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Abstract
Key message WRKY transcription factors are among the largest families of transcriptional regulators. In this review, 
their pivotal role in modulating various signal transduction pathways during biotic and abiotic stresses is discussed.
Abstract Transcription factors (TFs) are important constituents of plant signaling pathways that define plant responses against 
biotic and abiotic stimuli besides playing a role in response to internal signals which coordinate different interacting partners 
during developmental processes. WRKY TFs, deriving their nomenclature from their signature DNA-binding sequence, 
represent one of the largest families of transcriptional regulators found exclusively in plants. By modulating different signal 
transduction pathways, these TFs contribute to various plant processes including nutrient deprivation, embryogenesis, seed 
and trichome development, senescence as well as other developmental and hormone-regulated processes. A growing body of 
research suggests transcriptional regulation of WRKY TFs in adapting plant to a variety of stressed environments. WRKY 
TFs can regulate diverse biological functions from receptors for pathogen triggered immunity, modulator of chromatin for 
specific interaction and signal transfer through a complicated network of genes. Latest discoveries illustrate the interaction 
of WRKY proteins with other TFs to form an integral part of signaling webs that regulate several seemingly disparate pro-
cesses and defense-related genes, thus establishing their significant contributions to plant immune response. The present 
review starts with a brief description on the structural characteristics of WRKY TFs followed by the sections that present 
recent evidence on their roles in diverse biological processes in plants. We provide a comprehensive overview on regulatory 
crosstalks involving WRKY TFs during multiple stress responses in plants and future prospects of WRKY TFs as promising 
molecular diagnostics for enhancing crop improvement.
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Introduction

Environmental vagaries exert detrimental effects on plants 
including almost all phonological stages. Evolution of an 
intricate signaling system to sense and react to external stim-
uli is crucial for the survival and perpetuation of plants to the 
next generation (Takahashi and Shinozaki 2019). Signaling 
events encompass reception, interaction and reaction fol-
lowing a change in the environment, which remains under 
the control of regulatory molecules at the cellular and sub-
cellular levels (Joshi et al. 2017). Transcription factors (TFs) 
are important constituents of plant signaling pathways that 
define plant responses against biotic and abiotic stimuli in 
addition to their response to internal signals which coordi-
nate different interacting partners during developmental pro-
cesses (Joshi et al. 2016). WRKY TFs are among the largest 
families of transcriptional regulators in plants (Bakshi and 
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Oelmüller 2014). In recent years, several WRKY superfam-
ily members have been reported in different plant species 
including Glycine max (197), Raphanus sativus (126), Oryza 
sativa (109), Populus (104), Pinus monticola (80), Arabidop-
sis thaliana (75), Sorghum bicolor (68), Citrullus lanatus 
(63), Carica papaya (52), Hordeum vulgare (45), Physcom-
itrella patens (38), Selaginella involucrate (35) and Ipomoea 
trifida (83) (Mangelsen et al. 2008; Liu and Ekramoddoullah 
2009; Song et al. 2010; Pan and Jiang 2014; Fan et al. 2015; 
Karanja et al. 2017; Yang et al. 2018; Li et al. 2019). Binding 
of WRKY TFs with the (T)TGAC(C/T), i.e., W-box cis-ele-
ment in the promoter of target genes induces gene expression 
to achieve cellular homeostasis (Bakshi and Oelmüller 2014; 
Machens et al. 2014). WRKY DNA-binding domain (DBD) 
is characterized by an invariant heptad WRKYGQK amino 
acid motif at their N-terminus and a zinc-binding motif at 
their C-terminus (Jiang et al. 2017). Considerable diversity 
has been evident in the structure and function of WRKY TFs 
from a growing body of research. Variations have been found 
in the number of WRKY genes and proteins per genome, 
number of introns, nucleotide sequence, among and within 
different evolutionary levels of the plant kingdom. WRKYs 
have gained attention owing to their involvement in diverse 
plant processes including growth, development, biotic and 
abiotic stress responses and plant innate immunity including 
microbe- or pathogen-associated molecular pattern-triggered 
immunity (MTI or PTI) and effector-triggered immunity 
(ETI) (Rushton et al. 2010; Phukan et al. 2016; Jiang et al. 
2017). WRKYs can act as activators or repressors, in various 
homo- and heterodimer combinations, and form a TF net that 
contributes to various cytoplasmic and nuclear processes 
including signaling events from organelles or the cytoplasm 
to the nucleus (Bakshi and Oelmüller 2014). In this review, 
we summarize recent advances in our understanding of the 
WRKY TF family, with an emphasis on the plant stress 
response. We then elaborate on the WRKY-mediated regu-
latory networks that impart innate immunity to plants.

Structural characteristics and classification 
of functional domains

Despite having a highly conserved W-box, the varying 
binding abilities of WRKY TFs could be credited to vari-
able numbers of DBDs and zinc-finger-like motifs. Based 
on these features, WRKY proteins are classified into four 
groups: I (two WRKY DBDs), II (single DBD with differ-
ent C2–H2 zinc finger), III (single DBD with C2–HC zinc 
finger) and IV (incomplete WRKY domain without zinc 
finger) (Xie et al. 2005). Unlike group I, II and IV, group II 
is not monophyletic and is further divided into IIa, IIb, IIc, 
IId, and IIe based on additional conserved structural motifs 
besides the WRKY domain (Chen et al. 2012; Phukan et al. 

2016). In lower plants, such as algae (Dunaliella bardawil), 
four WRKY TFs have been identified and all of them con-
tained WRKYGEK sequence of amino acids at N-terminal, 
a difference due to Zn-finger at C-terminal. For instance, 
DbWRKY1 contained CX4CX23HXH, DbWRKY2 con-
tained CX4CX21HXH while DbWRKY3 and DbWRKY4 
contained CX4CX22HXH. Investigations on WRKY struc-
tures suggest that pre-WRKY structures (Pro-WRKY) must 
have a single domain as an origin. This might have doubled 
to give group I members of WRKY TFs, while a loss of 
N-terminal WRKY domain gave rise to group IIc members. 
Group IIc might have branched prophylactically to give rise 
to other subgroups of group II, and group III is the youngest 
and less diverse compared to other two groups (Song and 
Gao 2014; Wu et al. 2017a). The proposition that group II 
and III WRKY members should have evolved from group 
I gathers strong support from sequence similarity that the 
WRKY domains of group II and III members share with the 
C-terminal WRKY domain of group I WRKY TFs (Chen 
et al. 2019).

Though WRKY domain is highly conserved, substitutions 
occur in amino acid sequence of WRKYGQK; for exam-
ple, WRKYGKK in maize, banana, populus, mulberry and 
soybean (Eulgem et al. 2000; Zhou et al. 2008; Zhang et al. 
2017), WRKYGRK in populus and banana, FWRKYGQK 
in populus, WRKYGEK in rice and banana. In banana, 
other variants are also reported, such as WRKYGNK and 
WRKYGHK. Several monocot crops have also been studied 
with regard to WRKY TFs. Distribution of WRKY genes 
across a genome is not uniform and varies even within chro-
mosomes (Goel et al. 2016; Xu et al. 2016; Zhang et al. 
2017; Chanwala et al. 2020). In rice, the WRKY family 
members have 19 variants of the WRKY domain where 
WRKYGEK and WRKYGKK are the two common vari-
ants shared by seven and five domains (Zhang and Wang 
2005). The other variants include WRICGQK, WRMCGQK, 
WKKYGQK, WIKYGQK, WKRYGQK, WSKYEQK, and 
WRKYSEK (Zhang and Wang 2005). In a few WRKY 
proteins, the WRKY motifs are also replaced by WIKY, 
WRMC, WRIC, WKKY, WVKY, WKRY, WSKY patterns 
(Jiang et al. 2017). Further, in the primary WRKYGQK 
motif of DBD, the WRKY residues are replaced by 
WRRY, WSKY, WKRY, WVKY or WKKY (Jiang et al. 
2017). In addition to the above, variants of metal-chelat-
ing zinc finger motifs, such as C–H4-5–X22-23–H–X–H and 
C–X5-8–C–X25-28–H–X1-2–C, are characteristics of WRKY 
proteins (Zhang and Feng 2014). Besides, HARF motif 
(RTGHARFRR (A/G) P) of unknown function was also 
reported in sub-group IId in Arabidopsis thaliana, Salvia 
miltiorrhiza and Phaseolus vulgaris (Li et al. 2015a; Wang 
et al. 2016). A Calmodulin (CaM)-binding domain (Dxx-
VxKFKxVISLLxxxR) was also reported in Arabidopsis 
Group IId WRKYs, such as AtWRKY7 (Park et al. 2005).
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WRKY TFs bind specifically through both the terminals 
of WRKY domains to W box-type cis-elements in target 
gene promoters and activate or inhibit their transcription 
(Kim et al. 2008; Yamasaki et al. 2013; Li et al. 2020a, b, c). 
W-box consists of a degenerated/core TGAC motif, a con-
served GAC core which interacts with the WRKY proteins, 
and its flanking thymine and pyrimidine (C/T) residues are 
recognized by specific WRKY factors (Jiang et al. 2017; 
Chen et al. 2019). Further, functional W-box elements are 
mostly present in WRKY TFs that bind with their own pro-
moters or other WRKY TFs for auto- or cross-regulation 
(Liu et al. 2021). WRKY-DBDs recognize the regulatory 
motif sequence and bind through an α-helix or a β-sheet 
with the major groove of hydrophobic W-box element 
allowing base-specific interaction between the protein and 
the DNA (Deeba et al. 2017). However, NtWRKY12 having 
WRKYGKK sequence binds with WK-box (required for the 
PR-1a induction by salicylic acid (SA) and bacterial elici-
tors), not with W-box (van Verk et al. 2008). Mutation from 
GKK to GQK or GEK is reported to impair the DNA-bind-
ing activity of NtWRKY12 (van Verk et al. 2008). Similarly, 
SUSIBA2 (HvWRKY46) binds to W-box and SURE (Sun 
et al. 2003), OsWRKY13 interacts with W-box and PRE4 
(Xiao et al. 2013), AtWRKY70 binds to W-box and WT-box 
(Machens et al. 2014) and AtWRKY50 interacts with TGA2 
and TGA5 TFs, and simultaneously bound to PR1 promoter 
(Hussain et al. 2018). Further, by swapping β4–β5 strands, 
OsWRKY45-DBD forms a homodimer which provides flex-
ibility around strands (Cheng et al. 2019; Xu et al. 2018). 
The inhibitor and mutational analyses of WRKY domain 
structures demonstrate that Tyr, Trp and two Lys residues 
in the WRKYGQK sequence (Ciolkowski et al. 2008) and 
zinc finger structures (Cheng et al. 2019) are indispensable 
for DNA binding. Further, differences between amino acid 
heptad affect the structure of WRKY domain, thereby ena-
bling the concerted and selective regulation of WRKY TF 
target genes (Chen et al. 2019).

The distribution of different groups of WRKY TFs is also 
reported to differ among different plant species, exemplified 
by the abundance of group I WRKY proteins in A. thaliana 
and O. sativa as compared to strawberry. Similarly, poplar 
genome consists of 50% of WRKY TFs that belong to group 
I. Group I members in mulberry family constitute only group 
Ia sub-group. Also, a distinct motif of GGDFDDNEPEAKR-
WKGE was found at C-terminal of all group Ia members and 
one member of the group IIb family (Baranwal et al. 2016). 
Tea also shows substitution, in residual protein sequence, of 
glutamine by lysine (Wu et al. 2016). Research on woody 
dicots like Populus has offered evidence for formation of 
WRKY III after duplication events that occurred during 
monocot-dicot divergence (Wang et al. 2015). The struc-
tural complexity of WRKY genes is also manifested in point 
of spliced domains with V-type or R-type introns, with a 

low diversity between monocots and dicots than among 
lower plant groups (Liang et al. 2017). For example, both 
in strawberry and wheat, number and type of introns varied 
from zero to twenty and V-type introns were specific to IIa 
and IIb type groups (Zhou et al. 2016; Ning et al. 2017). 
In dicots like pepper, group IIa family contains members 
having leucine zipper structure, that serves as elicitors that 
mediate binding of WRKY TFs to W-box (Cormack et al. 
2002). In tomato, a divergence in group IIe and group III 
members was observed at WRKY domain sequence, and 
also in group III members at Zn-finger motifs (Huang et al. 
2012). In addition to this, WRKY TFs are reported to have 
undergone positive or neutral selection as well as gene dupli-
cation and loss (Tang et al. 2013; Zhou et al. 2016). Presence 
of a large number of duplicated blocks suggests occurrence 
of duplications during evolution and genome expansion 
within the WRKY family members (Xu et al. 2016; Zhang 
et al. 2017). In gymnosperms like pine, introns show synteny 
with the angiosperms as well as, among different WRKY 
families, group IId + IIe shows expansion with the highest 
number of members and WRKY3 family with the least rep-
resentation (Liu and Ekramoddoullah 2009). This observa-
tion contrasts with angiosperms where WRKY members of 
all the families are present, though the number differs with 
different genomes. Therefore, binding affinity of various 
WRKY domains to W-box and others seems to be ambigu-
ous, requiring deeper investigations on the domains outside 
the DBD.

WRKY TF and plant stress response

Role in biotic stresses

Plants have evolved mechanisms to respond to a range of 
biotic stresses, such as pathogen attacks, that they encounter 
in their life cycle (Sun et al. 2015; Jha et al. 2020). The role 
of WRKY TFs as key regulators in plant immune response 
to a variety of biotic stresses has been extensively investi-
gated (Singh et al. 2017; Cui et al. 2019). WRKYs regulate 
expression of defense-related genes through binding to a 
consensus cis-element referred to the “W-box” (TTG ACT 
/C) in the promoter regions of these genes. As reviewed in 
Peng et al. (2018), PAMP (pathogen-associated molecular 
patterns)-triggered immunity (PTI) and effector-triggered 
immunity (ETI) constitute the two lines of plant immune 
response, with former involving recognition of molecular 
patterns of the pathogen (PAMPs) with pattern-recognition 
receptors (PRR) in host cells; whereas toxins/effectors are 
detected by plant resistance (R) proteins in ETI that often 
involves a hypersensitive response (HR). Receptor-like 
kinases (RLKs), one of the largest gene families in plants, 
form the major class of pathogen recognition receptors. 
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WRKYs were reported to play pivotal roles in repressing 
or activating both kinds of plant defense responses through 
direct or indirect interaction with PAMPs/effector proteins or 
their regulation by mitogen-activated protein kinases (Phu-
kan et al. 2016). Peng et al. (2008) demonstrated a role for a 
WRKY transcription factor OsWRKY62 in both PTI (basal) 
and ETI (mediated by Xa21) in rice. Transgenic plants over-
expressing OsWRKY62.1 (one of the two splice variants) 
showed impairments in both PTI and ETI, with suppression 
of defense-related genes. This study established OsWRKY62 
as a negative regulator of innate defense response in rice 
against bacterial blight. By contrast, OsWRKY67 acts as a 
positive regulator of PTI and ETI against two rice pathogens, 
Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae 
(Xoo) (Vo et al. 2018).

In A. thaliana, Kim et al. (2008) described the action of 
WRKY38 and WRKY62 in reducing basal defense response to 
bacterial pathogen Pseudomonas syringae through transcrip-
tional activation of some unknown regulatory players. Also, 
an antagonistic action of Histone Deacetylase 19 (HDA19) 
against WRKY38 and WRKY62 confirmed HAD19 as a posi-
tive regulator of defense response. An enhanced level of 
disease resistance was found in single (wrky38 and wrky62) 
as well double mutant (Kim et al. 2008). In response to path-
ogen infection (P. syringae) in Arabidopsis, the association 
of MAP kinase 4 (MPK4) and MKS1 with WRKY33 in the 
nucleus is disrupted following the activation (MPK4) and 
phosphorylation (MKS1) events. The released WRKY33 then 
represses phytoalexin deficient3 (PAD3) gene, thus impair-
ing the synthesis of antimicrobial compound camalexin (Qiu 
et al. 2008). Earlier, Zheng et al. (2006) showed greater sus-
ceptibility of Arabidopsis overexpressing WRKY33 against 
necrotrophic fungal pathogens (Botrytis cinerea and Alter-
naria brassicicola). Previously in soybean, authors iden-
tified 174 WRKY genes from the genome sequence and 
overexpression of the three WRKYs GmWRKY 136, 53 and 
86 in the soybean cyst nematode (SCN)-susceptible culti-
var Williams 82 enhanced SCN resistance level up to 55% 
(Yang et al. 2017). No significant increase was observed in 
these transgenic lines following SA application. In wheat, 
RNA-Seq associated differential expression of two WRKY 
genes (TaWRKY49 and TaWRKY62) with high-temperature 
seedling-plant resistance to stripe rust (Puccinia striiformis 
f. sp. tritici). Gene silencing experiments further validated 
the RNA-Seq results, and TaWRKY49-silencing enhanced 
resistance while silencing of TaWRKY62 reduced resist-
ance. Authors suggested negative and positive regula-
tory roles of TaWRKY49 and TaWRKY62, respectively, in 
High-Temperature Seedling-plant resistance to Pst (HTSP) 
through modulating SA, jasmonic acid (JA), ethylene and 
reactive oxygen species (ROS) pathways (Wang et al. 2016). 
Another example of negative regulation of plant immunity 
by WRKY includes CaWRKY40b, which regulates a set of 

immunity associated genes in pepper under Ralstonia sola-
nacearum infection. Virus-induced gene silencing (VIGS) 
of CaWRKY40b and overexpression of CaWRKY40b-SRDX 
caused up- and down-regulations of positive and negative 
regulators, respectively; whereas CaWRKY40b-overexpres-
sion exerted an opposite role (Khan et al. 2018). Further, 
enhanced transcript levels of CaWRKY40 were reported to 
induce SA, JA and ethylene mediated pathways during R. 
solanacearum infection. Overexpression of CaWRKY40 
regulates hypersensitive response (HR)-associated and 
pathogenesis-related genes, thus providing resistance to R. 
solanacearum (Dang et al. 2013). CaWRKY40b thus acts as 
a negative regulator by directly modulating immunity associ-
ated gene CaWRKY40. Further, CaWRKY6 positively regu-
lates R. solanacearum resistance by activating CaWRKY40 
(Cai et al. 2015). Isolation of SpWRKY1 from wild tomato 
(Solanum pimpinellifolium) following cloning and RT-PCR 
approaches, and its subsequent transformation into culti-
vated tomato (Solanum lycopersicum) caused an increase 
in resistance to Phytophthora infestans via mediating the 
regulation of abscisic acid (ABA) biosynthesis genes (Li 
et al. 2015b). In another attempt, tobacco plants transformed 
with SpWRKY1 showed lower contents of malondialdehyde, 
relative electrolyte leakage and higher antioxidant enzymes 
peroxidase (POD) and superoxide dismutase (SOD) and 
phenylalanine ammonia-lyase (PAL) activities, indicat-
ing plant’s resistance to Phytophthora nicotianae (Li et al. 
2015c). Concomitantly, the expression of genes related to 
JA/SA and deference response also altered as a result of 
SpWRKY1 overexpression.

Role in abiotic stress

A growing body of literature supports the involvement of 
WRKY transcription factors in the regulation of abiotic 
stress response in plants. Meeting the challenge of feed-
ing nine billion by 2050 necessitates a sustainable increase 
in crop yields in an environment that is increasingly chal-
lenged by drought and salinity (Tester and Langridge 2010; 
Singh et al. 2015; Wani et al. 2018; Jha et al. 2019). A 
variety of biotic and abiotic factors have been reported to 
induce WRKY TFs, such as OsWRKY45, and Arabidopsis 
transformed with OsWRKY45 had enhanced tolerance to 
drought via regulating stomatal closure and stress-related 
genes (Qiu and Yu 2009). An acquired drought tolerance 
(adt) mutant having improved drought tolerance was iso-
lated in Arabidopsis after surveying 43 WRKY-associated 
T-DNA insertion lines. The insertion in adt caused an 
elevation in WRKY57 expression level. The drought tol-
erance of adt could be credited to enhanced ABA levels. 
Further, the binding of WRKY57 with stress-responsive 
genes (RD29A, NCED3) via the core W-box sequence was 
confirmed with chromatin immunoprecipitation (ChIP), 
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PCR and quantitative real-time (RT–PCR) analysis (Jiang 
et al. 2012). In wheat, overexpression of TaWRKY146 hav-
ing homology with the AtWRKY46 showed hypersensitivity 
towards salt and drought stress in Arabidopsis (Ma et al. 
2017). Significant up-regulation of WRKY146 in wheat 
leaves and roots was found under osmotic stress. Further, 
transgenic Arabidopsis overexpressing TaWRKY146 showed 
improved drought tolerance with elevated contents of pro-
line and soluble sugar and lesser malondialdehyde (MDA) 
content, besides induced stomatal closure and reduced tran-
spiration rate. Moreover, Arabidopsis plants overexpressing 
WRKY46 from Fagopyrum tataricum (FtWRKY46) showed 
improved tolerance against salt stress by scavenging ROS 
(Lv et al. 2020). In contrast, overexpression of AtWRKY46 in 
Arabidopsis (OV46) resulted in hypersensitivity to drought 
and salt stress, achieved by modulating the expression of 
QUA-QUINE STARCH (QQS) (Ding et al. 2014). Wan et al. 
(2018) identified a set of 53 WRKY genes from the transcrip-
tome data in Caragana intermedia, and functional validation 
of the two WRKY genes CiWRKY75–1 and CiWRKY40–4 
was evident with enhanced drought tolerance of transgenic 
Arabidopsis. Genome-wide analysis of 97 WRKY genes in 
Pennisetum glaucum demonstrated differential expression 
patterns in different tissues under drought and salinity stress 
conditions (Chanwala et al. 2020). Out of these PgWRKY33, 
PgWRKY62 and PgWRKY65 were found to be regulated 
under both dehydration and salinity stress responses. It 
was also shown earlier that transformation of tobacco with 
SpWRKY1 increases tolerance against drought and salt stress 
(Li et al. 2015b). Given the highly up-regulated expression 
under drought stress, the transformation of WRKY3 TF 
gene, isolated from horse gram (Macrotyloma uniflorum), 
was performed in groundnut and consequently, improved 
drought tolerance of the transgenic lines was evident by less 
accumulation of MDA, more proline and higher antioxidant 
activities (Kiranmai et al. 2018). Other recent examples 
where overexpression of WRKY TF caused an improvement 
in drought tolerance of plants including wheat WRKY1, 
WRKY2 and WRKY33 into Arabidopsis (He et al. 2016; Gao 
et al. 2018) and Malus baccata WRKY2 and WRKY3 into 
tobacco (Han et al. 2018a, b).

Currently, salt-deteriorated soils form 20% of the irri-
gated land and 2% of the dry land, and half of the total arable 
land is likely to be impacted by salinity by 2050 (Kaashyap 
et al. 2017). Under osmotic/salt stress, an interplay between 
WRKY46 and “ABA signaling” and “auxin homeostasis” was 
elucidated in the regulation of lateral root (LR) develop-
ment in Arabidopsis (Ding et al. 2015; Li et al. 2020a, b, 
c). LR development was hampered in a mutant (wrky46) 
in contrast to WRKY46 overexpressing lines that had 
enhanced LR. Exogenous application of the mutants with 
α-naphthaleneacetic acid (NAA)/ indole-3-acetic acid (IAA) 
rescued the LR phenotypes, whereas 2,3,5-triiodobenzoic 

acid (TIBA) inhibited the LR development in both WT and 
OV46. WRKY46 was also shown to affect auxin conjugation 
in lateral roots. Also, the action of WRKY46 on downstream 
ABI4 was illustrated through the genetic analysis of the dou-
ble mutants (wrky46 abi4). Recently, Wu and colleagues 
(2017b) found significant differences in expression levels 
of PeWRKY83 in Moso bamboo (Phyllostachys edulis) dur-
ing abiotic stresses (drought, salinity and ABA treatment). 
Further, authors defined the functional role of PeWRKY83 by 
transforming it into Arabidopsis, and the transgenic Arabi-
dopsis plants showed enhanced tolerance to salt stress, with 
higher germination rates, higher content of proline, less elec-
trolyte leakage and lower MDA. Transgenic plants showed 
reduced sensitivity to exogenous ABA and PeWRKY83 
positively regulated ABA-related genes under salt stress. 
A new WRKY TF DgWRKY5 was isolated recently from 
Chrysanthemum and the expression level of the TF showed 
up-regulation in response to various stresses (salt, ABA 
and  H2O2) (Liang et al. 2017). Further, the transformation 
of Chrysanthemum with DgWRKY5 elucidated improved 
salt tolerance of the transgenic plants consequent upon 
DgWRKY5 overexpression, with contents of proline, solu-
ble sugars and proteins accumulating proportionate to salt 
stress. Differential expression of GmWRKY49 was obtained 
in salt-tolerant and salt-susceptible soybean genotypes and 
authors further performed functional characterization of 
GmWRKY49 by overexpressing it into soybean seedlings 
and Arabidopsis (Xu et al. 2018). Enhanced tolerance to salt 
stress was evidenced in both soybean seedlings and trans-
genic Arabidopsis, with improvements in germination rate, 
survival rate, root length, in addition to proline content. Sim-
ilar studies where overexpression of WRKY genes improved 
salt tolerance of plants include Dendranthema grandiflorum 
DgWRKY2 and DgWRKY4 into chrysanthemum (Wang et al. 
2018; He et al. 2018) and so forth. In contrast, salt sensitivity 
was promoted following overexpression of WRKY genes like 
CmWRKY17 (Chrysanthemum) and PcWRKY33 (Polygonum 
cuspidatum) in Arabidopsis, resulting in down-regulation of 
stress-related genes and reduction in other parameters like 
antioxidant enzymatic activities, and proline content (Li 
et al. 2015c; Bao et al. 2018).

Heat stress is defined as an increase in air temperature 
above a threshold level (Teixeira et al. 2013). In tropical 
and subtropical areas, threshold levels of heat stress are 
above 32–35 °C (Bita and Gerats 2013), while in temper-
ate crops, temperature above 25 °C is considered as heat 
stress (Wahid et al. 2007). Implications of heat stress on 
plant growth and function depend upon the intensity, dura-
tion of exposure, and the degree of the elevated tempera-
ture (Sita et al. 2017). In response to heat stress, a variety 
of WRKY genes enable plants to adapt temperature levels 
beyond “optimal tolerance range” (Jiang et al. 2017). In 
Arabidopsis, research groups have shown participation 
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of WRKY 25,WRKY26, WRKY33, and WRKY39 in plant 
response to heat stress (Li et al. 2009, 2010,2011). Previ-
ous study has shown the interaction of B-cell lymphoma2 
(Bcl-2)-associated athanogene 7 (BAG7) and WRKY29 is 
required for heat tolerance in Arabidopsis (Li et al. 2017a, 
b). It was reported that CaWRKY40 is induced by heat 
shock and its overexpression enhanced heat shock toler-
ance in tobacco, while its silencing impaired thermotoler-
ance in pepper (Dang et al. 2013). Further, it was observed 
that CaWRKY6 binds and activates CaWRKY40 promoter 
and thus acts as a positive regulator of heat stress tol-
erance (Cai et al. 2015). Other important plant WRKY 
TFs that confer combined tolerance to drought and heat 
include TaWRKY1 and TaWRKY33 from wheat (He et al. 
2016), OsWRKY11 from rice (Wu et al. 2009) etc. It was 
also shown earlier in Arabidopsis that WRKY47 directly 
regulates Xyloglucan Endo Transglucosylase Hydrolases17 
(XTH17) and Extensin‐Like Protein (ELP), thus regulating 
aluminium tolerance (Li et al. 2020a, b, c).

Signalling of WRKY TFs and regulation 
by plant hormones

As described in earlier sections, WRKY TFs play an essen-
tial role in the adaptation of crop plants to both biotic and 
abiotic stresses, and the adaptation results from an interplay 
between WRKYs and a variety of plant hormones. Empiri-
cal evidence suggests that exogenous application of differ-
ent plant hormones altered expression of WRKY genes upon 
exposure to multiple abiotic stress including drought, salt 
and  H2O2 (Yan et al. 2014). Under stressed conditions, 
WRKY TF may work independently or in coordination. 
Synergistic action of different WRKY TFs and enormous 
crosstalk with plant hormones and stress tolerance pathways 
demonstrates their differential expression. For instance, the 
synergistic interaction between ABA-inducible OsWRKY51 
and OsWRKY71 genes inhibits gibberellic acid (GA) sig-
nalling in the aleurone cells of rice seeds (Xie et al. 2006; 
Hwang et al. 2016). Likewise, AtWRKYs 18, 40 and 60 are 
shown to participate in signaling pathways that are medi-
ated by plant hormones SA, JA and ABA (Chen et al. 2010). 
One of the mechanisms of plant signaling involved receptor 
stimuli interaction and downstream signaling cascade that 
leads to expression of TFs and amplification of target genes 
and the corresponding response (Joshi et al. 2016). One of 
the major signalling pathways underlying both biotic and 
abiotic stresses is mediated through MAP kinase signaling 
cascade. It was demonstrated recently that ABA signalling 
repressor OsWRKY29 suppresses expression of OsABF1 and 
OsVP1, thus leading to a repressed seed dormancy (Zhou 
et al. 2020).

WRKY signalling in biotic stress

With regard to biotic stress, receptor R genes having NBS 
LRR domain activate downstream MAP kinase signaling 
cascades and WRKY18/22/29/30/33/53 genes, thus serving 
against P. syringe, Magnaporthe grisea, and B. cinerea 
(Fig. 1) (Sheen et al, 2002; Chujo et al 2014). Upon infec-
tion to B. cinerea, MAPK3/6 phosphorylates WRKY33 and 
phosphorylated WRKY33, in turn, activates PAD3, causing 
an increase in resistance through phytoalexin biosynthesis 
(Fig. 1) (Mao et al. 2007; 2011). In contrast, a decline 
was observed in resistance level as a result of overexpres-
sion of WRKY38 and WRKY62. Both genes, induced in a 
Non-expresser of Pathogenesis-Related genes 1 (NPR1)-
dependent manner by SA or by virulent P. syringae, work 
additively as negative regulators of plant’s basal defense 
(Kim et al. 2008). The NO signalling pathway mediated 
by AtWRKY27 improves defense against R. solanacearum 
(Mukhtar et al. 2008). Several defense-related genes and 
regulatory NPR1 genes have statistically enriched WRKY 
TF binding sites (W box elements) in their promoter 
region, such as pathogen inducible ICS1 gene, suggesting 
either autoregulation or cross-regulation by other WRKY 
proteins (Dong et al. 2003).

Out of 72 WRKY genes reported in Arabidopsis, 49 
genes have been reported to be differentially regulated by 
P. syringae or SA treatment (Dong et al. 2003). Research 
suggests that TFs like WRKY3, WRKY4 and WRKY33 posi-
tively regulate the SA-mediated plant resistance pathways 
to necrotrophic fungal infection, such as B. cinerea (Zheng 
et al. 2006; Lai et al. 2008). Similarly, WRKY33, WRKY46, 
WRKY53 and WRKY70 positively regulate SA-mediated 
defense pathway against biotrophic bacterial pathogen, 
such as P. syringae (Zheng et al. 2006; Hu et al. 2012). 
Two alleles of OSWRKY45, both regulated by WRKY13, 
showed a contrasting response to Xoo (Qiu et al. 2007). 
OsWRKY45-1 overexpressing plants showed increased 
susceptibility in contrast to OsWRKY45-2-overexpress-
ing plants that had enhanced resistance to Xoo  and X. 
oryzae pv. oryzicola (Xoc) (Tao et  al. 2009). Further, 
OsWRKY45-1 exhibited control to SA and JA levels, while 
OsWRKY45-2 only JA levels. Recently it was found that 
in rice, VQ13 (JA-responsive valine-glutamine (VQ)-
motif-containing protein) activates MPK6 and WRKY45, 
and positively regulates JA-induced resistance to Xoo (Uji 
et al. 2019). AtWRKY18 and AtWRKY40 suppress Jas-
monate-Zim Domain (JAZ) repressors which repress JA-
signaling, causing suppression of several defense-related 
genes, such as FMO1, PAD3, and CYP71A13. All these 
eventually help Trichoderma root colonization (Brotman 
et al. 2013). As shown in Fig. 1, CaWRKY27 acts as a 
positive regulator in tobacco resistance responses to R. 
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solanacearum infection through modulation of SA, JA, 
ethylene, and NO-mediated signaling pathways (Dang 
et al. 2014). A recent study revealed that HbWRKY83 is a 
positive regulator of JA-, ethylene-, and wound-responsive 
genes in the laticiferous cells of rubber tree (Kang et al. 
2020).

Fu and Dong (2013) found that SA or benzothiadiazole 
(BTH)-induced systemic acquired resistance (SAR) can 
be achieved by transcriptional regulation of NPR1 genes. 
Various WRKY TFs were identified as key regulators of 
NPR1-dependent or -independent SAR, such as AtWRKY18, 
AtWRKY58, and AtWRKY70 (Wang et al. 2006), OsWRKY03 
and OsWRKY71 (Liu et al. 2005, 2007) and OsWRKY45 
(Shimono et al. 2007). Recently, wheat transgenic lines 
overexpressing barley HvWRKY6 and HvWRKY70 showed 
improved resistance against Puccinia striiformis f. sp. tritici 
pathotype CYR32 and Blumeria graminis f. sp. tritici patho-
type E20 (Li et al. 2020a, b, c).

WRKY signalling in abiotic stress

In plants, ABA is a key regulator of both biotic and abiotic 
stress responses and its biosynthesis and accumulation are 
also enhanced under stress (Xiong et al. 2002). Abiotic stress 
tolerance signaling works through both ABA-dependent and 
ABA-independent pathways. Different WRKY TFs func-
tion co-ordinately or independently to the ABA signaling 

pathway. Thus, overexpression of AtWRKY21/33/40/57 and 
AtWRKY70 improves osmotic stress tolerance in an ABA-
dependent manner; while AtWRKY25, ATWRKY45 and TaW-
RKY93 work via ABA-independent pathways. ATWRKY40 
represses the expression of ABA-responsive genes (Rushton 
et al. 2012). Under abiotic-stressed scenario, ABA binds to 
PYR⁄PYL⁄RCAR protein phosphatase 2C-ABA complex 
and the chloroplast envelope located ABAR–ABA complex 
in the nucleus. These two complexes remove AtWRKY40 
from the nucleus and depress ABA-responsive genes includ-
ing ABI4, ABI5, ABF4, MYB2, DREB1a, DREB2b, RAB18 
and AtWRKY60 (Fig. 2) (Rushton et al. 2012). Research in 
rice on the regulation of WKRY TFs under abiotic stress 
and plant hormone revealed that a set of WRKY genes is 
induced following abiotic stress whereas plant hormones 
act on another set of genes. Authors noted that majority 
of genes were regulated by both abiotic stress and plant 
hormones [ABA, IAA, GA3, Methyl jasmonate (MeJA) 
and SA] with extensive occurrence of crosstalks between 
both (Ramamoorthy et al. 2008). Analysis of GsWRKY20-
overexpressing lines in Arabidopsis led authors to find an 
improved response to ABA, which reduced water loss and 
enhanced tolerance to drought stress via stomatal closure 
and reduced stomatal density (Luo et al. 2013). Further, mul-
tiple WRKY genes are deemed to be regulated by ABA-medi-
ated responses (Fig. 2). ABA induces expression of differ-
ent WRKY genes in rice, such as OsWRKY11, OsWRKY71, 
OsWRKY72 and OsWRKY77, and it may reduce expression 

Fig. 1  Schematic diagram depicting the role of WRKY transcrip-
tion factors under various biotic elicitors. WRKY TFs play an essen-
tial role in regulatory pathways of non pathogenic rhizobacteria 
and necrotic pathogens. During pathogen infection WRKY regulate 
downstream signalling pathways modulated by either salicylic acid 

dependent, or jasmonic acid dependent or nitric oxide dependent 
or by interacting with other WRKY genes. These WRKY regulated 
defense pathways has significant role in plant survival either by pro-
viding systemic acquired resistance or delaying senescence
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or negatively regulate OsWRKY24 and OsWRKY45 genes. 
Further, OsWRKY51 and OsWRKY71 mediate the cross-talk 
between GA and ABA signaling. In rice, ABA-inducible 
nature of these genes is evident; however, these genes remain 
GA-repressible (Xie et al. 2006). OsWRKY24, OsWRKY51 
and OsWRKY71 negatively regulate GA signaling pathway 
(Xie et al. 2005; Zhang et al. 2009). The transgenic lines 
overexpressing OsWRKY45-1 and OsWRKY45-2 registered 
their contrasting response to ABA. OsWRKY45-2 over-
expressing lines showed increased ABA sensitivity and 
reduced salt stress tolerance which is phenotypically con-
trasting to OsWRKY45-2-suppressing lines (Tao et al. 2011). 
Overexpression of different WRKY genes could lead to salt 
tolerance by following different tolerance mechanisms. 
The enhanced expression of TaWRKY93 upon exogenous 
application of NaCl or abscisic acid improved salt tolerance 
via both ABA-dependent and -independent pathways and 
also by enhancing osmotic stress tolerance (Fig. 2) (Qin 
et al. 2015). Osmotic stress tolerance has been regulated 
by AtWRKY70 and AtWRKY54 with both working coopera-
tively and negatively regulating stomata closure (Li et al. 
2013). The study established the role of both WRKY genes 
for improving drought tolerance in plants. Under salt stress, 
AtWRKY25 and AtWRKY33 have improved salt stress toler-
ance through SOS-pathway-independent manner. However, 

AtWRKY33 showed salt tolerance through ABA-dependent 
signaling pathway (Jiang and Deyholos 2009). Recently, it 
was demonstrated that Arabidopsis plants overexpressing 
IbWRKY2 (Zhu et al. 2020) and HbWRKY83 (Kang et al. 
2020) were tolerant against salinity and drought stress 
via improved ROS scavenging system. Under heat stress, 
AtWRKY25 regulated expression of heat-inducible and oxi-
dative stress-inducible genes containing W box at their pro-
moter region, independent of the SA pathway. Overexpres-
sion of WRKY25 increased the expression of HsfA2, HsfB1, 
HsfB2a and Hsp101, implying a role in HsfB2a and HsfB1 
pathway (Li et al. 2009). Cold stress tolerance is primarily 
regulated through cold-responsive (COR) regulon (Fig. 2). 
Overexpressing WRKY46 in cucumber conferred cold toler-
ance by modulating cold signalling pathway in an ABA-
dependent manner (Zhang et al. 2016). AtWRKY34 regu-
lates CBF and GM20 regulates ICE1 gene. Further, COR 
regulon regulates AtWRKY6/187/22/30/32 and AtWRKY40 
genes (Banerjee and Roychoudhury 2015). Generally, abi-
otic stress signal activates or works through MAPK signal-
ing pathways.

More recently, a global analysis of sesame (Sesamum 
indicum L.) WRKY TF identified 71 genes, of which 26 
were drought-responsive while 33 genes responded to water-
logging (Li et al. 2017b). The gene WRKY1 of Poncirus 

Fig. 2  Schematic diagram depicting the signalling of WRKY tran-
scription factors under different abiotic stresses. Various WRKY 
members plays different roles in regulation of abiotic stress regula-
tory pathways in different plants and tissues indicates their essen-
tial role in plant stress tolerance. During abiotic stress regulation, 

response occurs by complex cross-talk between phytohormones, such 
as, ABA, SA, MeJA, and ETH, and individual pathway is regulated 
by specific WRKY genes further modulting different physiological 
and biological processes
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trifoliate and Citrus grandis was analyzed under cold and 
drought stresses, and the results showed that both genes 
showed induced expression in response to drought while 
cold could evoke response only from PtrWRKY1 (Şahin-
Çevik and Moore 2013). Similarly, overexpression of vari-
ous WRKY TFs led to tolerance to various abiotic stress, 
such as OsWRKY89-overexpressing lines in rice, showed 
enhanced tolerance to ultraviolet B irradiation (Wang et al. 
2007), OsWRKY11 under the control of the heat shock pro-
tein 101 (HSP101) promoter enhanced heat and drought 
tolerance in rice (Wu et al. 2009). In summary, recent evi-
dence in plant species supports multiple roles for WRKY 
genes against a variety of abiotic stresses.

WRKY‑mediated crosstalk between abiotic 
and biotic stress responses

Recent evidence supports the involvement of WRKY TF 
in mediating response and adaptation to biotic and abiotic 
stresses. This crosstalk phenomenon is exemplified by the 
action of several WRKY TFs, such as OsWRKY13, in rice 
that alters plant response to both biotic (Xoo and M. grisea) 
and abiotic stresses (Qiu et al. 2007; 2008). OsWRKY13 is 
possibly regulated by both OsWRKY45-1 and OsWRKY45-2, 
the two alleles identified, respectively, from japonica and 
indica rice. Previous research has established OsWRKY45 
and SlWRKY8 as the positive regulators of PR gene expres-
sion, resistance to P. syringae pv. tomato DC3000 (PsPto), 
tolerance to drought and salt stress and ABA sensitivity 
(Qiu and Yu 2009; Gao et al. 2020). Subsequent experi-
ments elucidated that OsWRKY45-1, a negative regulator of 
ABA signaling, plays no role in salt tolerance in rice. In con-
trast, OsWRKY45-2 is a positive regulator of ABA signaling, 
and a negative regulator of salt stress tolerance (Tao et al. 
2011). Similarly, constitutive expression of grape WRKY3 
gene in Arabidopsis provided insights into its role in defin-
ing plant response to biotic (Golovinomyces cichoracearum, 
B. cinerea) and abiotic stresses (drought and salinity) (Guo 
et  al. 2018). Research by Lee et  al. (2018) established 
OsWRKY11 as a positive regulator of rice–Xoo interaction 
and drought stress in rice through activating expressions of 
deference- (Chitinase 2) and drought-(RAB21) related genes. 
Improved resistance to PsPto and drought/salt stress in 
tomato was achieved by overexpression of SlWRKY39 (Sun 
et al. 2015). The higher tolerance level of transgenic plants 
could be ascribed to the abundance of PR (SlPR1, SlPR1a1) 
and stress-related genes (SlRD22, SlDREB2A), and lower 
and higher contents of MDA and proline, respectively. Taken 
together, WRKY TFs participate in various cross regulatory 
networks related to defense response and their interaction 
provides insight into their coregulated functional dynamics 
of signaling response during different biological processes.

Other roles of WRKY TFs

In addition to stress response, WRKY TFs role in a range 
of important processes including plant development are 
well documented (Chen et al. 2017). The SPF1 (Sweet 
Potato Factor1), first identified WRKY protein, participated 
in tuberous root development in Ipomoea batatas (Ishiguro 
and Nakamura 1994). Further, WRKY proteins ABF1 and 
ABF2, isolated from Avena fatua were found to regulate 
seed germination (Rushton et al. 1995). Besides, WRKY1, 
WRKY2, and WRKY3 were reported to regulate ribosomal 
protein gene expression in Petroselinum crispum (Rushton 
et al. 1996). WRKY42, WRKY45, WRKY75, WRKY6 from 
Arabidopsis and WRKY74, WRKY80 from rice were 
involved in plant nutrient (i.e., phosphorus, boron and 
iron) utilization (Chen et al. 2017). AtWRKY6, AtWRKY53 
and OsWRKY45 regulate leaf senescense (Miao and Zent-
graf 2010). Moreover, AtWRKY12, AtWRKY13, AtWRKY71 
and OsWRKY11 were reported to be involved in floral 
development in angiosperms (Cai et al. 2014; Li et al. 
2016; Yu et al. 2016). A recent study in Arabidopsis elu-
cidated down-regulation of a set of genes associated with 
senescence (SAG12, SAG13 and SAG29) and chlorophyll 
degradation genes (PPH, PAO, NYE1/SGR1, NYC1, NOL) 
resulting from the overexpression of CiWRKY40–4 caused 
delayed leaf senescence in the transgenic plants (Wan et al. 
2018).

WRKY’s participation in plant reproductive develop-
ment is evident from severe fertility defects resulting from 
a compromise in WRKY-mediated regulatory network. 
In Arabidopsis, gene expression patterns in mature pol-
len grains, inferred from publically available data, qRT-
PCR assay and genetic analysis, led authors to assume 
that WRKY2, WRKY34 and VQ20, suppress the expression 
of MYBs (MYB97, MYB101 and MYB120) during male 
gametogenesis. Further, binding of the WRKY2/WRKY34 
with MYB97 via the promoter containing W-box was con-
firmed (Lei et al. 2018). Prioritization of defense response 
overgrowth, as shown by OsWRKY70 in mitigating insect 
herbivory in rice, can often yield unintended consequences 
(Li et al. 2015a). The authors highlighted the profound 
implications that these trade-offs may have, in breeding 
resistant plants.

Implications for future crop improvement

In recent years, a plethora of information has been gen-
erated in the wake of growing research interest on TFs, 
both in model and non-model crops. More comprehen-
sive information is warranted on the activities of WRKY 
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TFs in the plant genome, their communication with other 
biomolecules and sorting complexities of upstream ele-
ments that regulate them. It is further being traversed 
by modern tools of omics, analysis of complementarity 
with (cis-) promoter, systemics and several useful tools 
of bioinformatics. Different WRKY genes/TFs behave in a 
versatile manner even to an extent that homologs behave 
differently in different backgrounds (Cai et al. 2014). A 
set of WRKY TFs is known to regulate multiple genes 
with opposite effects (Liu et al. 2015) or could be induced 
and repressed depending on the external stimuli (Huang 
et al. 2016; Yan et al. 2016; Ding et al. 2013). In some 
cases, WRKY TFs upregulate both useful genes as well as 
unwelcomed genes (Wang et al. 2014). So, it is important 
to characterize them, elucidate their function and select the 
key TF translating gene for crop improvement. This deluge 
of information will be immensely useful when translated 
in crop improvement for the benefit the farmers and the 
mankind. However, practical implications of WRKY for 
crop improvement face a set of challenges.

Evidence suggests that WRKY TFs not only participate 
in plant growth and development, but also show complex 
regulatory mechanisms and networks involved in exter-
nal abiotic stresses. A variety of roles of WRKYs have 
been elucidated on parts of the plant like root, leaf, etc.; 
however, evidence based on the whole plant is currently 
lacking. Considerable possibility exists that inferences 
gained from in vitro experiments might yield uncertain 
outcomes when applied for plant improvement in a differ-
ent environment. Nothwithstanding this, there has been 
plenty of crop improvement illustrations recently based 
on transgenics and genomics-assisted breeding. Some of 
the recent examples are listed in Table 1. Growing body 
of literature on WRKY TFs advocates their usefulness for 
genetic characterization of a given crop population and 

evolutionary studies at different levels as a function of 
WRKY TFs may vary as a consequence of environmental 
stress and in the process of adaptation (Yan et al. 2016). 
In conclusion, considerable scope exists for understanding 
WRKY TFs with respect to their functionality, evolution 
and intra/inter communication with other TFs in coopera-
tive and antagonistic manner, noncoding RNAs and epige-
netic modifications to find a common link in the complex 
signal pathways to facilitate improvement of agricultural 
crop yield and quality.
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