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Abstract
Key message  We found that mutations in a Ca2+-permeable mechanosensitive channel MCA1, an ethylene-regulated 
microtubule-associated protein WDL5, and a versatile co-receptor BAK1 affect root growth response to mechanical 
stress.
Abstract  Plant root tips exposed to mechanical impedance show a temporal reduction in the elongation growth. The process 
involves a transient Ca2+ increase in the cytoplasm followed by ethylene signaling. To dissect the molecular mechanisms 
underlying this response, we examined the root growth of a series of Arabidopsis mutants with potentially altered response 
to mechanical stress after transfer from vertical to horizontal plates that were covered by dialysis membrane as an impedance. 
Among the plant hormone-response mutants tested, the ethylene-insensitive mutant ein3 was confirmed to show no growth 
reduction after the transfer. The root growth reduction was attenuated in a mutant of MCA1 encoding a Ca2+-permeable 
mechanosensitive channel and that of WDL5 encoding an ethylene-regulated microtubule-associated protein. We also found 
that the growth reduction was enhanced in a mutant of BAK1 encoding a co-receptor that pairs with numerous leucine-rich 
repeat receptor kinases to modulate growth and immunity. These results suggest the root growth reduction in response to 
mechanical stress involves ethylene-mediated microtubule reorganization and also transmembrane receptor-mediated signal 
transduction.
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Introduction

During soil penetration, plant roots sense and respond to 
gravity and the subsequent mechanical stress generated by 
their gravitropic growth against obstacles while they need 
to cope with other environmental conditions such as nutri-
ents, water availability, and soil microbes. The mechani-
cally impeded roots show a reduction in the elongation 
rate, an increase in the root diameter, and altered patterns 
of lateral root initiation (Bengough and Mullins 1990). A 
detailed study using Arabidopsis seedlings has shown that 
once the root cap receives mechanical stimulation, it down-
regulates gravitropism, allowing the formation of a new 
tropic response (Massa and Gilroy 2003). The first step of 
the response of root tips to mechanical barriers is a transient 
increase of Ca2+ ions in the cytoplasm. MID1-COMPLE-
MENTING ACTIVITY1 (MCA1) and its paralogous MCA2 
are suggested to encode a component of mechanosensitive 
Ca2+ channel complexes (Nakagawa et al. 2007). The mca1 
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mutant root has a reduced ability to penetrate hard agar from 
soft agar, revealing a role of MCA1 in overcoming mechani-
cal barriers (Nakagawa et al. 2007; Yamanaka et al. 2010). 
Cytoplasmic Ca2+ ions in turn trigger a variety of secondary 
Ca2+-dependent responses including modulation of enzyme 
activity, induction of gene expression, production of reactive 
oxygen species, and activation of ethylene signaling. These 
collectively allow plant roots to circumvent physical obsta-
cles and grow downward (Monshausen and Gilroy 2009; 
Kurusu et al. 2013). However, the exact nature of the molec-
ular events and their components from mechano-sensing to 
growth response are yet to be fully understood.

In Arabidopsis, ethylene signaling is mediated by endo-
plasmic reticulum-located ETHYLENE-INSENSITIVE2 
(EIN2) whose cleaved product shuttles into the nucleus to 
activate key transcription factors EIN3 and EIN3-LIKE1 
(EIL1) (Ju et al. 2012). In hypocotyl growth, EIN3/EIL1 
activate PHYTOCHROME INTERACTING FACTOR3 
(PIF3) and ETHYLENE RESPONSE FACTOR1 (ERF1), 
which promote hypocotyl elongation in the light and inhibit 
it in the dark, respectively (Zhong et al. 2012). ERF1 inte-
grates signals from jasmonate (JA) and ethylene during 
defense response (Lorenzo et al. 2003), while JA signaling 
is involved in touch-induced growth alterations in the shoot 
(Chehab et al. 2012). Another EIN3 target gene, WAVE-
DAMPENED5 (WDL5), has been shown to act in ethylene-
inhibited hypocotyl elongation in the dark. WDL5 binds 
to cortical microtubules and regulates microtubule reori-
entation (Sun et al. 2015; Ma et al. 2016). Involvement of 
these factors in the response to mechanical stress in the root 
remains to be addressed.

The mechanical sensing may also involve several classes 
of receptor-like kinases (RLKs) (Hamant and Haswell 2017). 
FERONIA (FER), a member of the CrRLK1L (Catharanthus 
roseus RLK1-like) family in Arabidopsis recognizing rapid 
alkalinization factor (RALF) peptides, RALF1, RALF17, 
and RALF23, monitors cell wall integrity and plays a role in 
cytoplasmic Ca2+ homeostasis, immune signaling, and ROS 
production (Haruta et al. 2014; Li et al. 2015; Stegmann 
et al. 2017; Feng et al. 2018). The fer mutant is hypersensi-
tive to ethylene and exhibits growth phenotypes consistent 
with impaired mechanical development, including biased 
root skewing, an inability to penetrate hard agar layers, 
and abnormal growth responses to impenetrable obstacles 
(Shih et al. 2014). THESEUS1 (THE1), another member of 
CrRLK1L, recognizes RALF34 and triggers growth inhi-
bition and defense responses upon perturbation of the cell 
wall, in part, with the aid of FER (Gonneau et al. 2018). 
Furthermore, a versatile co-receptor BRASSINOSTER-
OID INSENSITIVE1 (BRI1)-ASSOCIATED KINASE1 
(BAK1)/SOMATIC EMBRYOGENESIS RECEPTOR-
LIKE KINASE3 (SERK3), which pairs with numerous 
leucine-rich repeat (LRR) kinases to modulate growth and 

immunity (Chinchilla et al. 2009; Postel et al. 2010; Yasuda 
et al. 2017), has been shown to mediate the RALF1-induced 
inhibition of root cell expansion (Dressano et al. 2017).

In a previous study, we have developed a highly sensitive 
assay method to detect root growth reduction by mechani-
cal impedance using Arabidopsis seedlings. According to 
this method, the seedlings exhibit reduced root growth and 
ectopic root hair formation when those grown on verti-
cal plates are transferred to horizontal plates covered with 
impenetrable dialysis membrane (Okamoto et al. 2008). 
Using this assay system, we identified omeprazole, a gastric 
proton pump inhibitor, as a strong enhancer of root growth 
reduction from screening a chemical library, suggesting the 
involvement of calcium or proton pumps in the root growth 
response (Okamoto et al. 2018). Aminocyclopropane car-
boxylate, a precursor of ethylene, also enhanced the growth 
reduction, while silver ions, which block ethylene percep-
tion, and salicylic acid (SA) attenuated the response (Oka-
moto and Takahashi 2019). To identify further components 
involved in the mechanical stress perception, signal trans-
duction, or growth response in the root, we applied this assay 
method to examine Arabidopsis mutants with potentially 
altered growth response. The results not only confirm the 
involvement of Ca2+ channels and ethylene signaling but 
also provide evidence for the involvement of receptor kinase 
signaling and microtubule reorganization in the root growth 
response to mechanical stress.

Materials and methods

Plant material

The Columbia (Col-0) ecotype of Arabidopsis thaliana 
(L.) Heynh was used as the wild type. Mutants of mca1 and 
mca2 are as described previously (Nakagawa et al. 2007; 
Yamanaka et al. 2010). Mutants of aux1-7 (Pickett et al. 
1990), ein2-1 (Guzmán and Ecker 1990), ein3-1 (Roman 
et al. 1995), coronatine insensitive1-16 (coi1-16) (Ellis 
and Turner 2002), nonexpresser of PR genes1-1 (npr1-1) 
(Cao et al. 1997), fer-4 (Escobar-Restrepo et al. 2007), the1 
(Hématy et al. 2007), bak1 (Li et al. 2002), bak1-like1 (bkk1) 
(Hecht et al. 2001), wdl5-2 (Sun et al. 2015), and a trans-
genic line overexpressing ERF1 under the control of the cau-
liflower mosaic virus 35S promoter (Solano et al. 1998) were 
obtained from the Arabidopsis Biological Resource Center.

Growth condition

Seeds were surface-sterilized by a bleach solution with 0.1% 
Triton X-100, rinsed three times with water, suspended in 
0.1% agar and stored in the dark at 4 °C for 3 days before 
being sown on 0.8% agar medium containing half-strength 
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MS (pH 5.7) and 1% sucrose. After germination, seedlings 
were grown vertically at 22 °C under 16 h light/8 h dark 
long-day conditions for 1 or 2 days and then transferred 
to new agar media covered with a 12,000–14,000 MWCO 
dialysis membrane (Spectra/Por 4, Spectrum Laboratories). 
The membrane was stirred in water for 10 min, then stirred 
in a solution containing 2% NaHCO3 and 1 mM EDTA at 
60 °C for 30 min and washed three times in autoclaved water 
for 10 min before use. The transferred seedlings were grown 
vertically or horizontally for 2 days under long-day condi-
tions (Okamoto et al. 2018).

For treatment with 1-aminocyclopropane-1-carboxylic 
acid (ACC), seedlings grown vertically under long-day con-
ditions for 2 days were transferred to new agar media con-
taining 100 nM ACC and grown vertically for more 2 days. 
The root length was measured on digital images using Image 
J (http://www.rsb.info.nih.gov/ij/).

Time‑lapse imaging of the root growth

For observation of root gravitropism, seedlings were grown 
in advance on vertically placed agar plates for 5 days under 
long-day conditions, transferred to new plates, and grown 
vertically for further several hours for acclimation. Gravit-
ropic stimulation was then applied by rotating the plates by 
90°. Time-lapse imaging was performed at 10-min intervals 
for 24 h by D3300 digital SLR camera attached with Micro-
NIKKOR 55 mm (Nikon, Tokyo, Japan) under the control 
of the remote timer switch N3 (Etsumi, Tokyo, Japan). The 
root tip angle was defined as the angle formed between the 
root tip axis and vertical direction indicated by the root at 
distal elongation zone, and measured on digital images using 
Image J.

For observation of root tip bending, seedlings were grown 
on vertically placed agar plates for 5 days and transferred 
to a new agar plate. Sterile coverslips of 24 × 60 mm were 
inserted into the agar plate, perpendicular to both the root 
growth direction and the surface of the agar medium to form 
a barrier about 3 mm in front of the growing root tip. Time-
lapse imaging was recorded at 15-min intervals for 24 h. 
The wide angle between the root tip axis and the coverslip 
was measured at 12 h after the tip reached it using Image J.

Hypoosmotic shock treatment

For the hypoosmotic treatment of seedlings, 5-day-old wild-
type and ein2 seedlings were incubated in 1/2 MS liquid 
medium containing 1% sucrose and 150 mM mannitol for 
20 h, then transferred to the liquid medium without man-
nitol, and incubated for 0.5 or 2 h.

RNA isolation, cDNA synthesis and qRT‑PCR

Total RNA was extracted from whole seedlings using the 
SDS-phenol method. The total RNA (a 1-μg aliquot) was 
reverse-transcribed using a PrimeScript II 1st strand cDNA 
Synthesis Kit (Takara, Kyoto, Japan) with an oligo(dT) 
primer. qRT-PCR was performed on the Thermal Cycler 
Dice TP760 (Takara) using KAPA SYBR FAST qPCR Kit 
(Kapa Biosystems, Wilmington, MA, USA) according to the 
manufacturer’s instruction. ACTIN8 was used as a control to 
normalize differences in the amount of total RNA in each 
sample. Expression of each gene was tested in three biologi-
cal replicates. The amplified PCR products were verified by 
melting curve analysis. Intron-spanning primers designed 
are listed in Supplementary Table S1.

Statistical analyses

Mean values were compared by Student’s t test between 
wild-type and mutant plants in Fig. 2 or one-way ANOVA 
followed by post hoc analysis with Tukey–Kramer multiple 
tests for the data in other figures. Statistically significant 
differences are indicated by asterisks for Student’s t test 
(*P < 0.05) or different letters for one-way ANOVA and 
Tukey–Kramer test (P < 0.05). All statistical analyses were 
performed using the EZR software (Saitama Medical Center, 
Jichi Medical University, Saitama, Japan) (Kanda 2013), a 
graphical user interface for R (The R Foundation for Statisti-
cal Computing, Vienna, Austria).

Results

Mutants with altered root growth response 
to mechanical stress

As shown previously (Okamoto et al. 2008, 2018), wild-
type seedlings grown on vertical plates show approximately 
twofold reduction in the rate of root growth at 2 days after 
they are transferred to dialysis membrane-covered horizon-
tal plates in comparison with those kept on vertical plates 
(Fig. 1). Under these experimental conditions, the aux1 
mutant, which is defective in an auxin influx carrier and 
shows agravitropic root growth, and the ethylene-insensitive 
mutant ein2 show no obvious reduction in the root growth 
rate (Fig. 1; Okamoto et al. 2018). A mutant of EIN3, which 
is a key transcription factor that acts downstream of EIN2 in 
the ethylene response (Guo and Ecker 2003), also exhibited 
no growth reduction (Fig. 1). Since exogenous supply of 
SA attenuates the root growth reduction after mechanical 
stimulation (Okamoto and Takahashi 2019), the response 
of npr1, which is defective in the SA signaling pathway 

http://www.rsb.info.nih.gov/ij/
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(Cao et al. 1997), was examined but no significant altera-
tion from the wild type was observed (Fig. 1). The response 
of the JA receptor mutant coi1 (Ellis and Turner 2002) and 
a transgenic plant line overexpressing ERF1 under the 35S 
promoter line (Solano et al. 1998) was also examined. These 
plant roots showed normal growth response (Fig. 1). These 
results suggest that the root growth response to mechanical 
stress is uncoupled from SA, JA, and ERF1-mediated signal-
ing pathways.

We next examined mutants of mechanosensitive Ca2+ 
channels, mca1 and mca2 (Nakagawa et al. 2007). While 
mca2 roots showed normal growth response, mca1 and 
mca1 mca2 double mutant roots showed a slight but signifi-
cant decline in the growth reduction compared with that of 
wild-type roots (Fig. 1), suggesting a role of MCA1 in this 
response.

To explore the involvement of receptor signaling in the 
root growth response to mechanical stress, we further exam-
ined mutants of FER and THE1, both of which are known 
to have a role in cell wall sensing, but they showed normal 
root growth reduction (Fig. 1). On the other hand, the bak1 
mutant showed a significant enhancement of the root growth 
reduction while a mutant of BKK1/SERK4, a paralog with 
a redundant function to BAK1 (He et al 2007) showed a 
normal growth response (Fig. 1).

On the basis of growing evidence that a microtubule-
stabilizing protein WDL5 mediates EIN3 signaling (Sun 
et al. 2015; Dou et al. 2018), we also examined the response 
in the wdl5 mutant. The growth reduction after mechanical 
stimulation was alleviated in wdl5 roots (Fig. 1).

Kinetics of root gravitropism and bending 
of the root tip

In our system, gravitropic response is the first and essen-
tial step for the root tip to perceive mechanical stress from 
impenetrable membrane-covered agar. We, therefore, 
observed kinetics of root gravitropism to examine whether 
it is affected in the mutants or not. When the plates were 
rotated from vertical to horizontal position within the ver-
tical plane, it took about 6–8 h for wild-type roots to be 
redirected downward (Fig. 2). The agravitropic aux1 mutant 
roots exhibited a slight reduction in the angle, while the 
roots of ein2, ein3, mca1 mca2, bak1, and wdl5, showed 

Fig. 1   Effect of different mutations on root growth reduction under 
mechanical stress conditions. a Net root growth for 2 days after trans-
fer of 2-day-old seedlings grown on vertical plates to vertical (white 
bars) or horizontal (gray bars) plates covered by a dialysis membrane. 
Error bars correspond to ± SD (n = 40); b ratio of horizontal to verti-
cal growth in a. Different letters indicate statistically significant dif-
ferences according to one-way ANOVA with Tukey–Kramer multiple 
comparison test (P < 0.05)

Fig. 2   Kinetics of root gravitropism. Five-day-old wild-type (Wt), 
ein2, ein3, aux1, mca1 mca2, bak1, and wdl5 seedlings were grown 
on vertical plates and the plates were rotated for the primary root to 
be oriented horizontally. Time course change in the angle of the pri-

mary root from vertical axis was measured by time-lapse photogra-
phy. Error bars correspond to ± SD (n = 10). Asterisks indicate statis-
tically significant differences compared to the wild type at the same 
time point by Student’s t test (*P < 0.05)
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almost the same kinetics as that observed in the wild type 
(Figs. 2 and S1).

When mechanically impeded, the root tip growing down-
ward to gravity is bent at a certain angle and keeps grow-
ing along the obstacle (Massa and Gilroy 2003; Shih et al. 
2014). We confirmed that, after being blocked by cover-
slips, vertically growing Arabidopsis roots had their tips bent 
and began to slide on the coverslip surface (Movie S1). It 
took about 8 h from contact to onset of the sliding growth. 
We then measured the bending angle of the root tip in each 
mutant after the blocking of the root growth by coverslips. 
The bending angle was about 140° in the wild type. While 
the angle was about 160° in aux1, it was not significantly 
affected in other mutants with altered growth response 
including ein2, ein3, mca1 mca2, bak1, and wdl5 (Fig. 3). 
Thus, these mutants except aux1 apparently encounter the 
same mechanical loads in the root tip under our experimental 
conditions.

ACC activates mechanical stress signaling

We next examined whether the altered root growth response 
to mechanical stress can be reproduced by exogenous treat-
ment of each mutant root with an ethylene precursor ACC 
or not. When wild-type seedlings grown in vertical plates 
were transferred to those containing 100 nM ACC, approxi-
mately 0.45-fold reduction in the growth was observed in 
wild-type roots at 2 days after transfer (Fig. 4). Both ein2 
and ein3 roots showed no significant reduction while mca1 
mca2 roots showed almost the same reduction as that of 
wild-type roots (Fig. 4), confirming that the Ca2+ influx 
occurs upstream of the action of ACC. On the other hand, 
the growth reduction was enhanced in bak1 and attenuated 
in wdl5 (Fig. 4). These results suggest that, in place of the 
mechanical stress, exogenous ACC can activate ethylene 
signaling in the root growth response.

Expression of mechano‑responsive genes in ein2 
and bak1

Finally, we performed RT-PCR experiments to know 
whether expressions of mechanical stress-related genes are 
affected by the bak1 mutation or not. According to previous 
studies showing that hypoosmotic stress can mimic mechani-
cal stimuli (Shih et al. 2014; Tsugama et al. 2016), hypoos-
motic treatment of whole seedlings was used as a substitute 
for mechanical stress treatment of the root tip to enable the 
cells to respond rapidly and synchronically. Three touch-
induced genes, TCH4 encoding an extracellular xyloglucan 

Fig. 3   Effect of mechanical impedance on the bending of the root tip. 
a An image of the root of the seedlings grown for 5  days on verti-
cal plates and then mechanically blocked by coverslips. b Schematic 
illustration of the root tip under mechanical impedance. c The root tip 
angle from horizontal shown as θ in b. The angle was measured at 
6–12 h after blocking of the root growth by coverslips and averaged. 
Error bars correspond to ± SD (n = 10). Different letters indicate sta-
tistically significant differences according to one-way ANOVA with 
Tukey–Kramer multiple comparison test (P < 0.05)

Fig. 4   Effect of ACC on the root growth. Five-day-old seedlings 
grown on vertical plates were transferred to plates without or with 
100 nM ACC for more 2 days. The bars indicate the ratio of length 
increase of the root grown for 2 days with ACC relative to that with-
out ACC. Error bars correspond to ± SD (n = 30). Different letters 
indicate statistically significant differences according to one-way 
ANOVA with Tukey–Kramer multiple comparison test (P < 0.05)
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endotransglycosylase (Lee et al. 2005), WRKY18 encoding 
a transcription factor (Shih et al. 2014), ACS6 encoding an 
ACC synthase (Arteca and Arteca 1999), and an osmotic 
stress-induced ACS7 (Wang et al. 2005) were examined. 
Expressions of these genes were transiently and simulta-
neously induced in 0.5 h after the hypoosmotic treatment 
of wild-type seedlings and no significant differences in the 
expression levels were detected in bak1 (Fig. 5). Similar 
expression patterns were confirmed in ein2, except that the 
induced level of ACS6 was slightly lower in ein2.

Discussion

To find new components involved in the mechanical signal 
perception and transmission in Arabidopsis roots, we exam-
ined here the root growth response to mechanical imped-
ance of the mutants of hormone signaling, calcium channels, 
and receptor-like kinases with possible implications using a 
dialysis membrane-covered agar plate. Since the aux1 root 
is insensitive to gravity and the slight reduction in the angle 
shown in Fig. 2 might be attributed to the dead weight, it 
may perceive little or no mechanical stress from horizontal 
agar plates. ein2 and ein3 roots have normal gravitropism 
and no growth response in these mutant roots confirms a 
pivotal role of ethylene signal transduction in the mechanical 

response. The root growth reduction after the mechanical 
stimulation was attenuated in mca1 and wdl5 while it was 
intensified in bak1. Since all these mutants examined here 
except aux1 showed a normal response to gravity and a nor-
mal bending structure of the root tip whose bending angle 
after contacting coverslips was about 140° in agreement 
with a previous study (Massa and Gilroy 2003), the altered 
mechanical stress responses are attributable to defects in 
the signaling cascades. The result that the growth reduc-
tion was not completely reversed in mca1 mca2 suggests the 
involvement of additional players to MCA1 and MCA2 in 
gating Ca2+ entry under mechanical stimulation besides the 
possibility that pure mechanical aspects such as turgor pres-
sure might be affected in the mutant. Potential candidates 
include members of cyclic nucleotide-gated cation channels 
(CNGCs), some of which have been shown to be Ca2+ per-
meable, and those of the reduced hyperosmolality-induced 
[Ca2+] increase (OSCA) family (Dodd et al. 2010; Swar-
breck et al. 2013; Hamant and Haswell 2017). OSCA1 was 
identified as a channel responsible for osmotic stress-evoked 
Ca2+ influx in Arabidopsis (Yuan et al. 2014). Further stud-
ies with multiple mutants of these channel genes will help to 
identify other players of the Ca2+ entry in the root response 
to mechanical stress.

Our finding that the responses to mechanical stress and 
ACC were attenuated in wdl5 suggests WDL5 as a likely 
transducer linking ethylene signaling and root growth. The 
phenotype is reminiscent of that observed in wdl5 hypoc-
otyls treated with ACC under darkness (Sun et al. 2015). 
Ethylene-induced cortical microtubule reorientation and 
bundling are partially suppressed in wdl5 hypocotyls (Ma 
et al. 2016). Probably, the same might occur in the response 
to mechanical stress in wdl5 roots. There are a number of 
plant-specific microtubule-associated proteins involved in 
cell elongation (Hamada 2014) including the WDL family 
(Perrin et al. 2007; Lian et al. 2017). These proteins might 
also play a fundamental role in microtubule dynamics during 
the root growth response.

Enhancement of the growth reduction in bak1 suggests 
the involvement of receptor-mediated signal transduction 
in this response. Importantly, supplementation of ACC 
also enhanced the root growth reduction in the absence of 
mechanical stress in bak1 while gene expressions of ethyl-
ene synthesizing enzymes, ACS6 and ACS7, were normally 
induced by hypoosmotic treatment of bak1 seedlings. These 
results suggest that BAK1 acts downstream of ethylene sign-
aling. BAK1 is a co-receptor and plays versatile roles in the 
perception of various extracellular ligands including brassi-
nosteroids (Russinova et al. 2004), bacterial flagellin (Chin-
chilla et al. 2007), and phytosulfokine (PSK) (Ladwig et al. 
2015). In the response to PSK, BAK1 forms a functional 
complex with a PSK receptor PSKR1, CNGC17, and plasma 
membrane-localized H+-ATPases AHA1 and AHA2 to link 

Fig. 5   Expression analysis of TCH4, WRKY18, ACS6, and ACS7 
by qRT-PCR. RNA was prepared from wild-type (white bars), ein2 
(gray bars), and bak1 (black bars) seedlings treated with hypoosmotic 
shock for 0, 0.5, and 2 h. ACTIN8 was used as the internal control. 
Error bars correspond to ± SD (n = 3). Different letters indicate signif-
icant differences between groups by one-way ANOVA with Tukey–
Kramer multiple comparison test (P < 0.05)
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proton extrusion to cation uptake, resulting in the promotion 
of cell growth (Ladwig et al. 2015). Another study reveals 
that BAK1 phosphorylates CNGC20 and results in its low 
abundance and the containment of Ca2+-induced cell death 
(Yu et al, 2019). Thus, BAK1 may have opposite functions in 
regulating different CNGC interactions. Our results suggest 
the possibility that BAK1 and probably its interacting pro-
teins are involved in the recovery from the root growth ces-
sation or the desensitization of ethylene signaling after eth-
ylene production. Among RLKs, members of the CrRLK1L 
subfamily including FER and THE1 are known as potential 
cell wall sensors (Franck et al. 2018). However, mutants of 
fer and the1 showed no altered root growth response in our 
system. According to a previous study (Shih et al 2014), 
fer mutants exhibit defective growth responses to mechani-
cal perturbation and also an altered bending angle of the 
root tip on coverslips. It is thus possible that the mechanical 
stress perceived at the root tip in our system using dialysis 
membrane is too weak to cause the impairment of cell wall 
integrity that is detectable by such cell wall sensors as FER 
or THE1.

In conclusion, altered root growth responses observed 
in bak1 and wdl5 suggest that additional components can 
be further identified by research of the mutants of RLKs 
and microtubule-related proteins or by screening for new 
mutants in our experimental system.
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