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Abstract
The genetics underlying the fruit colour variation in tomato is an interesting area of both basic and applied research in plant 
biology. There are several factors, like phytohormones, environmental signals and epistatic interactions between genes, 
which modulate the ripe fruit colour in tomato. However, three aspects: genetic regulation of skin pigmentation, carotenoid 
biosynthesis and ripening-associated chlorophyll degradation in tomato fruits are of pivotal importance. Different genes 
along with their mutant alleles governing the aforementioned characters have been characterized in detail. Moreover, the 
interaction of these mutant alleles has been explored, which has paved the way for developing novel tomato genotypes with 
unique fruit colour and beneficial phytonutrient composition. In this article, we review the genes and the corresponding 
mutant alleles underlying the variation in tomato skin pigmentation, carotenoid biosynthesis and ripening-associated chlo-
rophyll degradation. The possibility of generating novel fruit colour-variants using different combinations of these mutant 
alleles is documented. Furthermore, the involvement of some other mutant alleles (like those governing purple fruit colour 
and high fruit pigmentation), not belonging to the aforementioned three categories, are discussed in brief. The simplified 
representation of the assembled information in this article should not only help a broad range of readers in their basic under-
standing of this complex phenomenon but also trigger them for further exploration of the same. The article would be useful 
for genetic characterization of fruit colour-variants and molecular breeding for fruit colour improvement in tomato using 
the well-characterized mutant alleles.

Keywords Carotenoid biosynthesis · Flavonoid biosynthesis · Mutant alleles · Ripening-associated chlorophyll 
degradation · Tomato fruit colour · Tomato skin pigmentation

Introduction

Tomato (Solanum lycopersicum L.) is widely consumed 
as fresh, culinary additive or processed products. The ripe 
fruits of tomato contain different important pigments and 
phytonutrients (Schierle et al. 1997; Holloway et al. 2000; 
Livny et al. 2002; Canene-Adams et al. 2005; Toor and Sav-
age 2005; Perveen et al. 2013; Campestrini et al. 2019). The 
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major pigments present in tomatoes are the carotenoids that 
impart the red, orange or yellow colour in the ripe fruits. The 
carotenoids lycopene and β-carotene provide varied health 
benefits (Khachik et al. 2002), owing to their antioxidant 
properties as quenchers of reactive oxygen species (ROS) 
(Jomova and Valko 2013). Consumption of fresh and pro-
cessed tomato products reduces the risk of several chronic 
diseases including cardiovascular diseases and even cancer, 
where the protective role is attributed to the carotenoids 
(Fraser and Bramley 2004; Palozza et al. 2011; Burton-
Freeman and Sesso 2014; Niranjana et al. 2015; Stajcˇic´ 
et al. 2015). The role of lycopene has been recently reviewed 
to—reduce blood pressure, lower the risk of artery block-
age, prevent cholesterol oxidation, lower the risk of lung, 
prostrate, breast and uterine cancers and have positive effects 
on the skeletal system, neurodegenerative diseases includ-
ing Alzheimer’s and Parkinson’s (Przybylska 2020). Apart 
from the carotenoids, a few tomato mutants accumulate fla-
vonoids comprising of anthocyanins in ripe fruits. Antho-
cyanins exert potential health benefits (Tsuda 2012; Gerardi 
et al. 2018; Campestrini et al. 2019), particularly through 
anti-inflammatory and anti-atherosclerotic effects (Amin 
et al. 2015; Olejnik et al. 2016; Blando et al. 2018, 2019). 
Several experiments on animals and clinical trials on human 
have confirmed the role of anthocyanins in the prevention 
of cardiovascular diseases and cancer (Wallace et al. 2016; 
Lin et al. 2017).

Keeping the health promoting roles of different pigments 
in mind, attempts have been made to develop tomato lines 
with improved pigmentation in fruits, through conventional 
and non-conventional strategies. Several mutant alleles 
have been identified through the detailed analyses of skin 
pigmentation, carotenoid biosynthesis (carotenogenesis) 
and ripening-associated chlorophyll degradation in tomato 
fruits, the introgression of which can dramatically modify 
the fruit colour (and nutrient composition) in tomatoes. In 
this review, we present the different allelic variants of the 
major genes that govern skin pigmentation, carotenogenesis 
and ripening-associated chlorophyll degradation in tomato 
fruits. Moreover, some novel mutants directly or indirectly 
impacting the tomato fruit colour are also discussed. The 
detailed characterization of the mutant alleles, as presented 
here should be quite useful not only in characterizing the 
colour-variant genetic stocks at the molecular level but also 
for developing allele-specific robust molecular markers that 
can be explored in breeding programmes addressing fruit 
colour and nutritional improvement in tomato.

The ripe fruit colour of tomato

Ripening of tomato fruits is characterized by pigmentation 
of the skin (exocarp) and increased carotenogenesis coupled 
with regulated chlorophyll degradation (during chloroplast 

to chromoplast transition) in flesh (pericarp and placenta), 
which ultimately turns the unripe green fruits into ripe red 
tomatoes. Naturally, the major colour-variants result from 
aberrations in: skin pigmentation, carotenogenesis and rip-
ening-associated chlorophyll degradation. Salient features 
of the identified and characterized major genes (along with 
their mutant alleles and available mutant lines) regulating 
these three processes are summarised in Table 1. Involve-
ment of these mutant alleles in governing fruit colour of 
tomato is sequentially discussed below.

Tomato skin colour

The skin colour is an important determinant as it interacts 
with the flesh (pericarp) colour to modify the overall appear-
ance of ripe tomato fruits. For example, the red flesh toma-
toes with colourless skin appear as pink tomatoes in com-
parison to red tomatoes (where red flesh is under the normal 
yellow skin). The natural yellow skin colour of tomato is due 
to the presence of the flavonoid naringenin chalcone, which 
is the predominant pigment accumulated in the tomato peel 
during ripening (Hunt and Baker 1980). Mutations at the y 
locus cause the absence of naringenin chalcone, resulting 
in colourless skin in tomatoes (Lindstrom 1925; Rick and 
Butler 1956). The flavonoid biosynthetic pathway transcrip-
tion factor gene Solanum lycopersicum MYB12 (SlMYB12) 
is the candidate gene for the y locus governing this col-
ourless skin phenotype (Adato et al. 2009; Ballester et al. 
2010; Wang et al. 2018). Ballester and co-workers (2010) 
used pink-fruited wild introgression lines to characterize 
the SlMYB12 gene, where the mutant allele contained sev-
eral polymorphisms including a 72-bp insertion in the 3rd 
exon and absence of a 53-bp duplication in the 2nd intron. 
Comparison of the deduced amino acid sequences identi-
fied 11 amino acid substitutions, 1 amino acid deletion and 
a 23 amino acid insertion. Interestingly, all these sequence 
variations were absent in four natural pink-fruited tomato 
cultivars and indicated the altered transcriptional regulation 
of the gene to be responsible for the colourless skin pheno-
type (Ballester et al. 2010). Afterwards, detailed sequence 
analysis of the SlMYB12 gene revealed a 603-bp deletion in 
the upstream region (at − 4865 bp position from the start 
codon), a transition (C > T) and a 1-bp insertion (TG > TAG) 
in the 2nd exon of the allelic variant (Lin et al. 2014). The 
sequence deletion in the upstream region justifies transcrip-
tional repression, whereas the transition and insertion muta-
tions lead to introduction of premature stop codons result-
ing in truncated non-functional protein(s). Subsequently, a 
pink-fruited hybrid tomato was characterized where both 
the transition and insertion mutation of the 2nd exon was 
absent, whereas the 603-bp deletion in the upstream region 
was present in heterozygous condition (Veerappan et al. 
2016). This observation indicated the possibility of another 
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Table 1  The major genes and their mutant alleles involved in regulating skin colour, carotenoid biosynthesis and ripening-associated chlorophyll 
degradation in tomato fruits

Gene Accession number Mutant phenotype Available mutant lines 
at TGRC a

Mutant allele(s) with Reference

Skin pigmentation SlMYB12 Solyc01g079620 colourless skin (loss-of-
function)

LA3189, LA1088 (1) 603-bp deletion in the 
upstream promoter region 
(Lin et al. 2014)

(2) C to T transition in the 2nd 
exon (Lin et al. 2014)

(3) A addition (TG to TAG) in 
the 2nd exon (Lin et al. 2014)

(4) G to T transversion at 2nd 
intron splicing site (Veerap-
pan et al. 2016)

(5) Genomic deletion from 
the 3rd intron of the gene 
(Fernandez-Moreno et al. 
2016)

(6) G to A transition in the 3rd 
exon (Jung et al. 2017)

(7) G to A transition in the 3rd 
exon (Jung et al. 2017)

(8) Deletion of ~ 45 kb genomic 
region containing the entire 
gene (Jung et al. 2017)

Carotenogenesis IDI1 Solyc04g056390 fruit carotenoid deficient 
(fcd)/ apricot (loss-of-
function)

LA3535, LA2998, 
LA0215

(1) Transition (G to A) in the 
4th exon (Pankratov et al. 
2016)

(2) Transition (G to A) in the 
5th exon (Pankratov et al. 
2016)

(3) Deletion of TGG in the 5th 
exon (Pankratov et al. 2016)

(4) Insertion of T in the 6th 
exon (Pankratov et al. 2016; 
Shin et al. 2019)

PSY1 Solyc03g031860 yellow flesh (loss-of-
function)

LA3003, LA3532, 
LA2997, LA2056, 
2–141, LA0353

(1) Insertion of Rider transpo-
son in the 1st exon (Fray and 
Grierson 1993; Jiang et al. 
2012)

(2) Short deletion in the 3′ end 
(Fray and Grierson 1993; 
Jiang et al. 2012)

(3) Transition (G to A) in the 
2nd exon (Kachanovsky et al. 
2012)

(4) Transition (A to G) in the 
4th intron (Yuan et al. 2008; 
Kang et al. 2014; Chen et al. 
2019)

(5) Transition (C to T) in the 
3rd exon (Gady et al. 2012)

(6) Transition (G to A) in the 
3rd exon (Gady et al. 2012)

(7) Large insertion in the 1st 
exon (Kang et al. 2017)

(8) Deletion of 691 bp in the 
upstream promoter region 
(Shin et al. 2019)

(9) T to A transversion muta-
tion in the 6th exon (Shin 
et al. 2019)
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Table 1  (continued)

Gene Accession number Mutant phenotype Available mutant lines 
at TGRC a

Mutant allele(s) with Reference

CrtISO Solyc10g081650 tangerine (loss-of-func-
tion)

LA3183, LA0030, 
LA3002, LA0351

(1) 348-bp deletion in the 
upstream promoter region 
(Isaacson et al. 2002)

(2) 282-bp deletion from the 
gene (Isaacson et al. 2002)

(3) Insertion of T in the 2nd 
exon (Kachanovsky et al. 
2012)

(4) Transition (G to A) in 3rd 
exon (L241K) (Kachanovsky 
et al. 2012)

(5) Transition (G to A) in 
the 11th exon (G520R) 
(Kachanovsky et al. 2012)

(6) Transition (G to A) in 
the 11th exon (G546E) 
(Kachanovsky et al. 2012)

(7) Insertion of A in the 8th 
exon (Yoo et al. 2017)

(8) C to T transition mutation 
in the 7th exon (Yoo et al. 
2017)

CYC-B Solyc06g074240 Beta (gain-of-function)/
old-gold (loss-of-function)/
old-gold crimson (loss-of-

function)

Beta = LA2374, 
LA3898, LA3899, 
LA3000

old gold = LA4026,
LA0348, LA0500, 

LA4025
old gold crim-

son = LA0806, 
LA3179

(1) Transversion G to T at − 77 
position (Beta) (Hwang et al. 
2016)

(2) A to ATA mutation (old 
gold) (Ronen et al. 2000)

(3) Deletion of A (old gold 
crimson) (Ronen et al. 2000)

(4) Transversion (A to C) 
(Mohan et al. 2016)

(5) Transition (G to A) (Mohan 
et al. 2016)

(6) Insertion of 256 bp at 
upstream promoter region 
(Mohan et al. 2016)

LCY-E Solyc12g008980 Delta (gain-of-function) LA4099, LA2996A,
LA2921

(1) Insertion of 1,014 bp at 
upstream promoter region 
(Yoo et al. 2017)

Chlorophyll degradation SGR Solyc08g080090 green flesh (loss-of-
function)

LA2071, LA3534, 
LA2999, LA4449, 
LA4450, LA4451, 
LA4452

(1) Transversion (A to T) in the 
3rd exon (Barry et al. 2008; 
Barry and Pandey 2009)

(2) Addition of A in the 3rd 
exon (Barry and Pandey 
2009)

(3) Deletion of 2 bp in the 
2nd exon (Barry and Pandey 
2009)

(4) Transition (C to T) in the 
2nd exon (Barry and Pandey 
2009)

(5) Deletion of 1163 bp from 
the gene (Barry and Pandey 
2009)

(6) Transition (T to C) in the 
last base of the 3rd exon 
(Kang et al. 2017)

a As per active collection of monogenic mutant stocks maintained at C.M. Rick Tomato Genomic Resource Centre at Unversity of Callifornia, 
Davis, USA (https ://tgrc.ucdav is.edu/)

https://tgrc.ucdavis.edu/
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loss-of-function mutation attributed by one of the parents of 
the hybrid. Further analysis revealed a transversion (G > T) 
at the initial base of the 2nd intron, leading to the disrup-
tion of the 5′ splicing site. Naturally, the possible alternate 
splicing through this mutation results in the loss-of-function 
allele of the SlMYB12 gene (Veerappan et al. 2016). Molecu-
lar characterization of two pink-fruited tomato mutants has 
revealed another null allele for the SlMYB12 gene, where 
the genomic region between the 3rd intron and the end of 
the gene is deleted (Fernandez-Moreno et al. 2016). In the 
recent past, an attempt was made to explore more possible 
genetic variation(s) in the SlMYB12 gene using 85 pink-
fruited tomato lines (Jung et al. 2017). Out of the 85 lines, 
seven lines contained neither the upstream 603-bp deletion 
nor the previously reported single nucleotide polymorphisms 
(SNPs). Among these seven lines, six lines had two separate 
transitions (G > A) in the 3rd exon, leading to introduction 
of premature stop codon. Interestingly, one tomato line had 
deletion of ~ 45 kb genomic region containing the entire 
SlMYB12 gene. Thus, three more loss-of-function allelic var-
iants of the SlMYB12 gene (2 SNPs at 3rd exon and 44.75 kb 
genomic deletion) can lead to the colourless skin phenotype 
in tomato (Jung et al. 2017). Pictorial representation of all 
these allelic variants of the SlMYB12 gene is portrayed in 
supplementary Fig. Sf1.

Carotenoid biosynthesis and tomato fruit colour

Tomato fruit colour is predominantly governed by accumu-
lation of carotenoids during fruit ripening. Carotenogenesis 
has been studied in great details in different plants including 
tomato (Porter and Lincoln 1950; Cunningham and Gantt 
1998; Hirschberg 2001; Bramley 2002; Fraser and Bramley 
2004; Giuliano 2014; Liu et al. 2015). The ability of the 
carotenoid biosynthetic enzymes to function in bacterial 
and cell-free systems has accelerated the identification of 
candidate genes (Lotan and Hirschberg 1995; Bartley et al. 
1999; Isaacson et al. 2004; Chen et al. 2010; Yu et al. 2011). 
A simplified view of the carotenogenesis pathway in tomato 
fruits, along with the fruit colour-variants arising from muta-
tions in the key genes of the pathway, is presented in Fig. 1.

Like other higher plants, carotenoids are synthesized in 
the chromoplasts of tomato, catalysed by enzymes coded 
by nuclear genes (Chappel et al. 1995; Davies 2009; Egea 
et al. 2010; Hirschberg 2001). The primary building blocks 
of carotenoids in tomato are isopentenyl diphosphate (IPP 
or IDP) and its isomer dimethylallyl diphosphate (DMADP), 
produced through the 2C-methyl-d-erythritol-4-phosphate 
(MEP) pathway in plastids (Lichtenthaler et  al. 1997; 
Milborrow and Lee 1998; Lichtenthaler 1999; Eisenreich 
et al. 2001, 2004; Botella-Pavía et al. 2004; Enfissi et al. 
2005). The conversion of IDP to DMADP and vice versa is 
carried out by IDP isomerase (IDI; Pankratov et al. 2016), 

which determines the relative amounts of IDP and DMADP, 
and ultimately regulates the carotenogenesis. The IDP and 
DMADP are converted to geranylgeranyl diphosphate 
(GGPP) by geranylgeranyl diphosphate synthase (GGPPS; 
Ament et al. 2006). Next, 2 GGPP molecules are condensed 
to form 15-cis-phytoene by phytoene synthase 1 (PSY1; Bird 
et al. 1991; Fray and Grierson 1993). The 15-cis-phytoene 
is then desaturated by phytoene desaturase (PDS; Mann 
et al. 1994) to tri-cis- ζ-carotene, which is subsequently 
converted to 9,9′-di-cis-ζ-carotene by ζ-carotene isomerase 
(ZISO; Chen et al. 2010). Then, 9,9′-di-cis-ζ-carotene is 
converted to tetra-cis-lycopene (prolycopene) with the help 
of ζ-carotene desaturase (ZDS; Bartley et al. 1999; Dong 
et al. 2007; McQuinn et al. 2020). Prolycopene is isomer-
ized to lycopene by carotene isomerase (CrtISO; Isaacson 
et al. 2002). The synthesized lycopene can be cyclized in 
two distinct routes; the first route leads to the production 
of β-carotene with the help of lycopene β cyclase (CYC-
B; Pecker et al. 1996; Ronen et al. 2000) and the second 
route produces δ-carotene and lutein by lycopene ε cyclase 
(LCY-E; Ronen et al. 1999). As both the CYC-B and LCY-E 
are down-regulated during fruit ripening, normal red ripe 
tomato fruits contain lycopene as the major carotenoid pig-
ment with relatively less amounts of β-carotene and lutein. 
As the pathway is under stringent regulation, mutations in 
the biosynthetic genes lead to panoply of colour variations in 
ripe tomato fruits due to aberrant accumulation of pathway 
intermediates and end products.

Mutations in the genes of carotenoid biosynthetic 
pathway

Biosynthesis of carotenoids is of pivotal importance as 
carotenoids are indispensible for photosynthesis in green 
plant tissues. Naturally, major carotenoid biosynthetic 
genes are expressed constitutively in the green plant parts 
(Galpaz et al. 2006). Deleterious mutations in the key 
genes involved in carotenogenesis in green plant tissues 
are lethal and hence remain undetected. Interestingly, reg-
ulations of carotenogenesis in tomato fruits (and flowers) 
are distinct from those operating in green tissues (The-
lander et al. 1986; Fraser et al. 1994; Galpaz et al. 2006). 
As the carotenoids in flowers and fruits are not inevitably 
essential for the physiology in these tissues, carotenogen-
esis mutants altering fruit pigmentation are not lethal and 
can be detected (Hirschberg 2001; Galpaz et al. 2006). 
Mutations in the fruit and chromoplast-specific isoforms 
of the carotenoid biosynthetic genes (like IDI, PSY and 
CYC-B) contribute towards variation in tomato fruit colour 
(Galpaz et al. 2006; Pankratov et al. 2016). Mutation in the 
CrtISO gene can also be detected as the gene action can be 
substituted by light in the green plant parts (Li et al. 2007). 
Furthermore, two additional distant homologs of CrtISO: 
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CrtISO-L1 and CrtISO-L2 genes play role in a metabolic 
side branch containing all-trans-ζ-carotene (Fantini et al. 
2013). But natural loss-of-function mutations in the single 
genes (like PDS and ZDS) most likely remain undetect-
able due to the possible lethality associated with them. 
Nevertheless, role of lycopene biosynthetic genes, includ-
ing PDS and ZDS, in regulating tomato fruit colour and 
carotenoid composition has been clearly demonstrated 
using virus induced gene silencing (VIGS) in tomato fruits 
(Fantini et al. 2013). Thus, gene duplication-mediated 

development of chromoplast (predominantly present in 
fruits and flowers; Sadali et al. 2019)-specific carotenogen-
esis in fruits (Galpaz et al. 2006) explains the availability 
of different fruit colour mutants in tomato.

Tomato fruit carotenogenesis mutants can be classified 
as (1) mutations that reduce the overall carotenoid con-
tent in tomato and (2) mutations that alter the carotenoid 
profile in tomato.

Fig. 1  Simplified view of the carotenoid biosynthesis pathway in 
tomato fruits and fruit colour-variants associated with mutant alleles 
of the biosynthetic genes. G3P = Glyceraldehyde 3 phosphate; IPP/
IDP = Isopentenyl diphosphate; DMADP = Dimethylallyl diphos-
phate; GGPP = Geranylgeranyl di-phosphate; DXS = 1-deoxy-
d-xylulose 5-phosphate synthase; IDI = IDP isomerase; 

GGPPS = Geranylgeranyl diphosphate synthase; PSY1 = Phytoene 
synthase 1; PDS = Phytoene desaturase; ZISO = ζ-carotene isomer-
ase; ZDS = ζ-carotene desaturase; CrtISO = Carotene isomerase; 
CYC-B = Lycopene β cyclase; LCY-E = Lycopene ε cyclase. Negative 
and positive signs represent loss-of-function and gain-of-function 
mutations, respectively
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Mutations that reduce the overall carotenoid 
content in tomato

Mutations in the genes governing early steps of carotenogen-
esis (IDI and PSY, Fig. 1) greatly reduce the overall carote-
noid content in tomato fruits. The loss-of-function mutations 
in these genes are pictorially presented in supplementary 
Fig. Sf2 and sequentially discussed below.

Mutations in the isopentenyl diphosphate (IDP) 
isomerase 1 (IDI1) gene

Carotenoids are biosynthesized and accumulated in the 
chromoplasts of tomato fruit. GGPP, the biosynthetic pre-
cursor for carotenoids, is produced from IDP and its iso-
mer DMADP (Fig. 1) through the MEP pathway in plastids 
(Botella-Pavía et al. 2004; Enfissi et al. 2005). Though the 
plastidial MEP pathway produces both IDP and DMADP, 
IDP can be isomerized to DMADP and vice versa by the 
enzyme IDP isomerase (IDI, Fig. 1), where the equilib-
rium favours the forward reaction (conversion of IDP to 
DMADP). The ratio of IDP and DMADP determines the 
nature of isoprenoids to be synthesized; for example, the 1:1 
ratio leads to monoterpene, the 2:1 ratio leads to sesquiter-
penes and sterols, whereas the 3:1 ratio leads to diterpene, 
phytol, carotenoid and much higher ratio leads to long-chain 
polyprenols and polyterpenes biosynthesis (Gershenzon and 
Kreis 1999; Phillips et al. 2008). Interestingly, 6:1 ratio of 
IDP:DMADP has been obtained in vitro using the enzyme 
1-hydroxy-2-methylbutenyl 4-diphosphate reductase, which 
catalyses the last step of the MEP pathway (Rohdich et al. 
2003; Eisenreich et  al. 2004). Naturally, IDI activity is 
very much important to modulate the IPP:DMADP ratio 
to trigger carotenogenesis in plastids (Phillips et al. 2008). 
Among the two IDI isoforms (IDI1 and IDI2) in tomato, 
IDI2 is cytoplasmic and IDI1 contains chloroplast transit 
peptide (Pankratov et al. 2016). Though the cytoplasmic 
form (previously designated as SlIPI1, Solanum lycoper-
sicum isopentenyl diphosphate isomerase) was reported to 
be involved in carotenogenesis using bacterial expression 
system (Sun et al. 2010), later the pivotal role of the chlo-
roplastic IDI1 (and not IDI2) in carotenogenesis in tomato 
fruits was established (Pankratov et al. 2016). This observa-
tion and gene nomenclature is in unison with the IDI genes 
previously identified and characterized in tobacco (Naka-
mura et al. 2001). The role of the IDI1 gene in regulating 
carotenogenesis has been analysed using mutant tomato lines 
(designated as fruit carotenoid deficient, fcd) with reduced 
carotenoid content in ripe fruits (Pankratov et al. 2016). In 
the fcd mutant lines, three distinct point mutations, yielding 
loss-of-function alleles of IDI1 gene, have been reported. In 
the first one (fcd1-2 allele), a transition (G > A) in the 4th 
exon introduces a premature stop codon; in the second one 

(fcd1-1 allele), deletion of three nucleotides (TGG) from 
the 5th exon removes a Trp residue (W206-); and in the 
third one (fcd1-3 allele), another transition (G > A) in the 5th 
exon causes missense mutation (G207R) (Pankratov et al. 
2016). Furthermore, this study also identified another allele 
(fcd1at) with a nonsense mutation (K234*) in the synony-
mous apricot tomato mutant (Jenkins and Mackinney 1955) 
with reduced fruit carotenoids. Accordingly, this nonsense 
mutation, originating from insertion of a T in the 6th exon 
(that produces truncated non-functional IDI1 protein) was 
found in other apricot mutant lines in the recent past (Shin 
et al. 2019). Thus, loss of IDI1 function causes extremely 
low total carotenoid content in pale yellow flower and yellow 
fruits of fcd and apricot tomato mutants. All these allelic 
variants of the IDI1 gene are pictorially presented in sup-
plementary Fig. Sf2.a.

Mutations in the phytoene synthase 1 (PSY1) gene

The yellow flesh mutant of tomato has been explored since 
the rediscovery of Mendelism in tomato (Price and Drink-
ard 1909). Mutations at the r locus give pale yellow flower 
corolla, yellow fleshed fruits and intense yellow pigmen-
tation in the fruit skin (Fray and Grierson 1993). Another 
spontaneous mutation ry, allelic to the r locus, gives similar 
fruit colour with normal flower corolla colouration. Later, 
the involvement of mutant alleles of the phytoene synthase 
(PSY, Fig. 1) gene in determining yellow flesh phenotype 
was proven. The tomato genome contains 3 PSY genes (PSY 
1, PSY 2 and PSY 3) out of which only PSY 1 is active during 
ripening of fruits (Bartley and Scolnik 1993; Fraser et al. 
1999; Giorio et al. 2008; Li et al. 2008; Welsch et al. 2008). 
The yellow flesh mutant alleles, r and r,y are the non-func-
tional versions of the tomato PSY1 gene, as proved through 
sequencing, complementation and co-suppression (Fray 
and Grierson 1993). The r allele arises due to insertion of 
Rider transposon in the PSY1 gene, whereas the ry allele 
has a short deletion leading to trans-splicing (Jiang et al. 
2012). Apart from the r and ry alleles, the non-functional 
allele r3756 has a transition (G > A) in the 2nd exon causing 
a nonsense mutation (W151*) to abolish the PSY1 activ-
ity (Kachanovsky et al. 2012). Another yellow flesh tomato 
line contains a different allele with a transition (A > G) in 
the 4th intron (Yuan et al. 2008). Later a chimeric transcript 
of the PSY1 gene (designated as PSY1/Unknown), where 
the 3′ end of the chimeric transcript corresponds to an 
unknown gene coded by the complementary strand of the 
gene encoding Acyl-CoA synthase was found (Kang et al. 
2014). The intron–exon arrangement of the unknown gene 
is different from Acyl-CoA synthase, indicating its novelty. 
A very similar trans-splicing of the PSY1 gene resulted 
in yellow flesh colour in a cherry tomato line (Chen et al. 
2019). Possible loss-of-function alleles of the PSY1 gene in 
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tomato have been identified also through Targeting Induced 
Local Lesions IN Genomes (TILLING; Gady et al. 2012). 
Two mutant lines, with significantly reduced phytoene and 
lycopene content were analysed, where one line contained 
a transition (C > T) in the 3rd exon causing missense muta-
tion (P192L) affecting PSY1 activity. The other mutant line 
contained a transition (G > A) in the 3rd exon causing non-
sense mutation (W180*), generating a knock out allele of 
the PSY-1 gene (Gady et al. 2012). Another non-functional 
allele of the gene with a large insertion in the 1st exon was 
identified in a green-fruited tomato line (Kang et al. 2017). 
In the recent past, two more causal mutations in the PSY1 
gene resulted in yellow flesh colour of tomato. One yellow-
fruited tomato line had a deletion of 691 bp in the upstream 
promoter region, whereas the other line had a transversion 
(T > A) in the 6th exon (Shin et al. 2019). The transversion 
in the 6th exon introduces a premature stop codon resulting 
in a truncated (lacking last 30 amino acid residues) PSY1 
protein. Allelic variants of the PSY1 gene are pictorially pre-
sented in supplementary Fig. Sf2.b.

Mutations that alter the carotenoid profile 
in tomato

Mutations in the genes governing later steps of carotenogen-
esis (CrtISO, CYC-B and LCY-E, Fig. 1) greatly influence 
the carotenoid composition in tomato fruits. The loss-of-
function and/or gain-of-function mutations in these genes 
that modify carotenoid composition in tomato fruits are pic-
torially presented in supplementary Fig. Sf3 and sequentially 
discussed below.

Mutations in the carotene isomerase (CrtISO) gene

Prolycopene (7,9,7′,9′tetra-cis lycopene) is enzymatically 
converted by carotene isomerase (CrtISO) to all-trans-lyco-
pene (Fig. 1), which is predominantly accumulated in red 
tomatoes. The CrtISO gene has been analysed in tangerine 
mutants with orange flesh (due to accumulation of prolyco-
pene in place of all-trans-lycopene; Isaacson et al. 2002). 
Initially, two alleles of the CrtISO gene were identified in 
the tangerine mutants. The tangerine3183 (t3183) mutant allele 
contains a 348-bp deletion in the upstream promoter region, 
which drastically reduces transcription of the gene. On the 
other hand, the tangerinemic (tmic) mutant allele contains a 
282-bp deletion (24 bp of the first exon and 258 bp of the 
first intron of the gene), which eliminates a splicing site and 
results in a truncated non-functional enzyme (Isaacson et al. 
2002). Later, a mutant line was found to contain a single 
nucleotide (T) insertion in the 2nd exon of the gene, leading 
to the introduction of a premature stop codon (Kachanovsky 
et al. 2012). In a similar manner, this study identified some 
other alleles in induced mutant lines, like, t4838 (where G > A 

transition in the 3rd exon causes L241K missense mutation), 
t3406 (where G > A transition in the 11th exon causes G520R 
missense mutation), and t9776 (where G > A transition in the 
11th exon causes G546E missense mutation). Apart from 
these, other mutations in the CrtISO gene have been identi-
fied in orange-fruited tomato lines in the recent past (Yoo 
et al. 2017). Among these, insertion of an A in the 8th exon 
of the gene leads to nonsense mutation. The other allele 
contained a transition (C > T) in the 7th exon of the gene. 
Interestingly, epistatic interaction of CrtISO mutant (tan-
gerine) on PSY-1 mutant (yellow flesh) has been reported, 
where the transcription of PSY-1 is partially restored (involv-
ing cis-carotenoid metabolites) for sufficient production of 
phytoene and downstream carotenoids in tangerine back-
ground (Kachanovsky et al. 2012). This indicated towards 
the complex regulation of carotenogenesis in tomato fruits 
through interaction(s) between different mutant alleles. 
Allelic variants of the CrtISO gene are pictorially depicted 
in supplementary Fig. Sf3.a.

Mutations in the lycopene β cyclase (CYC‑B) gene

In the carotenoid biosynthetic pathway, cyclization of lycopene 
is a central branch point, from which the pathway either moves 
towards the production of β-carotene, zeaxanthin, violaxanthin 
and neoxanthin (precursors of the ABA and strigolactone bio-
synthesis) or towards the production of δ-carotene and lutein 
(Fig. 1). The β-carotene production from lycopene is catalysed 
by the enzyme lycopene β cyclase (Pecker et al. 1996). Two 
distinct genes encoding lycopene β cyclase have been reported 
in tomato; the SlLCY-B1 (SlCRTL-B) gene is active in green 
tissues and flowers, whereas the SlLCY-B2 (SlCYC-B) gene 
is chromoplast-specific (Ronen et al. 2000). Interestingly, 
an almost identical gene from tomato exhibits neoxanthin 
synthase activity but not lycopene β cyclase activity upon 
prokaryotic and eukaryotic heterologous expression (Bouvier 
et al. 2000). Later, this controversy has been addressed in dif-
ferent communications (Hirschberg 2001; Botella-Pavía and 
Rodríguez-Concepción 2006; Neuman et al. 2014) and the 
possibility of lycopene β cyclase in tomato to be bi-functional 
(cyclase as well as neoxanthin synthase activities) has been 
proposed. But, presence of neoxanthin in CYC-B loss-of-func-
tion mutants indicates the presence of a distinct gene encoding 
neoxanthin synthase (Hirschberg 2001). Although a gene is 
involved in neoxanthin biosynthesis in tomato (Neuman et al. 
2014), the distinct neoxanthin synthase gene in tomato is yet 
to be identified (Karniel et al. 2020). As the up-regulation of 
the SlCYC-B gene increases β-carotene content in the fruits 
of tomato mutant Beta with orange coloured fruits, putative 
role of 5′ upstream sequence variations in transcriptional up-
regulation of the gene was suggested (Ronen et al. 2000). In 
the recent past, the 5´ upstream region of the SlCYC-B gene 
from red, yellow and orange fruited tomato lines have been 
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analysed to identify 4 SNPs (at positions − 837, − 506, − 401 
and − 77), out of which the transversion (G > T) at − 77 posi-
tion is crucial (Hwang et al. 2016).

Apart from the gain-of-function Beta mutant, tomato 
lines have been found with loss-of-function mutations in the 
SlCYC-B gene. Frame-shift mutations in this gene (leading 
to the production of non-functional protein) results in old-
gold (og) and old-gold crimson (ogc) mutants, where the lack 
of lycopene β cyclase activity causes a complete absence of 
β-carotene and a significant increase in lycopene content in 
the ripe tomato fruits (Ronen et al. 2000). Sequence varia-
tions in the CYC-B gene present in different tomato geno-
types have also been analysed through EcoTILLING (Mohan 
et al. 2016). A loss-of-function allele of the CYC-B gene 
with 2 SNPs was documented. The first one, the transversion 
(A > C), causes missense mutation (K106T), whereas the 
2nd one, the transition (G > A), introduces a premature stop 
codon (W190*). Moreover, the authors also documented a 
transcriptionally more active promoter (in comparison to the 
‘Beta type’ promoter) in 2 og mutant lines, where a 256-bp 
insertion occurs at − 281 position. Thus, the SlCYC-B gene 
sets a classic example, where both gain-of-function (Beta) 
and loss-of-function (og and ogc) alleles have been found. 
Allelic variants of the CYC-B gene are pictorially depicted 
in supplementary Fig. Sf3.b.

Mutation in the lycopene ε cyclase (LCY‑E) gene

The second route from the central branch point of lycopene 
cyclization leads to the production of δ-carotene and lutein 
(Fig. 1), catalysed by the enzyme lycopene ε cyclase (LCY-E 
or CRTL-E), which shares ~ 36% identity with tomato lyco-
pene β cyclase, CRTL-B (Ronen et al. 1999). Though the 
expression of LCY-E is decreased during fruit ripening, the 
expression of the same is drastically increased by ~ 30 fold 
in the dominant Delta mutant. This increased expression is 
the reason behind increased δ-carotene (and lutein) content 
in the fruits of the Delta mutant. Interestingly, the deduced 
amino acid sequence of LCY-E gene is almost identical 
in the Delta mutant and wild-type tomato lines and both 
are equally functional in heterologous expression system 
(Escherichia coli). Naturally, the sequence variation in the 
upstream promoter region should explain the transcriptional 
up-regulation of LCY-E in the Delta mutant (Ronen et al. 
1999). Accordingly, the promoter region of the LCY-E gene 
in an orange-fruited tomato accession contained 1014-bp 
insertion at − 326 position (Yoo et al. 2017; Fig. Sf3.c).

The ripening‑associated chlorophyll degradation 
mutants and tomato fruit colour

During the ripening process, carotenogenesis is significantly 
increased coupled with rapid degradation of chlorophyll 

(during chloroplast to chromoplast transition), which gives 
the ripe tomato fruits their characteristic colour. However, 
in some cases, up-regulated carotenogenesis is accompa-
nied by retention of chlorophyll, which modifies the ripe 
fruit colour of tomatoes. Due to retention of chlorophyll, 
mutant tomatoes of this class are termed as green flesh (gf; 
Cheung et al. 1993), where the mutation is attributed to the 
STAYGREEN (SGR) gene (Barry et al. 2008). Comparison 
of the deduced amino acid sequences from the wild type and 
mutant has revealed a transversion (A > T) in the 3rd exon 
causing missense mutation (R143S) in the loss-of-function 
gf allele (Barry et al. 2008; Barry and Pandey 2009). Simi-
larly, other loss-of-function alleles have been identified in 
different gf mutant tomatoes, where the alleles have been 
designated as gf2, gf3, gf4 and gf5 (Barry and Pandey 2009). 
In case of the gf2 and gf3null alleles, insertion and dele-
tion mutations in the 3rd and 2nd exon, respectively, lead 
to frame-shift mutation and introduction of premature stop 
codons to truncate the STAYGREEN protein. The gf4 null 
allele results from a nonsense transition mutation (C > T) in 
the 2nd exon, whereas the deletion of 1163 bp from the gene 
(including part of the 2nd intron, the entire 3rd exon, the 
entire 3rd intron and part of the 4th exon) results in the gf5 
null allele (Barry and Pandey 2009). Another loss-of-func-
tion allele contained a transition (T > C) at the last base of 
the 3rd exon of the gene that leads to splice-variant genera-
tion with a truncated non-functional STAYGREEN protein 
(Kang et al. 2017). Pictorial representation of all these allelic 
variants of the SGR gene is portrayed in Fig. Sf4. Interest-
ingly, carotenoid biosynthesis during tomato fruit ripening 
involves the direct interaction of SlSGR1 with SlPSY1 (Luo 
et al. 2013). The authors have demonstrated the inhibitory 
effect of SlSGR1 on SlPSY1 using bacterial expression 
system and transgenic suppression of SlSGR1 in tomato. 
Apart from regulating fruit carotenogenesis, SlSGR1 regu-
lates fruit ripening in tomato by influencing ethylene signal 
transduction (Luo et al. 2013).

Other mutations

Mutations in the genes, not directly involved in skin col-
our development, carotenogenesis and ripening-associated 
chlorophyll degradation, also modify tomato ripe fruit col-
our. For example, the tomato fruit colour is regulated by 
the genes influencing carotenogenesis (Liu et al. 2003). 
Using the green-fruited wild introgression lines in the 
cultivated tomato background, the chromosome segments 
that modify the fruit colour intensity in tomato have been 
found, where additional candidate genes include farnesyl 
diphosphate synthase (FPS), geranylgeranyl diphosphate 
reductase (GGPR), plastid lipid-associated protein (PAP) 
and DEETIOLATED-1 (DET1). Furthermore, 11 quantita-
tive trait loci (QTL) lacking carotenogenesis genes were 
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identified, justifying quantitative variation in tomato fruit 
colour beyond the regulation of candidate carotenoid genes 
(Liu et al. 2003). The study also indicated the wild relatives 
of tomato as an important source for mutant alleles that can 
influence fruit colour in both qualitative and quantitative 
manner.

During tomato fruit ripening, carotenogenesis occurs 
in the plastids; naturally, genes that regulate plastid num-
ber, size and thylakoid stacking can markedly influence the 
same. The high pigment (hp) mutants of tomato with sig-
nificantly increased carotenoid content in ripe fruits have 
enhanced chromoplast number and size. The high pigment 
1 (hp1) mutant, having mutation in the tomato UV-damaged 
DNA-binding protein 1 (DDB1) homolog, contains signifi-
cantly more number of plastids in fruits (Liu et al. 2004). 
The high pigment 2 (hp2) mutant contains more and larger 
plastids, where mutations occur in the DEETIOLATED1 
(DET1) gene, a negative regulator of light signal transduc-
tion (Mustilli et al. 1999; Levin et al. 2003; Kolotilin et al. 
2007). The plastid compartment is enlarged in high pigment 
3 (hp3) mutants arising from mutation in the gene encoding 
zeaxanthin epoxidase (Zep), which converts zeaxanthin to 
violaxanthin (Galpaz et al. 2008). Furthermore, the inten-
sity and distribution pattern of plastid on tomato fruits is 
governed by the U locus, encoding GOLDEN 2-LIKE 2 
(SlGLK2) MYB transcription factor (Powell et al. 2012). 
The lines carrying this functional gene show green shoulder 
phenotype resulting from the latitudinal gradient of SlGLK2 
expression (Nguyen et al. 2014). However, the uniform rip-
ening (u) mutant lacks this gene activity due to insertion of 
A in the 1st exon of the gene, which introduces a premature 
stop codon and translates to a non-functional protein (Powell 
et al. 2012). The uniform ripening tomato fruits appear pale 
and contain less carotenoid pigments.

The ripe fruit colour of tomato can become purple 
through accumulation of the flavonoid anthocyanin. Gener-
ally, anthocyanin accumulation fails to occur in the tomato 
fruits, though the presence of this flavonoid is detected in 
the fruits of related wild undomesticated types, like S. chil-
ense, S. hirsutum, S. cheesmanii and S. lycopersicoides (Rick 
1964; Georgiev 1972; Rick et al. 1994). The Aft (Antho-
cyanin fruit) dominant gene derived from S. chilense accu-
mulates anthocyanin in the epidermis and pericarp tissues 
of ripe tomato fruits (Jones et al. 2003). Very recently, an 
R2R3 Myb transcription factor (positive regulator of antho-
cyanin biosynthetic pathway) gene SlAN2-like has been 
proven as the candidate gene for Aft (Colanero et al. 2020; 
Sun et al. 2020; Yan et al. 2020). Interestingly, the effect 
of Aft is dramatically increased in tomato lines harbouring 
another recessive gene atv (atroviolacium) derived from 
S. cheesmanii (Rick et al. 1968; Mes et al. 2008; Gonzali 
et al. 2009; Povero et al. 2011). Through fine mapping, 
atv was found to originate from a mutation in an R3 type 

Myb transcription factor (negative regulator of anthocyanin 
biosynthetic pathway) gene SlMybATV (Cao et al. 2017; 
Colanero et al. 2018). Another dominant gene Aubergine 
(Abg), derived from S. lycopersicoides, increases anthocya-
nin content in tomato fruits, when coupled with atv (Rick 
et al. 1994; Mes et al. 2008). Interestingly, some tomato 
green flesh (gf) mutant lines have ‘purple’ in their names 
(like Purple Calabash, Purple Prince, Purple Russian), but 
they are not anthocyanin-rich ‘purple’ mutants. The purple 
colour comes from retention of chlorophyll and higher con-
tent of lycopene in the ripe fruits (Barry and Pandey 2009).

The natural mutations in the genes involved in ripening 
process also effectively regulate tomato ripe fruit colour. 
These genes include Ripening-inhibitor (Rin; Vrebalov et al. 
2002), Colourless non-ripening (Cnr; Manning et al. 2006), 
Never-ripe (Nr; Wilkinson et al. 1995) Green-ripe (Gr; 
Barry and Giovannoni 2006), non-ripening (nor; Tigchelaar 
et al. 1973; Karlova et al. 2014) and alcobaca (alc; Kope-
liovitch et al. 1981). Furthermore, the carotenogenesis is 
regulated by environmental factors and hormonal networks 
through several genes and transcription factors (reviewed 
in Liu et al. 2015; Enfissi et al. 2017; Stanley and Yuan, 
2019), a detailed description of which is beyond the scope 
of this article.

Conclusion and future prospect

Genetic regulation behind tomato fruit colour variation 
has remained a rewarding area of both basic and applied 
research in plant science. Though several factors determine 
the fruit colour in tomato, regulation of skin colour, pigment 
variation through carotenogenesis and ripening-associated 
chlorophyll degradation in fruits are the three major determi-
nants. Identification and analyses of important mutant alleles 
of the key genes governing these three characters have paved 
the way for detailed genetic characterization of the associ-
ated traits. Interestingly, several fruit colour variation is pos-
sible through combining different naturally available and/or 
induced mutant alleles belonging to these three categories 
only, as shown in Fig. 2. Moreover, different epistatic inter-
actions for some other allelic combinations (Kachanovsky 
et al. 2012; Luo et al. 2013) add further variations in tomato 
fruit colour. Thus, the allelic combinations are not only sup-
posed to create unique colour-variants of tomato for practi-
cal utility, but also to generate unique lines for decipher-
ing the genetics behind fruit colour variation, in detail. For 
example, successful breeding of an orange-brown tomato 
line using CYC-B and SGR mutant alleles has been reported 
in the recent past (Manoharan et al. 2017). The flavonoid 
accumulating mutant allele Aft was stacked with the high 
pigment (hp2dg) mutant allele to obtain a ‘purple tomato’ 
line (Hazra et  al. 2018). It will be really interesting to 
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investigate the capacity of the combination of the hp mutants 
(with modified plastids to have increased carotenogenesis) 
and lycopene enhancer mutants (like og and ogc) to enhance 
lycopene content in tomato through conventional breeding, 
as encouraging results in this direction has already been 
obtained (Stommel 2007). Similarly, keeping the low bio-
availability of lycopene from fresh tomatoes in mind (Burri 
et al. 2009; Cooperstone et al. 2015), breeding for enhanced 
prolycopene content using the CrtISO mutant allele should 
be rewarding. Recently, different fruit colour mutant alleles, 
individually or in combinations, have been introgressed in a 
cultivar to create a beautiful repertoire of tomato fruit col-
our-variants (Dono et al. 2020a,b). Another classical exam-
ple of achieving novel fruit colour and pigment composition 
is the development of zeaxanthin-rich tomato ‘Xantomato’ 
by pyramiding different mutant alleles (Karniel et al. 2020). 
These achievements would definitely motivate the tomato 
breeders to attempt for similar programmes in their locally 
adapted cultivars. Moreover, precise genome editing using 
CRISPR-Cas9 technology along with TILLING, EcoTILL-
ING and next-generation sequencing (NGS) techniques has 
broadened the way for creation and identification of novel 
mutant alleles that can be explored for fruit colour and nutri-
tional improvement in tomato.

Unfortunately, a few spontaneous and induced fruit colour 
mutants show deleterious pleiotropic effect on plant growth, 
fruit set and other economic characters. For example, the 
high pigment and dark green mutants exhibit undesirable 
traits like brittle stems and shortened seedling hypocotyls 
(Jarret et al. 1984). Hence, accurate identification of causal 
mutation(s) is not only required for deciphering the molec-
ular mechanism underlying the trait-development but also 
is a prerequisite for utilization of the mutants in breeding 

programme. Other challenges associated with the breed-
ing programmes targeting pigment improvement in tomato 
include the precise quantification of different pigments 
(which is often labour and cost intensive) and the effect 
of environmental factors on these characters (reviewed in 
Cebolla-Cornejo et al. 2013). The DNA-based molecular 
markers are indispensible tools in this regard that can lead 
to environment-independent marker-assisted selection and 
introgression of the mutant allele(s) to develop improved 
cultivar(s). The detailed characterization of the important 
mutant alleles, as presented here, should help in develop-
ing diagnostic molecular markers using the available whole 
genome sequence information in tomato.
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