of SNP relieves stress-
induced impairment via promoting the activities of scaveng-
ing enzymes, amylase, and protease resulting in increased 
seed germination (Khan et al. 2020a). Table 1 enlists some 
important case studies involving exogenous applications of 
NO and its donor (SNP) for alleviation of negative stress 
impacts.

Peroxule are thin protrusions from the spherical peroxi-
somes, produced when the ROS levels are low. The peroxule 
production in a plant cell is highly dependent on the presence 

of NO in the cytoplasm (Terrón-Camero et al. 2020). In 
Arabidopsis under cadmium (Cd) stress, NO production and 
interaction were observed via electron microscopy during 
peroxule formation (Terrón-Camero et al. 2020). Exogenous 
application of NO to fresh fruits and vegetables showed 
delayed senescence and worked as a freshener or stabiliser 
during long-term storage of fruits/vegetables (Steelheart 
et al. 2019). In sweet pepper, the fruit ripening process was 
found to be NO-dependent (González-Gordo et al. 2019). 
Authors observed NO-dependent changes in sweet pepper 
fruit transcriptome, fruit ripening in the absence of NO 
showed changes in the abundance of 8805 transcripts, and 
the functional clusters associated with ROS/RNS were sig-
nificantly modified. The NO treatment induced differential 
expression of 498 genes within these functional categories. 
These findings reveal the key roles of NO in the ripening of 
sweet pepper fruits (González-Gordo et al. 2019).

NO is emerging as a vital player underlying abiotic and/
or biotic stress interactions in plants. NO production during 
such interactions tends to alleviate in such stressful envi-
ronment. NO has demonstrated to regulate the chlorophyll 
production and to stimulate the hypersensitive chain reac-
tions during stress interactions (Lazalt et al. 1997; Romero-
Puertas et al. 2004). Stress-mediated increase in NO pro-
duction stimulated the activity of various ATPases, and 
ion channels for better homeostasis. In maize for instance, 

Fig. 1   Nitric oxide (NO) mediated responses during plant develop-
ment and plant-environment interactions. (AUX auxins, ABA abscisic 
acid, GAs gibberellins, CKs  cytokinins, ET ethylene, BRs brassinos-
teroids, SA salicylic acid, PAs polyamines, JMs jasmonates, Pro pro-

line, GB glycine betaine, SOD superoxide dismutase, CAT​ catalase, 
POX peroxidase, ROS reactive oxygen species, RCS reactive carbonyl 
species, RSS reactive sulfur species)
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NO was shown to improve salinity tolerance via regulating 
the plasma membrane proton pump activities (Zhao et al. 
2004). The authors provided the evidence for establishing 
the involvement of NO in salt tolerance of Phragmites com-
munis (Zhao et al. 2004). NO, produced under salt stress, 
served as a second messenger for the induction of plasma 
membrane H+-ATPase expression, which in turn maintained 
high K-to-Na ratio for conferring better salt resistance (Zhao 
et al. 2004). SNP-treatment has been reported to exert sev-
eral positive impacts like increased seed germination in 
Lupinus luteus (Kopyra and Gwóźdź 2003), restored devel-
opmental mechanisms in seedlings of sunflower (David et al. 
2010), plant growth, increased ionic levels and scavenging 
enzymes activity in citrus during saline stress (Khoshbakht 
et al. 2018). Stomatal opening and closing play major roles 
in conferring plant abiotic stress tolerance. NO being a gas-
otransmitter, regulates the signalling network involved in 
the movement of guard cells, causing stomatal opening and 
closing (Nabi et al. 2019). During heat stress, the heat shock 
response (HSR) of the plants mediate through biosynthesis 
and transport of NO and salicylic acid (SA) via calcium sig-
nalling (Rai et al. 2020). This acts as a regulator of Heme 
Nitric oxide/Oxygen (H-NOX) motif of a heme binding pro-
tein involved in the regulation of endogenous NO synthases. 
High concentrations of NO and SA cause conformational 
changes in non-expresser of pathogenesis related (NPR) 
genes involved in stress-responsive genes against heat (Rai 
et al. 2020). These NPR genes act as master regulators of SA 
signalling under pathogen attack and are important in terms 

of providing plants innate immunity (Innes 2018). Thus 
after several years of extensive research on deciphering the 
roles and mechanisms of NO in plants, various avenues have 
been opened up on formulations of new research hypotheses. 
Owing to its dynamic nature and versatility, NO provides a 
great scope for its application and exploration in crops for 
increasing the plant efficiency and tolerance/resilience to 
stress conditions.

Biosynthesis, transport and scavenging 
of nitric oxide in plants

NO is endogenously present in the plant cells as a by-product 
of various catabolic reactions of nitrogen-containing com-
pounds. Besides, it is absorbed by the plants from the sur-
rounding environment and soil. The knowledge and under-
standings about the NO synthesis in plants was influenced 
by the findings on NO production in animal systems putting 
an emphasis on nitrate reductase (NR), the enzyme that usu-
ally converted nitrates to nitrites but was later observed to 
convert the nitrite to nitric oxide (Crawford 2006).

NO has two biosynthetic pathways as depicted in Fig. 2, 
an oxidative one which includes the production through 
oxidation of L–arginine or other polyamines (PAs), and 
second one a reductive pathway which heavily depends 
on NR and other reductive enzymes present in the mito-
chondrial and plasma membrane (Gupta and Igamberdiev 
2011). The reductive pathway uses enzymes produced in 

Fig. 2   Oxidative and reductive routes of nitric oxide (NO) biosynthe-
sis. Reductive rout (observed in plasma membrane, chloroplasts, apo-
plast, peroxisomes, cytoplasm, and  mitochondria) occur via  reduc-
tion of nitrate (NO3

−) or nitrite (NO2
−) by nitrate reductase (NR). 

In oxidative route (observed in chloroplasts and leaf peroxisomes) 
occurs via oxidation of l-Arginine or  hydroxylamine. (cNR cyto-

solic nitrate reductase, PMNR plasma membrane-bound nitrate reduc-
tase, PM-NiNOR plasma membrane-bound nitrite NO reductase, Mt-
NiNOR mitochondrial  electron transfer chain-dependent enzymatic 
nitrite NO  reductase, XOR xanthine oxidoreductase, NADPH nicoti-
namide adenine dinucleotide phosphate, Ca2+ calcium ions, FMN fla-
vin mononucleotide, FAD Flavin adenine dinucleotide)
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the mitochondrial electron transport chain (ETC), mainly 
amidoxime reducing compound, molybdenum cofactor 
dependent reducers (León and Costa-Broseta 2020), and 
other reductases like xanthine oxidoreductase (XOR), nitrite 
dependent nitric oxide reductase (Ni:NOR), along with NR 
(Sahay and Gupta 2017). This pathway is usually dominant 
under normoxic conditions whereas oxidative pathway 
requires a hypoxic environment (León and Costa-Broseta 
2020).

The production of NO involves the participation of vari-
ous organelles like mitochondria, chloroplast, peroxisomes, 
endoplasmic reticulum, apoplast, plasma membrane, and the 
cytoplasm of the cell (Sahay and Gupta 2017). The mecha-
nism of production varies between organelles depending on 
their preference to either of the two previously mentioned 
pathways. The reductive pathway occurs in the plasma 
membrane where lower pH converts NO2¯ to NO and O2 
and in apoplast releasing the root-specific NO using nitrite 
substrates present in it. Organelles like chloroplast, peroxi-
somes, and mitochondria switch the production pathways 
depending on the availability of substrates and the environ-
mental conditions. Cytoplasm converts nitrate into nitrite in 
an NADPH-dependent manner for further reduction along 
with oxidation of PAs. It also produces intermediate NO 
during GSH to GSNO conversion via a glutathione-based 
pathway (Nabi et al. 2019).

Exogenous NO is transported inside the cell via nitro-
gen transporter in the form of nitrate, which then under-
goes reductive pathway forming NO by nitrate NR in an 
NADPH-dependent manner (Zhou et al. 2021). The nitrate 
homeostasis is maintained by high- and low-affinity nitrate 
transporters (Chamizo-Ampudia et al. 2017). Along with 
these, transporters belonging to the chloride channel (CLC) 
family maintain nitrate concentrations in the cytoplasm via 
effluxes of various organelles.

NO, like all metabolites in a cell needs to be balanced 
at a particular concentration, which is done by the cell’s 
metabolic and scavenging activities regulated by specific 
enzymes and substrates. In animals, proteins like flavohae-
moglobin, haemoglobin and reductases degrade the excess 
NO while in yeast flavoglobin is the main NO degrader (Liu 
et al. 2000; Gardner 2005; Gupta et al. 2020b). Similarly, 
plants have their NO scavengers namely phytoglobins, that 
are highly efficient under hypoxic conditions converting NO 
to nitrate by oxidising itself into metphytoglobin (Gupta and 
Igamberdiev 2011). This is converted back to phytoglobin 
by a reductase mediated reaction co-factored by ascorbate 
(Hebelstrup et al. 2008; Gupta and Igamberdiev 2011; Gupta 
et al. 2020b). Reduced glutathione (GSH) reacts with NO 
to form nitrosoglutathione (GSNO), which can be harnessed 
to give back NO for nitrosylation of proteins and thus con-
tributing to its cellular concentration maintenance (León 
and Costa-Broseta 2020; Kalinina and Novichkova 2021). 

On the other hand, a further oxidation of GSNO results in 
production of ammonia and glutathione disulphide by spe-
cific reductase (León and Costa-Broseta 2020). When the 
nitrosylated proteins are non-nitrosylated, they release NO 
back in the cell affecting the maintained NO-balance (León 
and Costa-Broseta 2020). This happens when the S–nitros-
ylation-related signalling is affected during pathogen attack, 
which triggers plant’s inherent immunological response. A 
thioredoxin-mediated redox signalling was reported to be 
involved in regulation of S–nitrosylation of proteins, contrib-
uting to the homeostasis of NO and involved in plant immu-
nity (Mata-Pérez and Spoel 2019; León and Costa-Broseta 
2020). Other regulators of NO degradation are NAD(P)H 
dehydrogenases-type dehydrogenases, that act by converting 
the NO into peroxynitrite (ONOO−) via forming the super-
oxide anions, under calcium stimulation and hindered by 
anoxic conditions by SOD (Gupta et al. 2020a).

Another method of NO scavenging is during reactive 
species reaction when NO interacts with oxygen generating 
nitrate and nitrite or when it forms nitro fatty acids via its 
reactions with lipid peroxyl radical (LOO•) (Hancock 2012; 
Rubbo 2013; León and Costa-Broseta 2020). Haemoglobins 
have been reported to contribute in NO scavenging through 
its reduction to FE(II)Hb which then deoxygenates the NO 
(Chamizo-Ampudia et al. 2017). NO is metabolised in pres-
ence of oxygen by being converted to dinitrogen trioxide 
(N2O3) and NO2. Subsequently, in an aqueous environment, 
they are converted to nitrite and nitrate as part of a nitro-
oxidative stress response (Corpas and Palma 2018). Overall, 
we can conclude that the NR is a key enzyme for nitrogen 
acquisition by plants. Nitrate, its main substrate, is required 
for signalling and is widely distributed in diverse tissues in 
plants. In addition, NR has been proposed as an important 
enzymatic source of NO (Chamizo-Ampudia et al. 2017). 
The homeostasis of NO depends on at least two key molyb-
doenzymes, NR and NO forming NR (NOFNiR) besides 
dioxygenase activity of haemoglobins.

Current approaches for detection 
and characterisation of nitric oxide

Characterisation and quantification remain two most impor-
tant parameters in studying the reactive species in stress 
biology. Among different reactive species, measurement of 
NO remains challenging and tricky because of its ubiqui-
tous, gaseous and unstable nature. Another parameter while 
characterising NO is inter-conversion of NO−, NO, and NO+ 
under physiological conditions; hence care should be taken 
while designing the experiment and choosing the NO donor 
to avoid misinterpretation of the results (Yamasaki et al. 
2016).
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NO detection method based on colorimetric bioassay, 
mass spectroscopy, chromatography, fluorescent probes; 
spin traps, electrode-based techniques have been developed 
(reviewed by Csonka et al. 2015). Each technique has its 
own advantages and disadvantages. Most frequently used 
bioassay technique for detection of NO via Griess method. 
This is a method based on nitrite-derived NO quantification 
based on the Griess reaction. The Griess reaction is specific 
for nitrite quantification. Principle behind Griess method 
is, in presence of O2, NO gets converted to NO2− which 
reacts with Griess reagent and is detected spectrometri-
cally at 540 nm using a plate reader (Antoniou et al. 2018). 
Another version for detection of gaseous NO is using CrO3 
oxidizer column, CrO3 converts NO to NO2 which subse-
quently is trapped using Griess reagent solution to form 
NO2− and detected using spectrophotometrically (Vitecek 
et al. 2008). Along NO, detection of S–nitrosothiols has 
emerged as important player. S–nitrosothiols (RSNO) detec-
tion by Saville reaction using mercury chloride and later 
Griess reagent has been used (Bryan and Grisham 2007).

Real-time monitoring and measuring becomes impor-
tant in studies when NO is involved in signalling cascade 
or when formation and conversion takes place in very short 
time and at low quantity. In such studies bioassay or bio-
physical techniques are not suitable for real-time monitoring 
and the real time monitoring can be done using fluorescent 
probes, chemiluminescent detector or using electrodes. NO-
specific probes that are widely used are diaminofluoresceins 
(DAFs), 2,3–diaminonaphthalene (DAN), 1,2–diaminoan-
thraquinone (DAQ or DAA), diaminorhodamine (DAR-4M 
AM), fluorescent nitric oxide cheletropic traps (FNOCT), 
acridine–TEMPO–DTCS–Fe(II), 8–(3,4–diaminophe-
nyl)–2,6–bis (2–carboxyethyl)–4,4–difluoro–1,3,5,7–tetra-
methyl–4–bora–3a,4a–diaza–sindacene (DAMBO–PH) 
(Zhou et al. 2021). Ozone-based chemiluminescent detector 
(CLD) is another sensitive technique, in which NO reacts 
with ozone, excited NO2 emits lights which is detected by 
photomultiplier (Bryan and Grisham 2007).

Biophysical techniques for measurement of NO are more 
sensitive. For biological detection of gaseous NO, often 
detection/quantification is required at very low (ppb) level, 
and hence high-throughput, ultra-sensitive analytic tech-
niques are needed. NO detection based on Infra-red (IR) 
spectroscopy at absorbance at 5.3 μm has been reported, 
accordingly two systems laser photoacoustic detection 
(LAPD) and quantum cascade lasers (QCL) based on IR 
spectroscopy have been developed with high sensitivity 
and specificity (Mur et al. 2011). Mass spectroscopy-based 
detection is another technique used for detection of gaseous 
NO present in plant tissues. Two types of MS approaches 
have been developed for detection of NO, membrane inlet 
mass spectrometry (MIMS) and restriction capillary inlet 
mass spectrometry (RIMS) (Conrath et al. 2004). In MIMS/

RIMS system, before MS detection, a prior step for molecule 
separation is done via membrane (MIMS) or through restric-
tion capillary (RIMS) which allows only small molecules 
to pass through such as NO. As an advantage over other 
NO assays, MIMS/RIMS have advantages over other NO 
assays, as it discriminates nitrogen isotopes and simultane-
ously measures NO and O2 (and other gases) from the same 
sample. This technology thus holds significance and may be 
used to identify cellular NO sources, besides, it can also be 
used for elucidating the relationships between primary gas 
metabolism and NO formation (Conrath et al. 2004).

The most reliable, specific and sensitive technique, how-
ever, for detection of NO can be considered as electron 
spin resonance (ESP) also called as electron paramagnetic 
resonance (EPR). EPR detects only free radicals, making 
it specific for NO detection over other radicals (Kleschyov 
et al. 2007; Mur et al. 2011). It is the most specific method, 
due to NO-specific spin traps used in it. Major advantage 
associated with the use of EPR for NO detection is that it 
only detects the paramagnetic molecules, and the EPR spec-
trum presents a unique fingerprint of the chemical/electronic 
structure around the unpaired electron.

Crosstalk of nitric oxide with stress 
regulators

Crosstalk with signalling molecules

The interaction of NO with signalling molecules such as 
receptors, secondary messengers, transcription factors 
(TFs) and enzymes during physiological and environmental 
responses of the plant cells has led to the study of crosstalk 
of NO with ions like Ca2+, K+, and Na+. During salinity-
induced stress responses, the activities of signalling mol-
ecules including ROS, NO and Ca2+ are altered in the guard 
cells leading to the regulatory changes in opening and clos-
ing of stomata (Hasanuzzaman et al. 2018). Salinity-driven 
responses in the mangrove plants revealed the interaction of 
H2O2, ATP, and Ca2+ increase the Na+ extrusion via NO-
induced Na+/H+ antiporters (Lang et al. 2014). Garcia-Mata 
et al. (2003) studied the regulation of Ca2+ ion channels 
in Vicia faba guard cells mediated through NO by releas-
ing Ca2+ from inner cell stores to the cytosol, leading to 
the controlled guard cell movements and indicating the 
NO-induced Ca2+ activation of cellular signalling. These 
results confirmed the NO action decisively in one branch of 
Ca2+ signalling pathways engaged by ABA and defined the 
boundaries of parallel events in control of guard cell move-
ments (Garcia-Mata et al. 2003). Mitogen-activated protein 
kinase (MAPK) signalling pathway can be activated via phy-
tohormones; however, reports have shown the H2O2–NO or 
NO-mediated cGMP-independent pathway stimulation of 
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MAPK with the help of secondary messengers during physi-
ological processes and abiotic stress responses (Hasanuz-
zaman et al. 2018; Shen et al. 2019). Reports have revealed 
the crosstalk of NO and MAPK–1/2 via NO generation by 
NR, the activity of S–nitrosylated glutathione reductase, and 
activation of MAPK1/2 enzymes during cold stress tolerance 
in tomato plants (Lv et al. 2017).

An important polyamine spermidine is considered cru-
cial for plant adaptations to the environmental stresses 
(Alcázar et al. 2006). Besides, spermidine is reportedly 
involved in the induction of H2S signalling via increasing 
the L/D–cysteine desulfhydrate (L/DCD) activities (Li et al. 
2019). The TFs such as bZIP37, bZIP107, DREB2, DREB4, 
and WRKY108715 are regulated by the spermidine during 
H2S downstream signalling and crosstalk between NO, 
H2S, and Ca2+ signalling resulted in water stress tolerance 
in white clover plants (Li et al. 2019). The WRKY TFs are 
actively involved in the environmental stress responses. In 
tomato, SlWKRY81 reported to repress the transcription of 
NR and to lower the NO accumulation for modulating the 
stomatal closure and subsequently the drought tolerance 
(Ahammed et al. 2020). Hajihashemi et al. (2020) studied 
the crosstalk between NO, H2O2 and Ca2+ at the germination 
stages in Chenopodium quinoa plants subjected to salinity 
stress. The findings revealed stimulated amylase activities in 
the seeds pre-treated either with SNP, H2O2 or CaCl2. This 
resulted in high starch breakdown rates and thus increased 
availability of water-soluble sugars; which can be attributed 
to the improved germination under the saline conditions 
(Hajihashemi et al. 2020).

Crosstalk with reactive species

The inevitable production of the reactive species during the 
stress interactions in plants is well-established. The evi-
dences have suggested the interplay between NO and the 
ROS (such as H2O2) as well as RSS (such as H2S). Aerobic 
metabolic processes in subcellular-compartments of vari-
ous organelles results in ROS generation in mitochondria, 
chloroplasts, apoplasts, and plasma membrane, which is 
formed by partial reduction of oxygen. Amongst these, 
the hydrogen peroxide (H2O2), superoxide anion 

(

O
*
−

2

)

 and 
hydroxyl radical (·OH) are the major reactive species (Kaur 
et al. 2019; Kalia et al. 2017). ROS are major signalling 
components involved in plant growth, development, and 
abiotic/biotic stress responses, which interplays with the 
RNS generation and NO signalling (Hancock et al. 2002; 
Wrzaczek et al. 2013). NO and ROS play vital roles in bio-
logical- and cross-talk processes involved in plant responses 
to environmental stresses (Kohli et al. 2019). In plants, NO 
acts as iron ligand in heme-containing enzymes which leads 
to their activation/inhibition. During stress-interactions, the 
ROS generation induces NO signalling, where NO binds 

with the heme group of the enzymatic ROS scavengers (like 
CAT). The highly-reactive, lipophilic NO binds to the thi-
olic- and metallic-groups of enzymes, which may modulate 
the enzyme activities (Arora et al. 2016). Further, at low NO 
concentration, the scavenging of ·OH confers the antioxidant 
properties to NO. Besides, NO is also known as the strong 
inhibitor of protein oxidation and lipid peroxidation (Fancy 
et al. 2017).

Several reports have established melatonin (MET) as one 
of the amphiphile multi-functional signalling molecules 
involved in physiological responses, abiotic responses, ROS 
and RNS scavenging, cell antioxidant activities, and oxida-
tive-stress improvement (Debnath et al. 2019). The MET 
levels can regulate the ROS concentrations in two ways; 
firstly, by chemical interaction with ROS leading to the ROS 
inactivation, or secondly, by MET induced activities of enzy-
matic antioxidants including SOD, CAT and POX (Arnao 
et al. 2019; Khan et al. 2020a, b). Exogenous MET associate 
with CAND2/PMTR1 (CANDIDATE G-PROTEIN COU-
PLED RECEPTOR 2/Phytomelatonin Receptor 1) receptors, 
resulting in triggering of responses against stressors and reg-
ulation of ROS and RNS (Pardo-Hernández et al. 2020). Liu 
et al. (2020) reported reduced trehalose-mediated lipid–per-
oxidation levels in tomato leaves treated with H2O2 and NO 
scavengers, dimethyl thiourea (DMTU) and 2–(4–carboxy-
phenyl)–4, 4, 5, 5–tetramethylimidazoline–1–oxyl–3–oxide 
(cPTIO). The results indicated that the trehalose might act 
as H2O2 and NO inducer that modulates the expression of 
genes from antioxidant defense system for conferring cold 
tolerance. On similar lines, the interactions between H2O2 
and NO were studied during the BR-induced stress responses 
in Medicago truncatula by Arfan et al. (2019). The results 
shown the participation of H2O2 in NO generation, and NO 
was found key in BR-induced alternative oxidase capacity, 
which protected the photosystem under cold stress (Arfan 
et al. 2019).

Chemical priming is emerging as an effective approach 
for conferring stress tolerance in plants. For instance, Cit-
rus aurantium L. roots pre-treated with SNP (NO donor), 
enhanced the NO- and H2O2-induced salinity and drought 
acclimation in plants (Molassiotis et al. 2016). Priming of 
wheat roots (using polyethylene glycol 6000) stimulated 
the production of H2O2 and NO which was attributed to the 
priming-induced drought tolerance (Wang et al. 2020c). The 
report also suggested the direct relation of H2O2 biosynthesis 
with respiratory burst oxidase homologs (RBOH) and the 
downstream working of NO during the H2O2 mediated accu-
mulation of proline and glycine betaine (Wang et al. 2020c).

The nutrient recycling event of the leaf senescence is also 
linked with the redox balance in plants (Jing et al. 2008). 
During the senescence, there is marked increase in the H2O2 
level in leaf tissues. Apart from the damaging role of the 
macromolecular oxidisation that promotes the cell death, 
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H2O2 also functions as a signal to induce the expression 
of senescence related genes (Cui et al. 2013). On the other 
hand, NO can provoke or impede the senescence process 
depending on its subcellular localization and concentra-
tion. The toxicity of ROS may get alleviated by the NO via 
enhancing the activity of antioxidant enzymes (Liu and Guo 
2013). Similarly, the intracellular NO and nitrosothiol lev-
els act as vital mediators during the H2O2-induced leaf cell 
death (Lin et al. 2012; Wang et al. 2013a). Collectively, both 
NO and H2O2 can induce the cell death in leaves during 
which there is observable interplay between NO and H2O2 
(reviewed by Wang et al. 2013b).

Besides H2O2, the H2S (RSS) is also a vital signalling 
molecule during seed germination, photosynthesis and 
environmental stress responses (Chen et al. 2015a, b). The 
NO and H2S jointly regulate the key events during the plant 
growth and development (seed germination, root develop-
ment, stomatal movement and fruit ripening) and stress tol-
erance (reviewed by Mukherjee and Corpas 2020). Studies 
have revealed the interactive effects of NO and H2S dur-
ing Cd-induced stress interactions in wheat, which resulted 
in the reduced oxidative stress and Cd uptake, attributable 
to the activated antioxidant defence and uptake of essen-
tial minerals like Zn and Fe (Kaya et al. 2020). Further, the 
interaction between NO and H2S resulted into the genera-
tion of persulfide (intermediate product) which regulate the 
ROS and RNS contents in plant cells (Lisjak et al. 2013). 
The seedlings of sweet potato exposed of sodium hydro-
sulfide (NaHS, H2S donor) displayed the increased levels 
of H2S and NO (Zhang et al. 2009). The plants also dis-
played H2S-stimulated adventitious root formation medi-
ated through NO, which authors attributed to H2S activity 
upstream of the NO signal-transduction pathways (Zhang 
et al. 2009). However, further studies are still required to 
establish a deeper understanding of the crosstalk between 
NO and H2S (Chen et al. 2016).

Crosstalk with phytohormones

Like the reactive species and secondary messengers, NO also 
interacts with the phytohormones such as ABA, AUX, cyto-
kinins (CKs), ethylene (ET), gibberellins (GAs), BRs, sali-
cylic acid (SA), γ-aminobutyric acid and jasmonates during 
different plant metabolic and physiological conditions and 
abiotic stress responses (Asgher et al. 2017). Studies have 
shown the signalling pathways of NO and AUX being inter-
related with each other during abiotic stress responses and 
during the root growth and development (reviewed by Sanz 
et al. 2015). NO improved Cd-tolerance in M. truncatula 
roots via reducing the oxidative damage, enhancing the ion 
uptake (K+ and Ca+) and maintaining the AUX equilibrium 
(Xu et al. 2010). Santos et al. (2020) studied ABA-NO-AUX 
interactions in roots of Solanum lycopersicum, and observed 

ABA and molybdenum dependent enzymes as decisive fac-
tors for the salt stress driven NO production. The study also 
highlighted the integration of NO in the ABA–indole acetic 
acid (IAA) signalling network during salt stress response 
along with the ABA mediated and NO-dependent activity 
of the antioxidant system (Santos et al. 2020). Cd and As 
treatments decreased the endogenous NO concentration in 
roots of Oryza sativa along with high rate of H2O2 forma-
tion and altered AUX biosynthesis (Piacentini et al. 2020). 
The SNP-formed NO proved to mitigate the Cd/As toxicity 
by reducing the H2O2 production and induced expression of 
AUX1 (IAA–influx carrier) (Piacentini et al. 2020). Applica-
tion of SNP in the root systems of Oryza sativa under Cd/As 
stress resulted in the alleviation of IAA and reduced H2O2 
generation, leading to the increased lateral root production 
and NO generation, ultimately mitigating the toxic impacts 
of these toxic heavy metals (Piacentini et al. 2020). Figure 3 
highlights the interplay between the NO and phytohormones, 
TFs, miRNAs, reactive species and ions.

GAs are known to be involved in various physiological 
and/or developmental processes in plants including seed ger-
mination, leaf expansion, stem elongation, initiation of flow-
ering and development of fruits. Several reports have sup-
ported the possible interplay between GAs and NO (Asgher 
et al. 2017). In Arabidopsis thaliana, antagonistic interaction 
between the NO and the GA resulted in the regulation of root 
growth during fluctuating levels of phosphorous (Wu et al. 
2014). Lozano-Juste and León (2011) studied the crosstalk 
between NO and GA involving the phytochrome-interacting 
factors (PIFs) and GA-regulated DELLA proteins; where 
NO synchronise with PIF genes, increases the DELLA pro-
teins content, and promotes photo-morphogenesis. Beside 
GAs, CKs also play important roles in the plant developmen-
tal processes (such as chloroplast biogenesis, leaf senescence 
and cell division) (Fahad et al. 2015). Both synergistic and 
antagonistic interactions have been observed during NO and 
CKs crosstalk (Asgher et al. 2017). The effectiveness of CKs 
in photosynthesis processes was studied under drought stress 
in Zea mays, which revealed the CK-stimulated conversion 
of excitation energy to electron transfer due to the probable 
interaction between NO and plastoquinone. Results also 
indicated CK-induced NO formation apparently via NR 
(Shao et al. 2010). Further, Liu et al. (2013) investigated 
the interactions of CK and NO in Arabidopsis under metal 
stress, where CK suppressed the action of NO probably via 
direct interaction between them, resulting in the overall 
reduced levels of endogenous NO levels.

It is well-established that ABA is involved in seed ger-
mination, dormancy and abiotic stress responses. The ABA 
mediated enhancement in NO biosynthesis in guard cells was 
observed, indicating the strong interplay between ABA and 
NO for provoking the stomatal closure whenever required 
(Joudoi et al. 2013). NO regulated the stomatal closure via 
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modulating the K+ and Ca2+ in guard cells (reviewed by 
Asgher et al. 2017). ABA-induced NO synthesis pathway 
was reported in Z. mays leaf with increased concentrations 
of H2O2 inhibited by the NADPH oxidase inhibitor, called 
diphenylene iodonium (DPI), and activation of NO mecha-
nisms for the maintenance of cell homeostasis (Tossi et al. 
2009). Various studies have been done in Arabidopsis to 
study the crosstalk between NO and ABA or ET. In Arabi-
dopsis, MoCo-sulfurase ABA3 enzyme converts the de-sulfo 
MoCo form (cofactor of NR enzyme) to sulfo MoCo form 
(cofactor of aldehyde oxidase) for the production of NO 
and ABA in the plants (Arc et al. 2013). H2O2 is produced 
endogenously via ABA signalling, leading to the generation 
of NO for the regulation of stomata movements (Bright et al. 
2006). Increased UV-B treatment can lead to the produc-
tion of ROS and RNS and induction of various signalling 
pathways during the stress responses in plants; increased 
production of ABA causes the generation of NO and H2O2, 
leading to the maintenance of cellular homeostasis and cel-
lular damage alleviation (Prakash et al. 2019).

ET is known to play major roles in fruit ripening, flower 
senescence, and adventitious root hair formation where 
crosstalk of NO and ET is involved antagonistically during 
stress conditions (Wei et al. 2020). During abiotic stresses, 
NO signalling is recognised by S–nitrosation regulated by 
the production of ET, leading to the antagonism in vari-
ous plant developmental and physiological processes such 
as Cd-induced cell death, stomatal opening, and UV–B 

induced stomatal closure (Kolbert et al. 2019). The S–aden-
osyl–methionine (S–AdoMet), precursor of ET and poly-
amine; is involved during the negative feedback regulation 
between ET and polyamine dependent synthesis of NO (Arc 
et al. 2013); ABA signalling and NO synthesis is regulated 
by the Cu-amine oxidase enzyme. In Arabidopsis thaliana 
and Cucumis sativus, up-regulation of genes such as AtFIT 
(TF), AtFRO2 (ferric reductase), and AtIRT1 (iron trans-
porter) during cross-talk of NO and ET was observed in 
acquisition of iron (García et al. 2010). SA is widely known 
for its involvement in the immune responses under vari-
ous abiotic stress responses showing both synergistic and 
antagonistic effects (Asgher et al. 2017). Key roles played 
by SA and NO signalling in plant growth and physiologi-
cal processes beside environmental stress responses, have 
always attracted the scientific community. The non-expresser 
of pathogenesis related (NPR) gene signalling is mediated 
by SA and NO during the stress interactions via switching 
the SA and NO biosynthesis through Ca2+ signalling (Rai 
et al. 2020). SA/NO‐mediated heat stress resistance and 
stress memory has been studied using epigenetically modi-
fied plants for the regulations of cellular immunity, leading 
to the activation of various heat stress-responsive TFs and 
genes for the better understanding of signalling cascades 
(Rai et al. 2020). In Vigna angularis, the exogenous applica-
tion of SA triggered the interactions between SA and NO, 
which resulted into the enhanced photosynthesis, coupled 
with upregulation of amino acid and carbohydrates as well as 

Fig. 3   Interplay between the 
nitric oxide (NO) and phy-
tohormones (AUXs auxins, 
ABA abscisic acid, GAs gib-
berellins, CKs cytokinins, ET 
ethylene, BRs brassinosteroids, 
SA salicylic acid, JMs jas-
monates), transcription factors, 
Polyamines (Spd spermidine), 
microRNAs, reactive species 
(ROS reactive oxygen species, 
RCS reactive carbonyl species, 
RSS reactive sulfur species) and 
ions
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antioxidant enzymes (SOD, CAT), and ultimately improved 
the salt stress tolerance (Ahanger et al. 2020). Wang et al. 
(2020a) observed SA-induced stomatal closure, controlled 
by ROS and NO generation, which was mediated by ET.

Similarly, NO also interact with BRs and play key role in 
plant stress responses. Zhou et al. (2018) observed that the 
BR treatment increased NO accumulation which resulted the 
reduction of virus accumulation in Arabidopsis plants. Furio 
et al. (2019) in an attempt to evaluate the protective effects 
of 24–epibrasinolide (EP24) and a formulation based on a 
brassinosteroid spirostanic analogue DI–31 (BB16) against 
the fungal pathogen Colletotrichum acutatum, the causal 
agent of anthracnose disease, and the treatment with both 
the BR compounds induced a defence response in strawberry 
plants which was mediated through enhanced NO levels. 
In another interesting study, BR treatment of water-stressed 
Z. mays leaves induced the NO levels and upregulated the 
expression levels of ABA pathway gene, which enhanced 
the water stress tolerance (Zhang et al. 2011). Further, Arfan 
et al. (2019) reported that H2O2 and NO crosstalk mediates 
BR-induced cold stress tolerance in Medicago truncatula.

Nitric oxide and miRNA signalling

Non-coding small RNAs, particularly miRNAs play impor-
tant regulatory roles at transcriptional and/or post-transcrip-
tional levels in plant responses and adaptation to biotic and 
abiotic stresses (Shriram et al. 2016; Xu et al. 2019; Zhou 
et al. 2020). The miRNAs are being extensively investigated 
owing to their direct effect on sequence complementary 
based degradation of target mRNAs that often encode TF 
families. The roles of both miRNAs and NO under environ-
mental stresses have been observed in hormone-dependent 
pathways (Singh et al. 2017). During stress, NO usually tar-
gets mitochondrial and chloroplast complexes and the pro-
teins present in them by participating in signal transduction, 
regulation of Ca2+ and TFs (Singh et al. 2017). Recent stud-
ies have shown the interaction between biosynthesis of miR-
NAs and actions of post-transcriptional modifications (Iki 
et al. 2018; Szweykowska-Kulinska and Jarmolowski 2018; 
Wang et al. 2018). Chromatin remodelling factor CHR2 acts 
on a post-transcriptional level in Arabidopsis to inhibit for-
mation of miRNA (Wang et al. 2018). The primary-miR-
NAs (pri-miRNAs) have been observed to undergo post-
transcriptional splicing. Factors like stabilized1 (STA1) 
and GLYCINE-RICH RNA-BINDING PROTEIN (GRP7), 
etc. in Arabidopsis and barley are involved with the splicing 
of pri–miR168a, pri–miR162a, pri–miR842 (Stepien et al. 
2017).

During drought stress, ABA signalling is heightened 
which results in activation of SnRK2 leading to inactiva-
tion of channels regulating efflux in the cell, and triggering 

H2O2-mediated activation of NO. ABA also mediates ino-
sitol 1,4,5–trisphosphate (IP3) to increase Ca2+ influx caus-
ing NO production. As seen earlier NO plays an important 
role in regulating protein kinases like CDPKs, MAPKs 
leading to an indirect control on genes responsive to ABA 
signalling. These genes have an interactive network with 
the miRNAs as seen with miR393, miR160, miR168 from 
Arabidopsis, poplar, rice and Brachypodium plants and 
that play important roles in stress responses via upregulat-
ing the expression of their targets, ABA-related genes via 
auxin response factors (ARFs) and auxin receptor transport 
inhibitor response I (TIR1), involved in cellular homeostasis 
(Bright et al. 2006; Courtois et al. 2008; Neill et al. 2008; 
Singh et al. 2017; Prakash et al. 2019). These are involved 
in AUX signalling, down-regulation of stress-related genes, 
and regulating plant growth and development (Bright et al. 
2006; Courtois et al. 2008; Neill et al. 2008; Singh et al. 
2017; Prakash et al. 2019). In Alfalfa, it was observed that 
exogenous application of NO down-regulated miRNAs like 
mtr–miR156a, mtr–miR399a, mtr–miR399c, mtr–miR399q, 
and mtr–miR5213–5p, targeting SPL genes (SQUAMOSA 
promoter binding like proteins genes), phosphate transporter 
genes (miR399a, c, q) and disease resistant protein gene, 
respectively, playing key role in drought tolerance showing a 
positive regulation and increasing plant growth and develop-
ment under drought conditions (Zhao et al. 2020).

NO production and synthesis depend on the temperature 
of the environment in which the plant coexists. During cold, 
NO production is stimulated in some plants by activation of 
ion channels leading to sequential activation of inducer of 
CBF expression (ICE) protein and C-repeat binding factor/
Dehydration-responsive element binding-1 (CBF /DREB1) 
TFs. The TFs are known to be regulated by different miRNA 
candidates like miR397, miR166, miR172, and some ABA 
signalling regulators like miR168 (Kumar 2014). The CBF/
DREB factors are shown to work via binding to C-repeat 
elements /low-temperature response elements (CRT/LTRE) 
regulating the cold-responsive genes involved in giving cold 
stress tolerance to plants (Kumar 2014). In plants includ-
ing Arabidopsis, Brachypodium, O. sativa, Lotus japonica, 
Pisum sativa, and poplar, these miRNAs (miR166, miR168, 
miR172, miR397) were found to be NO-responsive and 
were attributed for conferring cold tolerance to these plants 
(Kumar 2014; Singh et al. 2017; Prakash et al. 2019).

The interplay between oxidative stress and miRNAs are 
well known. The most common miRNA with their targets 
involved during stress are miR171—GRAS TF (Huang 
et al. 2017), miR396—Growth Regulating Factor (GRF) 
(Chen et al. 2015a, b; Yuan et al. 2019), miR159—SlMYB 
TF genes (López-Galiano et al. 2019), miR474—proline 
dehydrogenase (PDH) (Wei et al. 2009), miR528—poly-
phenol oxidase (PPO) (Zhu et al. 2020), observed in vari-
ous plants like Arabidopsis, Z. mays, O. sativa and are up-/
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down-regulated. It has been observed that cellular ROS pro-
duction and accumulation leads to enhanced NO-production, 
contributing to the activation of stress-responsive genes and 
ROS scavenging enzymes. The specific miRNA like miR398 
regulating SOD is involved in the down-regulation of copper 
chaperone during Cu2+ stress (Singh et al. 2017; Prakash 
et al. 2019). The miRNA family belonging to miR399 is also 
involved in the regulation of stress-responsive genes during 
mineral deficient conditions like phosphate starved environ-
ment inhibiting UBC24 in roots of Arabidopsis (Fujii et al. 
2005; Aung et al. 2006; Bari et al. 2006; Park et al. 2018). 
The absence of above-mentioned miRNAs contributes to 
NO production, as they regulate the oxidative stress. Dur-
ing nutrient stress like lower concentrations of phosphate, 
sulphate, ferrous, etc., the plant cell undergoes anaerobic 
conditions due to imbalances in the catabolic and ana-
bolic pathways causing increased production of NO, which 
sequentially activate genes responsive to stress-causing feed-
back activation of such miRNAs that regulate these genes. 
(Singh et al. 2017; Prakash et al. 2019).

Biotechnological manipulations 
of NO and its interactions for engineering 
abiotic stress tolerance in plants

Biotechnological manipulations of metabolicte pathways 
and their applications have opened new vistas of research 
in plant abiotic stress tolerance and crop improvement. 
The studies aimed on interactions of NO with other sig-
nalling molecules, phytohormones, and reactive species 
have revealed the crosstalk mechanisms in plant growth and 
physiological developments. Studies on the exploration of 
NO interactions during stress responses and tolerance in 
crop and model plants have suggested the use of various 
mutants for the production of stress-tolerant plants. Lechón 
et al. (2020) developed cue1 NO overproducer mutants with 
enhanced arginine content in the roots of A. thaliana. Simi-
larly, cue1–1, cue1–5, cue1–6, and nox1 alleles resulted in 
the accumulation of NO during seed germination, primary 
root elongation, and salt stress resistance revealing potential 
roles NO play in plant physiological developments. When 
plants are exposed to external environmental stimuli, they 
synthesize/upregulate peptides for maintaining plant growth 
and development. The CLAVATA3/Embryo Surrounding 
Region-Related (CLE) peptides are essentially involved in 
the process of closing stomata. Zhang et al. (2019) showed 
that CLE9 acts as an essential regulator in the induction 
of stomatal closure. Overexpression and loss of function 
of CLE9 resulted in enhanced resistivity and sensitivity in 
Arabidopsis thaliana during drought stress via increased 
NO/ H2O2 generation and ABA signalling (Zhang et al. 
2019). Further, CLE9 peptides upregulated the H2O2 and 

NO synthesis associated with stomatal closure, which was 
stopped in the NADPH oxidase-deficient mutants or NR 
mutants, respectively. Collectively, these results indicated 
the role of CLE9 in the regulation of stomatal apertures, and 
in turn stress acclimatisation of plants (Zhang et al. 2019).

The haemoglobin 1 (Hb1) proteins play an essential role 
in the plant environmental stress responses. The overexpres-
sion of Nicotiana tabacum non-symbiotic class 1 haemo-
globin gene (NtHb1) in A. thaliana resulted in NO-scav-
enging, reduction in ROS/NO accumulation, and increase 
in antioxidant enzyme activity, Cd export transporters 
(PDR8), and Ca2+/H+ exchangers (CAXs) during Cd stress 
(Bahmani et al. 2019). Nitric reductase enzyme is primar-
ily involved in the NO signalling mechanisms, following 
NO crosstalk with anthocyanin, Li et al. (2020) studied NO 
generation in lyceum fruits by cloning a Lyceum barbarum 
NR gene leading to inhibition of anthocyanin synthesis and 
enhancement of proanthocyanin accumulation. During salt 
stress, modulations in 1–aminocyclopropane–1–carboxylic 
acid (ACC)–oxidase enzyme activity in sunflower seed-
ling resulted in the regulation of lateral-root formation via 
ACC–oxidase–NO complex formation and reduced ethylene 
biosynthesis, leading to the development of enhanced salt 
stress tolerant plants (Singh and Bhatla 2018). S–nitrosoglu-
tathione reductase (GSNOR) enzyme plays a putative role 
in NO homeostasis and is primarily involved in plant biotic 
and abiotic stress responses. The overexpression of GSNOR 
in tomato plants resulted in increased sodic alkaline stress 
tolerance via GSNOR regulated NO signalling activation 
and ROS scavenging efficiency (Gong et al. 2015). Sup-
pression of GSNOR1 enzyme in plants by S–nitrosylation 
via NO generation revealed the NO scavenging modulation 
of GSNOR1 activity (Frungillo et al. 2014). Induction of 
Delta–1–pyrroline–5–carboxylate synthase 1 (P5CS1) gene 
resulted in NO-dependent signalling between proline and 
PAs during abiotic stress responses (Shi and Chan 2014). 
Two mutants, nia1nia2 (nitrate reductase [NR]-defective 
double mutant) and Atnoa1/rif1 (nitric oxide associated1/
resistant to inhibition by fosmidomycin1) resulted in over-
production of NO, upregulation of P5CS1, and down-regu-
lation of proline dehydrogenase (ProDH) genes during cold 
stress and acclimation (Zhao et al. 2009). These results thus 
clearly demonstrated that NR-dependent NO production play 
critical role in cold stress tolerance mediated through proline 
accumulation in Arabidopsis.

Beside abiotic stress responses and tolerance attrib-
uted to NO manipulations, plant–insect interactions are 
being studied to explore the NO interactions for conferring 
biotic stress tolerance in plants. Xu et al. (2020) reported 
that NO boosted the Bemisia tabaci performance via sup-
pressing the JA signalling pathway in tobacco plants. The 
results suggested that the NO signalling got activated 
by B. tabaci infestation, NO was found to be involved in 
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the suppression of JA-dependent plant defence, and, con-
sequently, NO improves B. tabaci performance on host 
plants (Xu et  al. 2020). S–nitrosoglutathione reductase 
(GSNOR) was silenced in Arabidopsis thaliana for investi-
gating the plant–pathogen interactions, and it resulted into 
the increased expression levels of the NO and S–nitroso-
thiol (Rustérucci et al. 2007; Rodríguez-Ruiz et al. 2019). 
Figure 4 represents the approaches for exploration of NO-
mediated interactions in plants for developing stress-tolerant 
plants, while Table 2 enlists events of developing transgenic 
plants via manipulating the NO pathways for enhanced abi-
otic stress tolerance.

Conclusion

After 40 years from identification of NO in plant cells, 
extensive research on this dynamic reactive and signalling 
molecule has opened up various functional capabilities 
in plant growth and development. Being so dynamic and 
versatile, NO provides a great scope for its application in 
crops for various purposes using different approaches to 
increase the plant’s efficiency and tolerance under stress 

conditions. NO crosstalk between different signalling 
molecules has given us glimpse on involvement of NO in 
process such as stomata closure, salinity tolerance, cGMP 
pathway, seed germination, beside others. Interactions 
between NO and plant hormones like GA, AUX, CKs and 
BRs have shown us influence of NO in photo-morpho-
genesis, leaf senescence, root growth and photosynthe-
sis, although deeper and more comprehensive research 
is needed for interpreting whether it is because of direct 
involvement of NO or RNS and to know the exact mecha-
nism of action. Interaction of NO with different signalling 
molecules, and stress regulators have shown potential role 
of NO pathway in crop improvement and creating stress 
resilient crops. Accordingly, overexpression studies have 
shown promising results for future crop improvement pro-
gramme. Interplay between NO and miRNA has recently 
gained attraction among researchers. Feedback activation 
and regulation of genes controlled by miRNA under pres-
ence of NO has potential for keeping cellular homeostasis 
in cell and ultimately using it crop improvement.

Fig. 4   Exploration of nitric oxide (NO) mediated interactions in 
for engineering stress tolerance in plants. (CLE9 CLAVATA3/ESR 
(CLE)-related protein 9, Hb1 hemoglobin 1, ACC​ 1–aminocyclopro-
pane–1–carboxylic acid) [The probable targets were presented based 

on the literature: Zhang et al. (2019), Bahmani et al. (2019), Li et al. 
(2020), Singh and Bhatla (2018), Gong et al. (2015), Rodríguez-Ruiz 
et al. (2019), Frungillo et al. (2014), Shi and Chan (2014), Zhao et al. 
(2009)]
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