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Abstract
Key message  Comprehensive metabolomic investigations provide a large set of stress-related metabolites and meta-
bolic pathways, advancing crops under heat stress conditions. Metabolomics-assisted breeding, including mQTL and 
mGWAS boosted our understanding of improving numerous quantitative traits under heat stress.  
Abstract  During the past decade, metabolomics has emerged as a fascinating scientific field that includes documentation, 
evaluation of metabolites, and chemical methods for cell monitoring programs in numerous plant species. A comprehensive 
metabolome profiling allowed the investigator to handle the comprehensive data groups of metabolites and the equivalent 
metabolic pathways in an extraordinary manner. Metabolomics, together with transcriptomics, plays an influential role in 
discovering connections between stress and genes/metabolite, phenotyping, and biomarkers documentation. Further, it helps 
to decode several metabolic systems connected with heat stress (HS) tolerance in plants. Heat stress is a critical environ-
mental factor that is globally affecting the growth and productivity of plants. Thus, there is an urgent need to exploit modern 
breeding and biotechnological tools like metabolomics to develop cultivars with improved HS tolerance. Several studies 
have reported that amino acids, carbohydrates, nitrogen metabolisms, etc. and metabolites involved in the biosynthesis and 
catalyzing actions play a game-changing role in HS response and help plants to cope with the HS. The use of metabolomics-
assisted breeding (MAB) allows a well-organized transmission of higher yield and HS tolerance at the metabolome level 
with specific properties. Progressive metabolomics systematic techniques have accelerated metabolic profiling. Nonethe-
less, continuous developments in bioinformatics, statistical tools, and databases are allowing us to produce ever‐progress-
ing, comprehensive insights into the biochemical configuration of plants and by what means this is inclined by genetic and 
environmental cues. Currently, assimilating metabolomics with post-genomic platforms has allowed a significant division 
of genetic-phenotypic connotation in several plant species. This review highlights the potential of a state-of-the-art plant 
metabolomics approach for the improvement of crops under HS. The development of plants with specific properties using 
integrated omics (metabolomics and transcriptomics) and MAB can provide new directions for future research to enhance 
HS tolerance in plants to achieve a goal of “zero hunger”.

Keywords  Abiotic stress · Bioinformatics · Crop improvement · Metabolites · Metabolomics-assisted breeding · mQTL · 
mGWAS · Omics · Systems biology · Extreme temperature · Zero hunger

Introduction

Metabolomics has become an excellent scientific field for the 
past two decades (Fernie et al. 2004), even though this tech-
nique has been executed since the 1970s (Jellum 1977). In 
early 2003, metabolomics was introduced as an essential tool 
for metabolites profiling, systems biology, and it was also 
linked with genome-wide metabolome modelling (Weckw-
erth 2003). In recent years, massive advancement has been 
made in the “omics” technologies, i.e., genomics, transcrip-
tomics, proteomics, metabolomics, and phenomics. The data 
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based on the omics tools have increased the ratability and the 
speed of the growing breeding scheme in order to develop 
the climate-resilient and nutrient-rich genotypes, which are 
vital for securing food security (Alseekh and Fernie 2018). 
Metabolomics is used as a critical tool to obtain data for 
systems biology, functional genomics, and omics approaches 
(Fig. 1) (Saito and Matsuda 2010; Zampieri et al. 2017). The 
biochemical phenotype of tissues or cells can be correctly 
defined by studying the metabolome components determined 
by gene expression. An organismic biochemical status can 
be checked by quantitative/qualitative analysis of cellular 
metabolites, which can be further used to check genes func-
tion (Weckwerth 2003; Dos Santos et al. 2017).

The changes in mRNA are compulsory for protein syn-
thesis during transcription, but levels of protein should be 
strongly correlated with increased levels of mRNA (Selbach 
et al. 2008). Translated proteins do not need to be always 
active; thus, considering these reasons, alterations in the pro-
teome level do not correlate to changes in the biochemical 
phenotype. In proteome and transcriptome profiling, proteins 

and mRNA are identified via databases or sequence simi-
larity. When the database information is not available, the 
results of the analysis are limited. In order to understand any 
biological sample, metabolite profiling is beneficial when 
the database information is not available for transcriptome 
and proteome analysis (Weckwerth 2008, 2011). Since the 
chemical alteration of metabolites happens in any cellular 
metabolism, quantitative and qualitative metabolomics pro-
filing of various organs, cells, and tissue are considered as an 
important target for analytical metabolomic fields (Durand 
et al. 2010; Templer et al. 2017). Hence, metabolites are a 
known product of cellular functions, and their levels are crit-
ically linked with plants’ reactions to genetic manipulation 
and environmental responses. Therefore, metabolomics stud-
ies are used for the identification and measurement of pri-
mary and secondary/specialized metabolites in plants used 
in biological processes. Primary metabolites are the major 
components of the reproduction of plants and their normal 
growth, whereas specialized metabolites are used to provide 
strength to pants in harsh conditions. Primary metabolites 
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via the flow of biological information. Interestingly, the exploitation 

of metabolomics, metabolomics-assisted breeding platforms, genome 
and metabolic engineering using the CRISPR/Cas system, and 
the speed breeding on a large scale can help to improve the overall 
plant health under heat stress conditions and can help to feed billions 
worldwide
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are limited, conserved in the structure, and are found widely 
in the whole plant kingdom, whereas specialized metabolites 
level varies over the plant kingdom (Alseekh and Fernie 
2018; Fang and Luo 2019). Therefore, the information on the 
biologically active metabolites, mainly specialized metabo-
lites, is essential.

Plant’s metabolic networks are very complicated and con-
sist of many biochemical steps, including the metabolomic 
network of primary and specialized metabolites pretentious 
by the different plant stressful environments. Hence, it is 
essential to quantify and identify changes in metabolite 
composition through proper analytical methods. Nowadays, 
various integrated technologies are used, such as nuclear 
magnetic resonance (NMR) spectroscopy, mass spectrom-
etry (MS), capillary electrophoresis-MS (CE-MS), liquid 
chromatography-MS (LC–MS), gas chromatography-MS 
(GC–MS), and Fourier transform ion cyclotron resonance-
MS (FT-ICR-MS) (Kim et al. 2010; Vinaixa et al. 2016; Peu-
kert et al. 2016; Mitchell et al. 2018). With the advancement 
of MS-imaging techniques, including matrix-assisted laser 
desorption (MALDI) and desorption electrospray (DESI) 
ionization platforms combined with high-resolution MS, it 
is feasible to conduct in-situ metabolome analysis (Blanksby 
and Mitchell 2010). Therefore, for liquid phase separations, 
ultrahigh performance liquid chromatography (UPLC) 
and high-performance-LC (HPLC) are used for metabolite 
analysis in various applications; these are a robust analyti-
cal method that permits the discovery of plant metabolites 
when it is integrated with another technique like MS (Theo-
doridis et al. 2012; Khan et al. 2017). A recent method for 
multi-component analysis is the metabolic profiling that is 
employed for the examination of acids and urinary drugs 
coupled with GC/MS. For metabolite profiling, GC based 
techniques like NMR and HPLC are used and exceptionally 
important in the research field (Görling et al. 2016). Nowa-
days, metabolites and cellular proteins are widely analyzed 
by modern mass spectrometry, a rare trend before. Systems 
biology and functional genomics use genome-scale molecu-
lar analysis to get the desired phenotype (Weckwerth 2011; 
Aebersold and Mann 2016; Chaturvedi et al. 2016; Ghatak 
et al. 2017).

Modern analytical technologies provide the basis to study 
biological systems. In plants, gene expression is changed 
by various stress responses that can alter qualitative status 
in the metabolite pool; therefore, metabolite identification 
becomes more difficult (Sweetlove et al. 2014; Razzaq et al. 
2019). Plants face both biotic and abiotic stresses and are 
sessile organisms that have to cope with these conditions. 
Due to climate changes, among abiotic stresses, heat stress 
(HS, > 25 °C) is considered the most threatening factor 
affecting the growth and productivity of several plant species 
(Hasanuzzaman et al. 2013; Raza et al. 2019, 2020a). In the 
past few years, significant researches have been conducted to 

exploit the HS effect on the metabolome profile of numerous 
plants (Templer et al. 2017; Thomason et al. 2018; Lawas 
et al. 2019; Dhatt et al. 2019). Omics approaches such as 
transcriptomics, proteomics, metabolomics, bioinformatics, 
and high-throughput DNA sequencing have aided functional 
analysis of regulatory networks that control plant abiotic 
stress responses. Such research has noticeably augmented 
our knowledge of comprehensive plant systems in responses 
and adaptation to a variety of stress conditions (Urano et al. 
2010). Mainly, metabolomics plays an essential role in the 
genetic improvement of various crops under HS. Different 
institutes and various commercial branches are all work-
ing towards the advancement of metabolomics. However, 
the measurement of metabolites is critical in plant molecu-
lar and/or physiological responses to HS and to elucidate 
the function of genes in functional genomics and systems 
biology. This review highlights the state-of-the-art plant 
metabolomics and its application in functional genomics 
and systems biology for the genetic improvement of crops 
under HS.

Plant metabolomics: an overview

Metabolome has been defined as the last receiver of the 
flow of biological information to get the desired phenotype 
(Fig. 1). However, a metabolite is generally described as a 
molecule with a size of < 1.5 kDa (Wakayama et al. 2015). 
From the last decade, plant metabolomics has emerged as 
a highly recommended and widely used approach from an 
exclusively hypothetical idea. Plant metabolomics studies 
have been usually adapted to study the metabolites from 
different crop plants. Due to the untargeted nature of many 
metabolomic techniques, the study will deliver an extensive 
indication of both the primary and specialized metabolites 
(van Dam and van der Meijden 2018). In 1993, a consider-
able amount of estimated metabolites was ranged between 
100,000–200,000 (Mazza and Miniati 1993). Approximately 
2 lac metabolites are present in plants, out of which seven 
to fifteen thousand are present in individual species (Fernie 
et al. 2004), and three to five thousand are existing in plant 
leaves (Kim et al. 2010). Nevertheless, the number of esti-
mated metabolites seems to increase with the advancement 
in analytical tools (Last et al. 2007).

Except for simple identification, selective metabolite 
profiling used to find results for biological characteristics 
of plants, which includes (1) ecotypes for taxonomic or 
biochemical information and fingerprinting of species, (2) 
check the response of metabolites under physical stimuli 
and exogenous chemicals, (3) learn the symbiotic associa-
tion and developmental process, metabolite content com-
parison of transgenic and wild type plants (Sumner et al. 
2003; Templer et al. 2017; Alseekh and Fernie 2018). In 
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all the above-mentioned studies, metabolome profiles were 
combined with other omics tools for comprehensive under-
standing, such as complex regulatory networks that control 
global gene expression, protein alteration, and metabolite 
configuration under stress conditions (Weckwerth 2011). To 
study the chemical configuration of different plant species, 
metabolite profiling is integrated with the markers (Schauer 
et al. 2006). As metabolomics plays an essential role in plant 
research except for individual cell-metabolome analysis for 
root hairs, pollen tissues, a trichome, guard cells were also 
studied (Nägele et al. 2017). Findings showed that metabo-
lome analysis could be convenient for a single cell type, 
and it may vary from cell to cell. The phenotype of any 
plant depends on the metabolite concentration and synthe-
sis in various organs of plants at different developmental 
stages; thus, the nature of metabolites is relevant to tissues/
organs characteristics (Roldan et al. 2014). Due to consid-
erable differences in biochemical pathways at the cellular 
and sub-cellular levels in crops, the application of various 
metabolomics techniques with different protocols, notably 
augmented. In short, metabolomics can be helpful for the 
detection of novel gene functions and clarification about the 
governing metabolisms in a metabolome network.

Current analytical techniques for plant 
metabolomics research

Metabolomics has developed as an outstanding scientific 
field; however, a single analytical technique is not adequate 
to detect and quantify the metabolites (Weckwerth, 2003; 
Templer et al. 2017). Presently, various metabolomic tech-
niques are being applied in plant metabolomics research, as 
discussed in the introduction. Out of these, GC, MS, NMR, 
and HPLC dominate the metabolite tools. Two basic tech-
niques, MS and NMR, are used in modern metabolomics, 
including the generation of metabolomics data. Interestingly, 
NMR is preferred to MS because of its high capacity in 
detecting protein binding sites, direct binding of target pro-
teins, physical properties of ligands, and uncovered protein 
structure coupled with ligands. Metabolite exposure reli-
ant on NMR uses magnetic properties of various nuclei of 
atoms. The different applications, such as metabolite profil-
ing and fingerprinting, metabolic flux, and atomic structural 
details of different biological samples, are integrated with 
NMR. Owing to the non-destructive nature of NMR with a 
smaller molecular weight is widely used to detect metabo-
lites (Eisenreich and Bacher 2007; Kim et al. 2010). Hence, 
this technique is so sensitive, and it has a low abundance of 
biomarkers that causes its limited use. Except for NMR, the 
MS technique has the best sensitivity, and researchers can 
get an extensive range of metabolome data. This technique 
would help researchers to detect molecules and metabolic 

biomarkers that can rebuild metabolic networks and path-
ways. Different ionization methods such as matrix-assisted 
laser desorption/ionization (MALDI-TOF), atmospheric 
pressure chemical ionization (APCI), and electrospray ioni-
zation (ESI) were accurately detected by MS (Issaq et al. 
2009). To get accurate results, MS is coupled with various 
techniques such as field asymmetric waveform ion mobility 
spectrometry (FAIMS), CE, GC, FT-ICR, and LC. Figure 2 
indicates the comparison of frequently working analytical 
techniques in plant metabolomics research.

Notably, MS has obtained a progressively vital role in 
the field of metabolomics and proteomics due to the signifi-
cant progress that has been made in instrument technolo-
gies. The frequently used technique for untargeted analysis 
is GC–MS (Rohloff 2015). Sample derivatization was done 
by the GC–MS technique, making the compound volatile; 
however, some compounds are left as underivatized during 
analysis. GC–MS has been recognized as a high-through-
put analytical technology with a high rate of sensitivity for 
metabolic profiling. GCxGC-TOF–MS enhanced the out-
put through the segregation of co-eluting peaks (Hurtado 
et al. 2017). Higher mass primary and specialized metabo-
lites (< 1500 Da) are detected by targeted and untargeted 
techniques facilitated by LC–MS that uses ESI and APCI 
(Turner et al. 2016). Identification of several metabolites 
increases peak resolution, and mass accuracy was done in 
a short time with the help of UPLC coupled with QTOF-
MS (Chawla and Ranjan 2016). In targeted and untargeted 
metabolomics analysis, high-resolution separation of metab-
olites is mainly done by CE-MS (Ramautar et al. 2019). 
FT-ICR-MS is driven by high-resolution mass analysis that 
provides extensive and reliable detection of metabolites. It 
is also coupled with separation techniques to settle complex 
matrices, and ion separation was also done by this technique 
(Ghaste et al. 2016; Nakabayashi et al. 2016; Lopes et al. 
2017).

Data produced from the above-mentioned techniques are 
processed by Met-Align, PlantMAT, MET-XAlign, MET-
COFEA, XCMS, and ChromaTOF, etc. (Table 1). Statistical 
analysis of identified metabolites is followed by using a com-
bination of (1) univariate analysis (Student t test; ANOVA; 
Mann–Whitney U test; Benjamini–Hochberg false discovery 
rate correction; Kruskal Wallis 44%), and (2) multivariate 
analysis (principal component analysis (PCA); partial least 
squares discriminant analysis (PLS-DA); orthogonal par-
tial least squares (O-PLS); high-content screening (HCA); 
heatmap, correlation analysis, neural networks, genetic algo-
rithms, and random forest methods. Currently, several differ-
ent software and online tools are available for metabolome 
analysis, like MetaboAnalyst, MetaboliteDetector, Meta-
MapR, MetExplore, Cytoscape, g:Profiler, Gene-set enrich-
ment analysis (GSEA), Metabolite-set enrichment analy-
sis (MSEA), EnrichmentMAP, Workflow4Metabolomics 
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(W4M), and different statistical analysis tools, etc. (Hiller 
et al. 2009; Chong et al. 2018; Reimand et al. 2019; Giaco-
moni et al. 2014; Weber et al. 2017). A list of accessible 
online databases/tools and software for the analysis, data 
processing, statistical analysis, biomathematical modelling, 
and functional interpretation of metabolomics data is shown 
in Table 1. Notably, enlisted tools/software are suitable to 
analyze and identify the different metabolites related to vari-
ous agronomic parameters.

Key steps and workflow for plant 
metabolome analysis

Plant metabolomes have chemically diverse and multifaceted 
structures. Wide range metabolic pictures and vast identifica-
tion of metabolomes can be made with the help of analytical 
and metabolic strategies as well as analytical procedures and 
extraction protocols (Gorrochategui et al. 2016; Christ et al. 
2018; Wolfender et al. 2018). The metabolomic analysis is 
based on four major steps: (1) design of the experiment, (2) 
preparation of the samples, (3) data acquisition by using ana-
lytical procedures, and (4) identification of compounds and 
data extraction with the help of statistical analysis. Finally, 
these steps are used to interpret biological data, results vali-
dation, and submission to public repositories. These steps 

are necessary and interlinked, as shown in Fig. 3, followed 
by various sub-steps to propose biochemical strategies (Gor-
rochategui et al. 2016; Wolfender et al. 2018).

Metabolite identification is made by sample prepara-
tion, i.e., a critical step that plays an essential role in iden-
tification. Sample preparation consists of many steps, like 
selection, harvesting, drying procedure, and metabolite 
extraction. The researcher selects plant material based on 
experimental design. In order to not affect the results with 
unwanted material, every step should be performed with 
care. Contamination, sample degradation, use of enzyme 
inhibitors, organic solvents, acids could also affect the 
metabolome results (Kim et al. 2015; Kim and Verpoorte 
2010).

Plants metabolites are as complex in their structure as 
in polarity, stability, solubility, quantity, volatility, and size 
(Riedelsheimer et al. 2012). Various metabolite extraction 
methods are used for plants, but it all depends on various 
factors like a solvent´s physicochemical properties and bio-
chemical composition. Commonly used methods are soni-
cation, superficial fluid extraction solvent, and solid-phase 
extraction (Kim and Verpoorte 2010; Vilkhu et al. 2008). 
Nevertheless, no technique can identify all kinds of metab-
olites with high results. Sample analysis can be done by 
advanced methods by which ultra-complex metabolites can 
also be measured (Salem et al. 2017). Analytical platforms’ 
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Fig. 2   Comparison of frequently working analytical techniques in plant metabolomics research



746	 Plant Cell Reports (2022) 41:741–763

1 3

Ta
bl

e 
1  

L
ist

 o
f b

io
in

fo
rm

at
ic

s 
da

ta
ba

se
s/

to
ol

s 
av

ai
la

bl
e 

fo
r t

he
 d

at
a 

an
al

ys
is

, d
at

a 
pr

oc
es

si
ng

, s
ta

tis
tic

al
 a

na
ly

si
s, 

bi
om

at
he

m
at

ic
al

 m
od

el
lin

g,
 a

nd
 fu

nc
tio

na
l i

nt
er

pr
et

at
io

n/
an

no
ta

tio
n 

of
 m

et
ab

-
ol

om
e 

da
ta

N
am

e
U

R
L

Fu
nc

tio
n

D
at

ab
as

es
K

om
ic

M
ar

ke
t

ht
tp

://
w

eb
s2

​.k
az

us
​a.

or
.jp

/k
om

ic
​m

ar
ke

​t/
A

nn
ot

at
io

ns
 o

f t
he

 m
et

ab
ol

ite
 id

en
tifi

ed
 b

y 
M

S 
in

 m
et

ab
ol

om
ic

s s
tu

di
es

M
et

Fu
si

on
ht

tp
://

m
ge

rl​i
ch

.g
ith

u​b
.io

/M
et

Fu
​si

on
/

In
te

gr
at

ed
 c

om
po

un
d 

id
en

tifi
ca

tio
n 

fro
m

 M
S 

an
d 

N
M

R
 d

at
a

M
et

ab
oA

na
ly

st
ht

tp
://

w
w

w.
m

et
ab

​oa
na

l​y
st.

ca
/

St
at

ist
ic

al
, f

un
ct

io
na

l, 
an

d 
in

te
gr

at
iv

e 
an

al
ys

is
 o

f m
et

ab
ol

om
ic

s d
at

a
M

et
ab

oS
ea

rc
h

ht
tp

://
om

ic
s​.g

eo
rg

​et
ow

n​.
ed

u/
m

et
ab

​os
ea

r​c
h.

ht
m

l
M

as
s-

ba
se

d 
m

et
ab

ol
ite

 id
en

tifi
ca

tio
n 

us
in

g 
m

ul
tip

le
 d

at
ab

as
es

M
Ze

dD
B

ht
tp

://
m

al
te

​se
.d

bs
.a

be
r.a

c.
uk

:8
88

8/
hr

m
et

​/in
de

x​.
ht

m
l

Th
e 

an
no

ta
tio

n 
of

 h
ig

h-
re

so
lu

tio
n 

M
S 

m
et

ab
ol

om
ic

s d
at

a
M

ET
LI

N
ht

tp
s​:

//m
et

li​n
.sc

rip
​ps

.e
du

/la
nd

i​n
g_

pa
ge

.p
hp

?p
gc

on
​te

nt
=

m
ai

nP
​ag

e
M

et
ab

ol
ite

 d
et

ec
tio

n 
an

d 
an

no
ta

tio
n

M
yC

om
po

un
dI

D
ht

tp
://

w
w

w.
m

yc
om

​po
un

d​i
d.

or
g/

m
yc

om
​po

un
d​i

d_
Is

oM
S​/

Id
en

tifi
ca

tio
n 

of
 c

om
po

un
ds

 o
f i

nt
er

es
t-b

as
ed

 o
n 

ch
em

ic
al

 p
ro

pe
rti

es
 o

f a
 

m
ol

ec
ul

e 
by

 M
S

M
et

Ex
pl

or
e

ht
tp

s​:
//m

et
ex

​pl
or

e​.
to

ul
o​u

se
.in

ra
.fr

/in
de

x​.
ht

m
l/

M
et

ab
ol

ic
 n

et
w

or
k 

cu
ra

tio
n 

an
d 

ex
pl

or
at

io
n

M
S-

D
IA

L
ht

tp
://

pr
im

e​.
ps

c.
rik

en
​.jp

/c
om

pm
​s/

m
sd

ia
​l/m

ai
n.

ht
m

l
U

nt
ar

ge
te

d 
m

et
ab

ol
om

ic
s d

at
a 

pr
oc

es
si

ng
 o

f m
ul

tip
le

 in
str

um
en

ts
 (G

C
/

M
S,

 G
C

/M
S/

M
S,

 L
C

/M
S,

 a
nd

 L
C

/M
S/

M
S)

M
A

G
M

a
ht

tp
s​:

//w
w

w.
em

et
a​b

ol
om

​ic
s.o

rg
/

A
ut

om
at

ic
 c

he
m

ic
al

 a
nn

ot
at

io
n 

of
 a

cc
ur

at
e 

m
ul

ti-
st

ag
e 

M
S 

sp
ec

tra
l d

at
a

M
et

aG
en

eA
ly

se
ht

tp
://

m
et

ag
​en

ea
l​y

se
.m

pi
m

p​-
go

lm
.m

pg
.d

e/
H

ig
h-

th
ro

ug
hp

ut
 a

na
ly

si
s o

f i
nt

eg
ra

te
d 

tra
ns

cr
ip

tio
na

l a
nd

 m
et

ab
ol

ic
 d

at
a

m
et

aP
-s

er
ve

r
ht

tp
://

m
et

ab
​ol

om
i​c

s.h
el

m
h​o

ltz
-m

ue
nc

​he
n.

de
/m

et
ap

​2/
D

at
a 

an
al

ys
is

 fo
r t

he
 p

ro
ce

ss
in

g 
of

 m
et

ab
ol

om
ic

s e
xp

er
im

en
ts

M
et

N
et

D
B

ht
tp

://
w

w
w.

m
et

ne
​td

b.
or

g/
M

et
N

e​t
_o

ve
rv

​ie
w.

ht
m

l
Pr

ov
id

e 
in

fo
rm

at
io

n 
on

 m
et

ab
ol

ic
 a

nd
 re

gu
la

to
ry

 n
et

w
or

ks
 a

nd
 in

te
ra

ct
io

ns
 

in
 A

ra
bi

do
ps

is
M

et
iT

re
e

ht
tp

://
w

w
w.

m
et

it​r
ee

.n
l/

O
rg

an
iz

in
g 

an
d 

pr
oc

es
si

ng
 h

ig
h-

re
so

lu
tio

n 
m

ul
ti-

st
ag

e 
M

S 
m

et
ab

ol
om

ic
s 

da
ta

M
et

aM
ap

p
ht

tp
://

m
et

am
​ap

p.
fie

hn
​la

b.
uc

da
v​i

s.e
du

/
M

ap
pi

ng
 a

nd
 v

is
ua

liz
at

io
n 

of
 m

et
ab

ol
om

ic
s d

at
a 

by
 c

he
m

ic
al

 a
nd

 b
io

-
ch

em
ic

al
 re

la
tio

ns
hi

ps
m

zM
at

ch
ht

tp
://

m
zm

at
​ch

.so
ur

c​e
fo

rg
​e.

ne
t/

D
at

a 
pr

oc
es

si
ng

 o
f m

et
ab

ol
om

ic
s L

C
/M

S 
da

ta
So

yM
et

D
B

ht
tp

://
so

ym
e​t

db
.o

rg
/

St
or

ag
e,

 in
te

gr
at

io
n,

 a
nd

 m
in

in
g 

th
e 

so
yb

ea
n 

m
et

ab
ol

om
ic

s d
at

a 
in

 a
 

w
el

l-o
rg

an
iz

ed
 w

ay
 a

llo
w

in
g 

th
e 

vi
su

al
iz

at
io

n 
of

 th
e 

ex
pr

es
si

on
s a

cr
os

s 
va

rio
us

 e
xp

er
im

en
ts

Th
e 

G
ol

m
 m

et
ab

ol
om

e 
da

ta
ba

se
 (G

M
D

)
ht

tp
://

gm
d.

m
pi

m
p​-

go
lm

.m
pg

.d
e/

D
ef

au
​lt.

as
px

Se
ar

ch
 a

nd
 d

is
se

m
in

at
io

n 
of

 re
fe

re
nc

e 
m

as
s s

pe
ct

ra
 fr

om
 b

io
lo

gi
ca

lly
 

ac
tiv

e 
m

et
ab

ol
ite

s q
ua

nt
ifi

ed
 v

ia
 G

C
/M

S
Ta

gF
in

de
r

ht
tp

://
w

w
w

-e
n.

m
pi

m
p​-

go
lm

.m
pg

.d
e/

03
-r

es
ea

​rc
h/

re
se

a​r
ch

G
r​o

up
s/

01
-

de
pt

1​/
Ro

ot
_M

et
ab

​ol
is

m
​/s

m
p/

Ta
gF

i​n
de

r/i
nd

ex
​.h

tm
l

Q
ua

nt
ita

tiv
e 

an
al

ys
is

 o
f G

C
–M

S-
ba

se
d 

m
et

ab
ol

om
e 

pr
ofi

lin
g

X
C

M
S

ht
tp

s​:
//x

cm
so

​nl
in

e​.
sc

rip
​ps

.e
du

/la
nd

i​n
g_

pa
ge

.p
hp

?p
gc

on
​te

nt
=

m
ai

nP
​ag

e
St

at
ist

ic
al

 a
nd

 p
at

hw
ay

 d
at

a 
an

al
ys

is
To

ol
s/

So
ftw

ar
e

A
na

ly
ze

rP
ro

ht
tp

s​:
//w

w
w.

sp
ec

t​ra
lw

o​r
ks

.c
om

/p
ro

du
​ct

s/
an

al
y​z

er
pr

​o/
Pr

oc
es

si
ng

 o
f l

ow
- a

nd
 h

ig
h-

re
so

lu
tio

n 
LC

–M
S 

an
d 

G
C

–M
S 

da
ta

C
ho

rm
aT

O
F

ht
tp

s​:
//w

w
w.

le
co

.c
om

/p
ro

du
​ct

/c
hr

om
​at

of
-s

of
tw

​ar
e

A
cq

ui
rin

g,
 p

ro
ce

ss
in

g,
 a

nd
 re

po
rti

ng
 th

e 
M

S 
da

ta
 sy

ste
m

 to
 su

pp
or

t m
ul

ti-
di

m
en

si
on

al
 G

C
xG

C
 d

at
a 

fu
lly

CO
VA

IN
ht

tp
://

w
w

w.
un

iv
i​e

.a
c.

at
/m

os
ys

​/s
of

tw
​ar

e.
ht

m
l

U
ni

- a
nd

 m
ul

ti-
va

ria
te

 st
at

ist
ic

s, 
tim

e-
se

rie
s, 

an
d 

co
rr

el
at

io
n 

ne
tw

or
k 

an
al

ys
is

http://webs2.kazusa.or.jp/komicmarket/
http://mgerlich.github.io/MetFusion/
http://www.metaboanalyst.ca/
http://omics.georgetown.edu/metabosearch.html
http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
http://www.mycompoundid.org/mycompoundid_IsoMS/
https://metexplore.toulouse.inra.fr/index.html/
http://prime.psc.riken.jp/compms/msdial/main.html
https://www.emetabolomics.org/
http://metagenealyse.mpimp-golm.mpg.de/
http://metabolomics.helmholtz-muenchen.de/metap2/
http://www.metnetdb.org/MetNet_overview.html
http://www.metitree.nl/
http://metamapp.fiehnlab.ucdavis.edu/
http://mzmatch.sourceforge.net/
http://soymetdb.org/
http://gmd.mpimp-golm.mpg.de/Default.aspx
http://www-en.mpimp-golm.mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/TagFinder/index.html
http://www-en.mpimp-golm.mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/TagFinder/index.html
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://www.spectralworks.com/products/analyzerpro/
https://www.leco.com/product/chromatof-software
http://www.univie.ac.at/mosys/software.html


747Plant Cell Reports (2022) 41:741–763	

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

N
am

e
U

R
L

Fu
nc

tio
n

FE
M

TO
ht

tp
s​:

//h
om

ep
​ag

e.
un

iv
i​e

.a
c.

at
/th

om
a​s

.n
ae

ge
​le

/S
of

tw
​ar

e/
So

ftw
​ar

e_
1.

ht
m

l
Fu

nc
tio

na
l i

nt
er

pr
et

at
io

n 
of

 m
et

ab
ol

om
ic

 d
at

a 
in

 th
e 

co
nt

ex
t o

f m
et

ab
ol

ic
 

ne
tw

or
k 

in
fo

rm
at

io
n

iM
et

-Q
ht

tp
://

m
s.i

is
.si

ni
c​a

.e
du

.tw
/c

om
ic

​s/
So

ftw
​ar

e_
iM

et
-Q

.h
tm

l
Q

ua
nt

ifi
ca

tio
n 

an
d 

pr
oc

es
si

ng
 o

f m
et

ab
ol

ite
s i

n 
LC

/M
S 

da
ta

M
el

tD
B

ht
tp

s​:
//m

el
td

​b.
ce

bi
t​e

c.
un

i-b
ie

le
​fe

ld
.d

e/
cg

i-b
in

/lo
gi

n​.
cg

i
A

na
ly

si
s a

nd
 in

te
gr

at
io

n 
of

 m
et

ab
ol

om
ic

s d
at

a
M

ET
-I

D
EA

ht
tp

://
bi

oi
n​f

o.
no

bl
e​.

or
g/

ga
te

w
​ay

/in
de

x​.
ph

p?
op

tio
​n=

co
m

_w
ra

pp
​er

&
Ite

m
i​

d=
57

D
at

a 
ex

tra
ct

io
n 

to
ol

 fo
r M

S-
ba

se
d 

m
et

ab
ol

om
ic

s

M
ET

-C
O

FE
I

ht
tp

://
bi

oi
n​f

o.
no

bl
e​.

or
g/

m
an

us
​cr

ip
t​-s

up
po

​rt/
m

et
-c

of
ei

​/
G

C
–M

S 
da

ta
 p

ro
ce

ss
in

g 
pl

at
fo

rm
 fo

r m
et

ab
ol

ite
 c

om
po

un
d 

fe
at

ur
e 

ex
tra

c-
tio

n 
an

d 
an

no
ta

tio
n

M
ar

V
is

-S
ui

te
ht

tp
://

m
ar

vi
​s.g

ob
ic

​s.d
e/

V
is

ua
liz

at
io

n,
 fi

lte
rin

g,
 c

lu
ste

rin
g,

 a
nd

 fu
nc

tio
na

l a
na

ly
si

s o
f d

at
a 

se
ts

M
ET

-C
O

FE
A

ht
tp

://
bi

oi
n​f

o.
no

bl
e​.

or
g/

m
an

us
​cr

ip
t​-s

up
po

​rt/
m

et
-c

of
ea

​/
LC

–M
S 

da
ta

 p
ro

ce
ss

in
g 

pl
at

fo
rm

 fo
r m

et
ab

ol
ite

 c
om

po
un

d 
fe

at
ur

e 
ex

tra
c-

tio
n 

an
d 

an
no

ta
tio

n
M

ET
-X

A
lig

n
ht

tp
://

bi
oi

n​f
o.

no
bl

e​.
or

g/
m

an
us

​cr
ip

t​-s
up

po
​rt/

m
et

-x
al

ig
​n/

M
et

ab
ol

ite
 c

ro
ss

-a
lig

nm
en

t t
oo

l f
or

 L
C

/M
S-

ba
se

d 
co

m
pa

ra
tiv

e 
m

et
ab

o-
lo

m
ic

s a
na

ly
si

s
M

et
ab

ol
ite

D
et

ec
to

r
ht

tp
s​:

//m
d.

tu
-b

s.d
e/

Ta
rg

et
ed

 a
nd

 n
on

-ta
rg

et
ed

 G
C

/M
S 

ba
se

d 
m

et
ab

ol
om

e 
an

al
ys

is
M

el
tD

B
 2

.0
ht

tp
s​:

//m
el

td
​b.

ce
bi

t​e
c.

un
i-b

ie
le

​fe
ld

.d
e/

cg
i-b

in
/lo

gi
n​.

cg
i

A
na

ly
si

s a
nd

 in
te

gr
at

io
n 

of
 m

et
ab

ol
om

ic
s d

at
a

M
et

M
as

k
ht

tp
://

m
et

m
a​s

k.
so

ur
c​e

fo
rg

​e.
ne

t/
M

et
ab

ol
ite

 id
en

tifi
ca

tio
n 

an
d 

an
al

ys
is

M
et

A
lig

n
ht

tp
s​:

//w
w

w.
w

ur
.n

l/e
n/

sh
ow

/M
et

A
l​ig

n-
1.

ht
m

Th
e 

pr
e-

pr
oc

es
si

ng
 a

nd
 c

om
pa

ris
on

 o
f f

ul
l s

ca
n 

no
m

in
al

 o
r a

cc
ur

at
e 

m
as

s 
LC

–M
S 

an
d 

G
C

–M
S 

da
ta

M
SC

lu
st

ht
tp

://
w

w
w.

m
et

al
​ig

n.
nl

M
et

ab
ol

ite
 id

en
tifi

ca
tio

n 
an

d 
an

al
ys

is
 o

f G
C

–M
S 

an
d 

LC
–M

S 
da

ta
se

ts
 

de
riv

ed
 fr

om
 u

nt
ar

ge
te

d 
pr

ofi
lin

g
M

Zm
in

e 
2

ht
tp

://
m

zm
in

​e.
so

ur
c​e

fo
rg

​e.
ne

t/
Pr

oc
es

si
ng

, v
is

ua
liz

in
g 

an
d 

an
al

yz
in

g 
M

S-
ba

se
d 

m
et

ab
ol

om
ic

s d
at

a
R

 p
ac

ka
ge

s
CA

M
ER

A
ht

tp
s​:

//b
io

co
​nd

uc
t​o

r.o
rg

/p
ac

ka
​ge

s/
re

le
a​s

e/
bi

oc
/h

tm
l/C

A
M

ER
​A

.h
tm

l
C

om
po

un
d 

sp
ec

tra
 e

xt
ra

ct
io

n 
an

d 
an

no
ta

tio
n 

of
 L

C
/M

S 
da

ta
 se

ts
FE

LL
A

ht
tp

s​:
//g

ith
u​b

.c
om

/b
2s

la
​b/

FE
LL

A
​

N
et

w
or

k-
ba

se
d 

en
ric

hm
en

t o
f a

ffe
ct

ed
 m

et
ab

ol
ite

s
Li

lik
oi

ht
tp

s​:
//g

ith
u​b

.c
om

/la
na

g​a
rm

ir​e
/li

lik
​oi

Pe
rs

on
al

iz
ed

 p
at

hw
ay

-b
as

ed
 c

la
ss

ifi
ca

tio
n 

m
od

el
in

g 
us

in
g 

m
et

ab
ol

om
ic

s 
da

ta
M

A
IT

ht
tp

://
b2

sl
a​b

.u
pc

.e
du

/s
of

tw
​ar

e-
an

d-
tu

to
r​ia

ls
/m

et
ab

​ol
ite

​-a
ut

om
​at

ic
-id

en
t​

ifi
ca

​tio
n-

to
ol

k​i
t/

Pe
ak

 d
et

ec
tio

n 
fo

r m
et

ab
ol

om
ic

 L
C

/M
S 

da
ta

 se
ts

M
I-

Pa
ck

ht
tp

s​:
//g

ith
u​b

.c
om

/V
ia

nt
​-M

et
ab

​ol
om

i​c
s/

M
I-

Pa
ck

M
et

ab
ol

ite
 id

en
tifi

ca
tio

n 
in

 m
as

s s
pe

ct
ra

 b
y 

in
te

gr
at

in
g 

ac
cu

ra
te

 m
as

se
s 

an
d 

m
et

ab
ol

ic
 p

at
hw

ay
s

M
et

ab
R

ht
tp

://
m

et
ab

​r.r
-fo

rg
e​.

r-p
ro

je
​ct

.o
rg

/
St

at
ist

ic
al

 a
na

ly
si

s o
f m

et
ab

ol
om

ic
 d

at
a

R
A

M
C

lu
stR

ht
tp

s​:
//g

ith
u​b

.c
om

/c
br

oe
​ck

l/R
A

M
C

l​u
stR

Sp
ec

tra
l-m

at
ch

in
g-

ba
se

d 
an

no
ta

tio
n 

fo
r m

et
ab

ol
om

ic
s d

at
a

M
et

ab
oA

na
ly

stR
ht

tp
s​:

//g
ith

u​b
.c

om
/x

ia
-la

b/
M

et
ab

​oA
na

l​y
stR

M
et

ab
ol

om
ic

s d
at

a 
an

al
ys

is
 a

nd
 in

te
rp

re
ta

tio
n

M
et

ab
N

et
ht

tp
s​:

//s
ou

rc
​ef

or
g​e

.n
et

/p
ro

je
​ct

s/
m

et
ab

​ne
t/

M
et

ab
ol

ic
 a

ss
oc

ia
tio

n 
an

al
ys

is
 o

f h
ig

h-
re

so
lu

tio
n 

m
et

ab
ol

om
ic

s d
at

a
M

et
ab

oD
iff

ht
tp

://
gi

th
u​b

.c
om

/a
nd

re
​as

m
oc

​k/
M

et
ab

​oD
iff

​/
D

iff
er

en
tia

l m
et

ab
ol

om
ic

 a
na

ly
si

s
M

et
ID

ht
tp

s​:
//w

w
w.

bi
oc

o​n
du

ct
​or

.o
rg

/p
ac

ka
​ge

s/
re

le
a​s

e/
bi

oc
/h

tm
l/M

et
ID

​.h
tm

l
N

et
w

or
k-

ba
se

d 
pr

io
rit

iz
at

io
n 

of
 p

ut
at

iv
e 

m
et

ab
ol

ite
 ID

s d
et

ec
te

d 
by

 L
C

–
M

S
m

et
ab

ox
ht

tp
s​:

//g
ith

u​b
.c

om
/k

w
an

j​e
er

aw
​/m

et
ab

​ox
D

at
a 

an
al

ys
is

, i
nt

er
pr

et
at

io
n,

 a
nd

 in
te

gr
at

iv
e 

ex
pl

or
at

io
n

https://homepage.univie.ac.at/thomas.naegele/Software/Software_1.html
http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html
https://meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi
http://bioinfo.noble.org/gateway/index.php?option=com_wrapper&Itemid=57
http://bioinfo.noble.org/gateway/index.php?option=com_wrapper&Itemid=57
http://bioinfo.noble.org/manuscript-support/met-cofei/
http://marvis.gobics.de/
http://bioinfo.noble.org/manuscript-support/met-cofea/
http://bioinfo.noble.org/manuscript-support/met-xalign/
https://md.tu-bs.de/
https://meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi
http://metmask.sourceforge.net/
https://www.wur.nl/en/show/MetAlign-1.htm
http://www.metalign.nl
http://mzmine.sourceforge.net/
https://bioconductor.org/packages/release/bioc/html/CAMERA.html
https://github.com/b2slab/FELLA
https://github.com/lanagarmire/lilikoi
http://b2slab.upc.edu/software-and-tutorials/metabolite-automatic-identification-toolkit/
http://b2slab.upc.edu/software-and-tutorials/metabolite-automatic-identification-toolkit/
https://github.com/Viant-Metabolomics/MI-Pack
http://metabr.r-forge.r-project.org/
https://github.com/cbroeckl/RAMClustR
https://github.com/xia-lab/MetaboAnalystR
https://sourceforge.net/projects/metabnet/
http://github.com/andreasmock/MetaboDiff/
https://www.bioconductor.org/packages/release/bioc/html/MetID.html
https://github.com/kwanjeeraw/metabox


748	 Plant Cell Reports (2022) 41:741–763

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

N
am

e
U

R
L

Fu
nc

tio
n

O
m

u
ht

tp
s​:

//c
ra

n.
r-p

ro
je

​ct
.o

rg
/w

eb
/p

ac
ka

​ge
s/

om
u/

vi
gn

e​t
te

s/
O

m
u_

vi
gn

e​t
te

.
ht

m
l

R
ap

id
 a

na
ly

si
s o

f m
et

ab
ol

om
ic

s d
at

a 
se

ts

X
C

M
S

ht
tp

s​:
//g

ith
u​b

.c
om

/s
ne

um
​an

n/
xc

m
s

Fr
am

ew
or

k 
fo

r p
ro

ce
ss

in
g 

an
d 

vi
su

al
iz

at
io

n 
of

 c
hr

om
at

og
ra

ph
ic

al
ly

 se
pa

-
ra

te
d 

an
d 

si
ng

le
-s

pe
ct

ra
 m

as
s s

pe
ct

ra
l d

at
a

Pa
th

w
ay

-r
el

at
ed

 d
at

ab
as

es
/to

ol
s

A
ra

C
yc

ht
tp

s​:
//w

w
w.

ar
ab

i​d
op

si
​s.o

rg
/b

io
cy

​c/
V

is
ua

liz
in

g 
bi

oc
he

m
ic

al
 p

at
hw

ay
s o

f A
ra

bi
do

ps
is

A
ra

Pa
th

ht
tp

://
bi

oi
n​f

or
m

a​t
ic

s.s
ds

ta
​te

.e
du

/a
ra

pa
​th

/
Pa

th
w

ay
 a

na
ly

si
s i

n 
Ar

ab
id

op
si

s
B

io
Si

lic
o

ht
tp

://
bi

os
i​li

co
.k

ai
st​.

ac
.k

r/
Se

ar
ch

 a
nd

 a
na

ly
si

s o
f m

et
ab

ol
ic

 p
at

hw
ay

s
B

io
C

yc
ht

tp
://

bi
oc

y​c
.o

rg
/

In
te

gr
at

io
n 

of
 se

qu
en

ce
d 

ge
no

m
es

 w
ith

 p
re

di
ct

ed
 m

et
ab

ol
ic

 p
at

hw
ay

s f
or

 
th

ou
sa

nd
s o

f o
rg

an
is

m
s

K
aP

PA
-V

ie
w

4
ht

tp
://

kp
v.

ka
zu

s​a
.o

r.j
p/

A
 m

et
ab

ol
ic

 p
at

hw
ay

 v
ie

w
er

 d
at

ab
as

e 
fo

r r
ep

re
se

nt
at

io
n 

an
d 

an
al

ys
is

 o
f 

co
rr

el
at

io
n 

ne
tw

or
ks

 o
f g

en
e 

co
-e

xp
re

ss
io

n 
an

d 
m

et
ab

ol
ite

 c
o-

ac
cu

m
ul

a-
tio

n 
an

d 
om

ic
s d

at
a

K
EG

G
 P

A
TH

W
A

Y
​

ht
tp

s​:
//w

w
w.

ge
no

m
​e.

jp
/k

eg
g/

pa
th

w
​ay

.h
tm

l
Re

pr
es

en
t k

no
w

le
dg

e 
of

 th
e 

m
ol

ec
ul

ar
 in

te
ra

ct
io

n,
 re

ac
tio

n,
 a

nd
 re

la
tio

n 
ne

tw
or

ks
M

et
aC

yc
ht

tp
://

m
et

ac
​yc

.o
rg

/
Pr

ov
id

e 
in

fo
rm

at
io

n 
on

 p
rim

ar
y 

an
d 

se
co

nd
ar

y 
m

et
ab

ol
is

m
, a

s w
el

l a
s 

as
so

ci
at

ed
 m

et
ab

ol
ite

s, 
re

ac
tio

ns
, e

nz
ym

es
, a

nd
 g

en
es

 o
f e

xp
er

im
en

ta
lly

 
el

uc
id

at
ed

 m
et

ab
ol

ic
 p

at
hw

ay
s f

ro
m

 a
ll 

do
m

ai
ns

 o
f l

ife
M

ap
M

an
ht

tp
://

m
ap

m
a​n

.g
ab

ip
​d.

or
g/

D
is

pl
ay

s l
ar

ge
 d

at
as

et
s o

nt
o 

di
ag

ra
m

s o
f m

et
ab

ol
ic

 p
at

hw
ay

s o
r o

th
er

 
pr

oc
es

se
s

M
et

aC
ro

p
ht

tp
://

m
et

ac
​ro

p.
ip

k-
ga

te
r​s

le
be

​n.
de

Su
m

m
ar

iz
es

 d
iv

er
se

 in
fo

rm
at

io
n 

ab
ou

t m
et

ab
ol

ic
 p

at
hw

ay
s i

n 
cr

op
 p

la
nt

s 
an

d 
al

lo
w

s a
ut

om
at

ic
 e

xp
or

t o
f i

nf
or

m
at

io
n 

fo
r t

he
 c

re
at

io
n 

of
 d

et
ai

le
d 

m
et

ab
ol

ic
 m

od
el

s
M

et
PA

ht
tp

://
m

et
pa

​.m
et

ab
​ol

om
i​c

s.c
a

Pa
th

w
ay

 a
na

ly
si

s a
nd

 v
is

ua
liz

at
io

n 
to

ge
th

er
 w

ith
 a

dv
an

ce
d 

st
at

ist
ic

al
 

en
ric

hm
en

t a
na

ly
si

s
M

IN
E

ht
tp

://
m

in
ed

​at
ab

a​s
e.

m
cs

.a
nl

.g
ov

/
Pr

ov
id

e 
in

 si
lic

o 
ne

tw
or

k 
ex

pa
ns

io
n 

of
 c

om
pu

ta
tio

na
lly

 p
re

di
ct

ed
 m

et
ab

o-
lit

es
 fo

r u
nt

ar
ge

te
d 

m
et

ab
ol

om
ic

s
M

um
m

ic
ho

g
ht

tp
s​:

//s
hu

zh
​ao

-li
.g

ith
u​b

.io
/m

um
m

i​c
ho

g.
or

g/
Pa

th
w

ay
 a

nd
 n

et
w

or
k 

an
al

ys
is

 fo
r m

et
ab

ol
om

ic
 d

at
a

Pa
th

vi
si

o
ht

tp
://

w
w

w.
pa

th
v​i

si
o.

or
g/

D
ra

w
in

g,
 e

di
tin

g,
 a

nd
 a

na
ly

zi
ng

 b
io

lo
gi

ca
l p

at
hw

ay
s

U
ni

Pa
th

w
ay

ht
tp

://
w

w
w.

un
ip

a​t
hw

ay
​.o

rg
/

Ex
pl

or
at

io
n 

an
d 

an
no

ta
tio

n 
of

 m
et

ab
ol

ic
 p

at
hw

ay
s

VA
N

TE
D

ht
tp

s​:
//i

m
m

er
​si

ve
-a

na
ly

​tic
s.i

nf
ot

​ec
h.

m
on

as
​h.

ed
u/

va
nt

e​d
/

In
te

rp
re

ta
tio

n 
of

 b
io

ch
em

ic
al

 d
at

a 
by

 a
na

ly
zi

ng
 a

nd
 v

is
ua

liz
in

g 
th

em
 in

 th
e 

co
nt

ex
t o

f t
he

 u
nd

er
ly

in
g 

m
et

ab
ol

ic
 p

at
hw

ay
s o

r o
th

er
 n

et
w

or
ks

https://cran.r-project.org/web/packages/omu/vignettes/Omu_vignette.html
https://cran.r-project.org/web/packages/omu/vignettes/Omu_vignette.html
https://github.com/sneumann/xcms
https://www.arabidopsis.org/biocyc/
http://bioinformatics.sdstate.edu/arapath/
http://biosilico.kaist.ac.kr/
http://biocyc.org/
http://kpv.kazusa.or.jp/
https://www.genome.jp/kegg/pathway.html
http://metacyc.org/
http://mapman.gabipd.org/
http://metacrop.ipk-gatersleben.de
http://metpa.metabolomics.ca
http://minedatabase.mcs.anl.gov/
https://shuzhao-li.github.io/mummichog.org/
http://www.pathvisio.org/
http://www.unipathway.org/
https://immersive-analytics.infotech.monash.edu/vanted/


749Plant Cell Reports (2022) 41:741–763	

1 3

ranges were described in Fig. 2, having their selectivity, sen-
sitivity, and limitations. A platform can be chosen based on 
metabolites, their class, concentration level, physical and 
chemical properties (Allwood and Goodacre 2010). A new 
method discovered that syndicates separation of metabolites, 
DNA, long RNAs, small RNAs, and proteins could be pos-
sible from a single sample. This procedure is used to under-
stand the inter-relation structure (Weckwerth et al. 2004; 
Valledor et al. 2014; Wang et al. 2016a). The molecular 
dynamics structure of a cellular organization is the outcome 
of biochemical regulation. So, there is a need to know about 
biochemical regulation to get insight the covariance data 
about structures (Nägele et al. 2014; Wang et al. 2016b).

Presently, various approaches/methods are available for 
metabolomics analysis (Fig. 4). Metabolomics can be clas-
sified based on the data quality and the number of identi-
fied metabolites. Mainly, metabolites are classified into 
three classes. First-class is the metabolite-targeted investi-
gation dealing with the discovery and the exact quantifica-
tion of each targeted metabolite or small group of targeted 
metabolites. The second class is defined as metabolite 
profiling, which provides information about the detection, 
documentation, and estimated evaluations of a large set 
of targeted metabolites integrated with specific biochemi-
cal pathways. The third class is described as metabolite 
fingerprinting. This class can be applied for the complete 
metabolite comparison lacking the knowledge of metabo-
lite identification. Generally, a spectral study is used for 
the metabolome fingerprinting. Metabolite variations 

have been observed in the whole chromatographic design 
variations without the prior information of the examined 
metabolites. Hence, the identification of the metabolites is 
not required because the deducible theory does not man-
age this method; consequently, it is the open method for 
innovative discoveries (Carraro et al. 2009).

Metabolomic studies in plant stress 
response

Productive molecular breeding that is dependent on 
the comprehensive and helpful molecular mechanisms 
responsible for plant development, that acquire through 
the systems biology approaches along with metabolomics, 
under normal and stress conditions. In nature, unfavour-
able climatic conditions mainly consist of multiple fac-
tors in which every single stress is accompanied primarily 
by or followed by other stress (Kráľová et al. 2012). To 
understand the role of single stress, a precise fluctuating 
technique was developed, and plants were exposed to indi-
vidual stress to unravel the systems biology (Nakabayashi 
and Saito 2015; Bowne et al. 2018; Razzaq et al. 2019). 
In-plants stress physiology and biochemistry, the metabo-
lomic studies are becoming increasingly common (Fig. 5). 
The subsequent section covers a review of the applications 
of metabolomics to explore the plant responses to HS.

Experimental 
Design

Sample 
Prepara�on

Data Acquisi�on 
• MS-Based
• NMR

Data Analysis
• Data processing 

filtering
• Alignment
• Missing values
• Normaliza�on
• Transforma�on 

Metabolite 
iden�fica�on

• Peak annota�on
• Spectral databases 

and libraries 

Sta�s�cal analysis
• Univariate analysis
• Unsupervised 

mul�variate analysis
• Supervised 

mul�variate analysis
• Mul�way methods

Data 
Interpreta�on

• Pathway analysis
• Correla�on based 

network analysis

Workflow and steps involved in data analysis in plant metabolomics

Experimental 
valida�on

Submission to 
public repositories, 
and data exchange

Fig. 3   Schematic presentation of the workflow and steps involved 
in the high-throughput data analysis in plant metabolomics. There 
are four major steps in the metabolome analysis, i.e., experimental 
design, sample preparation, data acquisition, and data analysis pro-

duced by any analytical approach, which ultimately leads to identify-
ing metabolites, interpretation of the biological data, results valida-
tion, and submission to public sources
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The role of metabolomics in HS tolerance 
and adaptation

Plants require ideal temperatures for better productivity. 
Temperature variations can severely harm and terminate 
the plant’s developmental progressions. Notably, HS over-
whelmingly suppresses plant growth and development by 
harmfully disturbing main metabolic advances like pho-
tosynthesis, primary and/or secondary metabolisms, lipid 
and hormonal signaling (Raza et al. 2019, 2020b; Youl-
dash et al. 2020; Sabagh et al. 2020). Likewise, extended 
HS can harm root length, plant height, grain quality, and 
biomass production amongst most field crops (Kilasi et al. 
2018; Hütsch et al. 2019; Youldash et al. 2020). Another 
antagonistic effect of HS is the adverse effect on the plant 
root system, which offers support, nutrient and water uptake, 
and transportation to other plant organs, causing interrupted 
pollination, flowering, and root growth (Valdés-López et al. 
2016; Sehgal et al. 2017). Extended HS can induce cellular 
oxidative injury due to ROS production (Raza et al. 2020b; 
Youldash et al. 2020). Plants own several adaptive, escap-
ing, and/or acclimation mechanisms to deal with HS condi-
tions. Additionally, main tolerance mechanisms that employ 
ion transporters, proteins, osmoprotectants, antioxidants, 
and other influences elaborated in signaling cascades and 

transcriptional regulations are triggered to balance stress-
induced biochemical and physiological amendments (Hasa-
nuzzaman et al. 2013). Plant responses to HS differ with 
the temperature fluctuation, extent, and plant type. Elevated 
HS causes cellular damage/cell death within minutes, which 
may cause a shattering failure of the cellular body. Further, 
HS differentially affects the constancy of numerous proteins, 
membranes, RNA species, and cytoskeleton assemblies and 
modifies the productivity of enzymatic responses in the cell 
(Hasanuzzaman et al. 2013, 2020). Consequently, informa-
tion about how plants adapt, respond, and tolerate HS condi-
tions is vital for the development of plant productivity under 
changing climatic conditions. To reduce the adverse impact 
of HS, reviewing how the plants have advanced stress toler-
ance, surviving mechanisms will bring new ideas and lead to 
ground-breaking approaches in breeding for climate-resilient 
crops. In this line, one of the rapidly emerging systems biol-
ogy approaches, named “metabolomics” played a very vital 
role and helped to reveal the mechanisms responsible for 
metabolites-mediated phenotypic effects under HS. Thus, 
recently many investigations have been performed to unravel 
the metabolic responses of several plant species under HS 
(Table 2).

Mainly, HS causes metabolic redeployment on the way 
to homeostasis, sustaining vital metabolism, and producing 

Metabolite 
targeted analysis

Metabolite 
fingerprin�ng

Metabolite 
profiling

Detec�on and exact 
quan�fica�on of targeted 

annotated metabolites 

Detec�on, iden�fica�on and 
es�mated quan�fica�on of a 

large set of targeted 
metabolites 

The smallest set of 
metabolites which is specific 

for a given sample

Metabolite 
untargeted 

analysis
global detec�on and rela�ve 

quan�ta�on of small molecules 
in a sample

Da
ta

 q
ua

lit
y

Classifica�on of metabolomics analysis

Fig. 4   Classification of metabolomics analysis. The level of an identi-
fied metabolite can supply the knowledge about the biochemical posi-
tion in response to the environment and genetic manipulation, even at 
a single gene level. With the advancement in the “omics” approaches, 
we can find out what genes and proteins are being expressed and pre-

sent, and now what patterns and amount of many cellular metabolites 
are present. Metabolomics seeks for the detection, identification, and 
quantification of low molecular weight metabolites to get useful data 
in a biological scheme. The quality of obtained data and the number 
of metabolites may vary with the analysis, plant, and cell/tissue type
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metabolites with HS-defensive and signaling features. For 
example, untargeted metabolome profiling of soybean (Gly-
cine max L.) leaf was achieved under HS. In response to 
HS, several differently produced metabolites (DPMs) 
(carbohydrates, lipids, amino acids, peptides, cofactors, 
nucleotides, and secondary metabolites) were detected in 
leaves. Numerous DPMs (ribose, deoxyribose, gluconate, 
xylose, xylitol, lysine, alanine, methionine, and isoleucine) 
involved in cellular processes pathways, e.g., glycolysis, the 
pentose phosphate pathway, TCA cycle, and starch biosyn-
thesis, were affected by HS. In short, the up-regulation of 
sugar and nitrogen metabolisms can significantly help to 
cope with the HS (Das et al. 2017). Moreover, Thomason 
et al. (2018) reported the untargeted LC–MS based metabo-
lome analysis of wheat (Triticum aestivum L.) plants under 
post-anthesis HS. Among several DPMs, l-tryptophan and 
pipecolate were significantly up-regulated and exhibited a 
negative association with yield-related traits under HS. Like-
wise, two metabolites (Drummondol and anthranilate) were 
downregulated and positively associated yield traits under 
HS. Furthermore, the biosynthesis of aminoacyl-tRNA and 
secondary metabolites were significantly affected by HS. 
The study emphasized that numerous DPMs are distinguish-
ing the heat-stressed genotypes from controls, and this might 
be used as possible biomarkers for genetic advancement 
investigations (Thomason et al. 2018). In tomato (Solanum 
lycopersicum L.) pollen, several putatively notorious sec-
ondary metabolites went to three major sets, i.e., alkaloids, 
flavonoids, and polyamines, in response to HS (Paupière 
et al. 2017). Moreover, Wang et al. (2018a) performed the 
metabolome analysis of wheat at the grain filling phase and 
identified 98 DPMs (60 decreased and 38 increased) induced 
by HS. Carbohydrate-related metabolic contents were sig-
nificantly reduced, whereas amino acids and starch bio-
synthesis-related contents were increased under HS (Wang 
et al. 2018a). Similarly, Qu et al. (2018) reported that some 
vital compounds such as malate, valine, isoleucine, glucose, 
starch, sucrose, proline, glycine, and serine were effectively 
produced in response to CO2 and HS in maize (Zea mays L.) 
plants (Qu et al., 2018).

In another study, HS influencing rice (Oryza sativa L.) 
seed was observed by metabolic profiling (Dhatt et al. 2019). 
Masses of sugars (sucrose, glucose, fructose), tricarboxylic 
acid (TCA) cycle, and starch biosynthesis were strongly 
linked with the HS tolerance in rice. In another cluster of 
genes, the physical deterioration of starch granules, modifi-
cation of mature seed, and accumulation of aspartate under 
HS were observed (Dhatt et al. 2019). Moreover, under 
HS, Lawas et al. (2019) used three rice cultivars to per-
form a GC–MS based metabolome analysis of rice organs 
at several developmental stages, i.e., flag leaves, flower-
ing spikelets, and developing seeds. In the flag leaves, the 
identified metabolites (> 50%) at the flowering phase were 

expressively different in the two cultivars. In the flowering 
spikelets, the up-regulation of the polyols, Myo-inositol, and 
glycerol were observed in the heat-tolerant cultivar (N22). 
In the developing seeds, putrescine level was up-regulated 
in N22; some other metabolites, e.g., vanillic acid, arbutin, 
arabitol, 4-hydroxy-benzoic acid, and hydroquinone were 
up-regulated in Dular (heat sensitive) cultivar, and only 
erythritol and Myo-inositol were up-regulated in Anjali 
cultivar. Further, during the developmental stages of flag 
leaves, nine DPMs were expressed in all three cultivars. 
These DPMs were then well-thought-out to be precise to 
the overall response to HS (Lawas et al. 2019).

The metabolome profile of the Arabidopsis thaliana plant 
responded inversely toward different HS levels, i.e., con-
trol, prolong warming, and heat shock (Wang et al. 2020). 
Decreased stomatal conductance and suppressed TCA cycle 
were detected under prolong warming, while heat shock 
improved transpiration, glycolysis pathway but limits the 
biosynthesis of acetyl-coenzyme-A. Heat shock factors 
(HSFA1s), DREBs, and bZIPs were observed to be up-reg-
ulated under all stress levels (Wang et al. 2020). Recently, 
in a different study, the picoPPESI-MS approach was used 
to reveal the metabolites in response to HS-treated single 
pollen grains of heat-tolerant (N22) and heat-sensitive rice 
cultivars (Koshihikari). Overall, 106 DPMs were detected 
in both cultivars along with the variations in phosphati-
dylinositol (PI) (34:3) in mature pollen. More PI content 
was noticed in N22 pollen, but not for Koshihikari pollen. 
Interestingly, considerable low PI content was detected in 
the single mature pollen grains in both cultivars (Wada 
et al. 2020). Additionally, Liu and Lin (2020) evaluated the 
impact of HS on Sargassum fusiforme leaf using the GC–MS 
approach. Further, a robust variety of numerous metabolisms 
was detected, such as organic and amino acids, sugars/sugar 
alcohols, esters, and amines. These metabolisms were mean-
ingfully augmented in 10 pathways, e.g., aminoacyl-tRNA 
biosynthesis; glycine, serine, and threonine metabolism; ala-
nine, aspartate, and glutamate metabolism; valine, leucine, 
and isoleucine biosynthesis; cyanoamino acid metabolism; 
cysteine and methionine metabolism; arginine and proline 
metabolism; tyrosine metabolism; TCA cycle; and glucosi-
nolate biosynthesis under HS. These metabolic pathways 
may be a way forward for the development of resistance and 
improve the flexibility of Sargassum fusiforme to HS (Liu 
and Lin 2020).

Recently, Wei et al. (2020) investigated the metabolic 
response of lettuce (Lactuca sativa L.) seed under HS via 
an untargeted metabolome profiling. The results showed that 
seeds of heat-tolerant (N106) and heat-sensitive (N62) cul-
tivars employed diverse metabolic stratagems in response 
to HS throughout germination. Notably, 867 DPMs were 
observed between both cultivars. Particularly, N62 buds 
accumulated higher levels of organic and amino acids, 
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sugars, sterols, phenolic compounds, and terpenoids com-
pared to N106 buds at 21 °C. N106 accumulated higher 
levels of amino and organic acids, sugars, sesquiterpene 
lactones, sterols, and fatty acids derivatives throughout the 
germination at 35 °C. These findings cover how to connect 
the metabolomics to additional external and interior influ-
ences, disturbing lettuce seed germination under HS (Wei 
et al. 2020). Numerous untargeted metabolomics researches 
reported that salicylic acid, ascorbic acid, phenolic second-
ary metabolites, and almost all antioxidant defense enzymes 
could lessen HS indicators in several plant species (Zhang 
et al. 2017; Mobin et al. 2017; Muhlemann et al. 2018; Salvi 
et al. 2018). In addition, Ihsan et al. (2019) documented that 
sulphur-comprising molecules, e.g., glutathione, play a cru-
cial role in HS mitigations in several plant species.

Conclusively, several DPMs have been identified that are 
unique to only heat-tolerant cultivar in several plant species. 
For example, in rice, the polyols, Myo-inositol, putrescine 
and glycerol (Lawas et al. 2019); cysteine, serine, and thre-
onine, cytokinin, uridine diphosphate glucose, coumaryl-
alcohol, and α-l-rhamnose (Wada et al. 2020); in lettuce, 
amino and organic acids, sugars, sesquiterpene lactones, 
sterols, and fatty acids derivatives (Wei et al. 2020), in pep-
per, citrulline, serine, cysteine, glutamine, homocitrulline, 
alanine, and ornithine (Wang et al. 2019) were significantly 
up-regulated and/or accumulated in heat-tolerant cultivars. 
Additionally, some examples have also been documented 
in Table 2. Moreover, Fig. 6 shows the cluster of signifi-
cantly up-regulated and/or accumulated metabolites and 
metabolic pathways in response to heat stress, identified 
in the above-cited studies. These DPMs can be used as a 
targeted biomarker for future investigations in the genetic 
improvement of heat-stressed plants. For this purpose, future 
researches should be emphasized on the metabolome profil-
ing of heat-tolerant cultivars rather than or in comparison to 
the sensitive-cultivars.

All these studies showed that the differential expression 
and accumulation of sugars, amino acids, and carbohydrates 

related metabolites and metabolic/biosynthesis pathways 
play a major role in response to HS. Further investigation 
should be carried on for the genetic or metabolic engineer-
ing of such pathways, which can help plants to cope and 
adapt to the HS environment. Further, most of the studies 
were carried out in a controlled environment (growth rooms, 
incubators, chamber, etc.); therefore, future research should 
expand its experimental approach from the laboratory setting 
to the field environment where plants face multiple stresses 
at once. This may alter the metabolome profile compared to 
the indoor environment. This idea will help to identify the 
multiple stress responses, key metabolites, and pathways and 
can be used for future research plans.

Metabolomics‑assisted breeding for HS tolerance

During the past few years, metabolomics has accomplished 
substantial progress in both software and instrumentation, 
providing an excellent opportunity to examine the complete 
metabolome profiling of numerous plant species. Metabolic 
applications have helped many investigation areas, particu-
larly biotechnology, such as precise plant breeding and plant 
functional genomics (Rai and Saito 2016; Christ et al. 2018). 
Additionally, metabolome applications open new windows 
for translational metabolome investigations in the context 
of plant breeding. Current developments in post-genomic 
techniques have augmented the examination method. Com-
bining plant metabolomics with additional high-throughput 
(HTP) platforms will decrease the time required for crop 
improvement with enhanced stress tolerance (Christ et al. 
2018). Metabolomics has remarkable potential to deliver a 
complete investigation of many metabolic and phenotyp-
ing analysis of plants under stressful environments (Christ 
et al. 2018). Recent researches making an effort to combine 
metabolomics with other omics systems, such as epigenomic 
QTL (eQTL), proteomic QTL (pQTL), and metabolic QTL 
(mQTL), for the mapping for quantitative traits and dismem-
bering genetic differences at the mRNA, protein, and meta-
bolic stages (Fig. 7), due to the availability of all-inclusive 
datasets of several omics approaches. Interestingly, genome-
wide association studies (GWAS) together with metabo-
lomics (mGWAS), mQTLs, metabolome-wide association 
studies (MWAS), and genome-phenome wide association 
studies (GPWAS) are powerful platforms for the investiga-
tion of genetic differences related to metabolic characters in 
plants (Fang et al. 2019; Templer et al. 2017).

Understanding the metabolic systems directing the 
multifaceted machines in metabolomics have a significant 
impact on metabolomics-assisted breeding (MAB) in order 
to develop improved cultivars that can withstand numerous 
stresses. Besides, data attained from mQTL studies lead 
to further inclusive information about quantifiable genet-
ics (Acuña‐Galindo et al. 2015). Metabolomics cut down 

Fig. 5   The number of publications (including preprints from the 
last few years) per year related to plant metabolomics under both a 
abiotic and b biotic stresses from 2000 to 2019. Since the innova-
tion of metabolomics in the 1970s, it got much attention after the 
2000s in plant stress studies. Currently, there is a rapidly growing 
interest in the field of plant metabolomics. Notably, during the past 
10 years, plant metabolomics has been altered from a morally theo-
retical idea into an extremely appreciated and extensively exploited 
field. From the available literature, it can be assumed that tempera-
ture stresses (heat and cold) significantly affecting agricultural pro-
ductivity, and scientists are doing their best to develop heat tolerant 
crops using metabolomics approaches. Source: Google Scholar with 
custom range (Keywords (plant metabolomics + stress name such as 
drought, cold, heat, salinity, heavy metals, and waterlogging), (metab-
olomics + biotic stress name such as bacteria, virus, fungi, insects, 
and parasites) were used for pursuing the number of publications in 
Google Scholar

◂
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the gap between the genotype–phenotype and unlocks new 
prospects for metabolic dissevering, starting with the docu-
mentation of SNP markers or mQTL mapping examination 
to discover candidate genes. Further, metabolic markers 
play a vital approach for agronomic attribute detection and 
examining the genetic pathways linked with plant phenotype 
(Sweetlove et al. 2014).

For example, Templer et al. (2017) performed a metabo-
lome profiling of 81 barley (Hordeum vulgare L.) acces-
sions under a combination of drought and HS for the iden-
tification of mQTLs related to stress tolerance. A total of 
57 metabolites were found to be linked with antioxidant 
defense metabolism under HS. Identified mQTLs related 
to the pathways (γ-tocopherol, glutathione, and succinate) 
generated antioxidant enzymatic metabolites in response 
to stress. These mQTLs-based antioxidant defense help 
barley to cope with a stressful environment (Templer et al. 
2017). Previously, wheat mQTL analysis was performed 
under both drought and HS. The result shows that 234 
QTLs were linked with HS and 66 mQTL distributed all 
over the wheat genome. Further, 43 mQTL were correlated 
with both stresses, while only 2 were specific for HS. A 
combination of 137 SNP markers for HG-related candidate 
genes recognized 50 SNPs inside mQTL and these genes 
elaborated in sugar metabolism, ROS scavenging, and ABA-
induced stomatal opening and closing. Recognized mQTL 
and genes could be considered for future investigations and 
genetic advancement of wheat under HS (Acuña‐Galindo 
et al. 2015). Rice mQTL investigation has been completed, 
and, among 12 chromosomes, numerous mQTLs have been 
perceived in flag leaf and evolving seeds (Gong et al. 2013). 
Previously, Feng et al. (2012) performed the metabolic and 
genetic analysis dependent on glucosinolate biosynthesis in 
rapeseed (Brassica napus L.). Notably, 105 mQTLs related 
to glucosinolate biosynthesis in rapeseed seed and leaves 
have been observed.

Another fascinating approach, mGWAS in plants, has 
arisen as an influential tool for advanced functional genom-
ics in order to define the ordinary genetic foundation of 
numerous metabolic variations in the plant metabolome 
study (Fang et al. 2019). mGWAS has been effectively used 
to subordinate primary and/or secondary metabolites with 
mechanical genetic factor, elaborated in glucosinolate syn-
thesis, amino acid and phenylpropanoid biosynthesis, fla-
vonoid metabolism in Arabidopsis thaliana and other crop 
plants (Alseekh and Fernie 2018; Fang and Luo 2019). In 
a previous study, Wu et al. (2016) provided an enhanced 
discovery of the contributing genes for ninety-four primary 
metabolites in A. thaliana by assimilating quantitative genet-
ics together with metabolite–transcript association-network 
investigation. In 2018, the same group of scientists, Wu et al. 
(2018), used an untargeted mGWAS approach for > 3000 
LC–MS–detected semipolar metabolites from 309  A. Ta
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thaliana seedlings grownup in control and stress environ-
ments. They employed a statistical outline for 5 different 
metabolite modules and recognized 42 important attribute 
locus relations, advancing the documentation of 70 aspirant 
genes related to a stress response. In rice, the mGWAS study 
with 175 accessions effectively recognized 323 connotations 

between 143 SNPs and 89 metabolites. It showed that the 
metabolite contents are firmly connected with a not sig-
nificant amount of robust QTLs (Matsuda et al. 2015). In 
tomato, mGWAS detected the 44 novel loci related to fruit 
metabolic characters (Sauvage et al. 2014). Moreover, an 
mGWAS investigation has been completed to recognize 

Heat stress
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Fig. 6   A word-cloud illustration shows the keywords of significantly 
up-regulated and/or accumulated metabolites and metabolic path-
ways identified under heat stress in different plant species. Most of 
them were commonly identified in several studies, e.g., carbohydrate 

metabolism, amino acid metabolism, primary and secondary metabo-
lisms, etc. and the metabolites involved in the biosynthesis and break-
down to other compounds
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Fig. 7   Systematic model of MAB for gene expression together with 
molecular phenotype. Black arrows show that each molecular pheno-
type can be mapped onto the genome using QTL mapping and GWAS 
techniques. Nevertheless, MWAS does not demand precise knowl-
edge to exploit the impacts of genetic deviant on metabolites. MWAS 

metabolome-wide association studies, GPWAS genome-phenome 
wide association studies, GO gene ontology, GC gene co-expression, 
PI protein interaction, TC trait correlation, TOI a trait of interest. 
Other abbreviations are explained in the text. Read the text for further 
information. Modified from Razzaq et al. (2019) (color figure online)
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biochemical and genetic differences in rice metabolisms. 
They recognized 36 genes related to unique metabolites 
controlling nutritional and physiological characters in rice 
plants (Chen et al. 2014).

In a different study, Muthuramalingam et al. (2018) con-
ducted a global investigation on the genes regulating the 
threonine (Thr) metabolism using computational-mGWAS 
in rice under several abiotic stresses, including HS. The find-
ings showed that 16 abiotic stress associated–Thr metabolite 
making genes (ThrMPG) modified metabolite contents and 
played a substantial role in defining both the physiological 
and nourishing status of rice plants. A set of 1373 and 1028 
SNPs were associated with complex characters and genomic 
differences. Relative mapping of stress-ThrMPG exposed 
the chromosomal collinearity with C4 grasses. Additionally, 
the computational appearance design of these genes proph-
esied a different expression outlining diverse progressive 
matters. Analysis of protein interaction showed that abiotic 
stresses ThrMPG are multigenic. The outcomes provided an 
important source for a more functional examination of these 
candidate genes in response to several abiotic stresses for the 
genetic improvement of rice (Muthuramalingam et al. 2018).

Based on the available literature, only a very few ground-
breaking studies have been carried out for the identification 
of HS-related genes and QTLs using metabolomic-mediated 
mQTL and mGWAS approaches. With focused-on key-locus 
documentation in many stresses for secondary metabolite 
levels, remains are lacking. Thus, future studies should be 
emphasized in the efficient utilization of these state-of-the-
art approaches.

Persisting bottlenecks in metabolomic 
studies

Although tremendous advancement has been made in the 
field of metabolomics, several bottlenecks prerequisites 
remain to be solved to use metabolomics to its full potential. 
The elimination of these bottlenecks will help discover novel 
stages for crop improvement under HS, which sequentially 
will promise world food safety.

Metabolomic platforms have no such ability to change the 
detailed profile of tissues and cells. This is limited due to the 
dynamic range of instruments, chemical, and biological pos-
sessions of metabolites. The transcriptome and genome are 
composed of linear polymers of nucleotides, which have a 
similar chemical nature; due to this structure, a better ana-
lytical result would be expected. Proteome consists of a short 
number of amino acids, while it appears as more complex. The 
chemical nature of biopolymers is better defined, and the wide 
range of proteins are identified in a single analysis by various 
analytical technologies such as shotgun proteomics and 2DE 
gel electrophoresis as well as methylation and phosphorylation 

(Voelckel et al. 2017; Klose and Kobalz 1995). Chemical 
complexities are much higher in complex natural products, 
hydrophobic lipids, inorganic moiety, and hydrophilic carbo-
hydrates. That is why metabolome profiling was so tricky due 
to the metabolome complexity and diversity. This hurdle could 
be overcome using new protocols and advanced technologies 
for metabolome (Weckwerth 2003; De Luca et al. 2012).

The coefficient of variation, which leads to an experimental 
approach, is known as analytical variation. According to the 
technology employed, this variance could be different. Quanti-
tative variation gives rise to biological alteration at the metabo-
lite level in plants grown under the same condition (Nägele 
et al. 2016; Nägele and Weckwerth 2012). Resolution is lim-
ited in metabolomics due to the biological variance. Biological 
variance can be reduced by pooling different samples together. 
Using statistical analysis, this strategy also reduces random 
variation, and it also leads to the dilution of various tissues that 
are very important for metabolite regulations. Interestingly, 
these variations can be minimized by various targeted analysis. 
Sampling could be problematic because of multiple parameters 
like growth stages, photosynthesis, and environmental stages; 
thus, various strategies are also inline to minimize these vari-
ations (Sumner et al. 2003; Kim et al. 2015).

Dynamic range is a critical challenge in metabolomics. 
Concentration boundaries that set-up for analytical deter-
mination are known as dynamic range. The sample matrix, 
competing, and interfering compounds all limited the dynamic 
range. For individual components, there is a different mass 
spectrometer that has a dynamic range of 104–106, and this 
could be limited because of other chemical compounds, e.g., 
secondary metabolites like flavonoids being interfered with 
primary metabolites (Sumner et al. 2003; Blum et al. 2018). 
Hence, high-level metabolites are so unique that they play a 
role in the differentiation of organisms at cellular states, tis-
sues, and organs. Moreover, these are known as biomarkers. 
To diagnose various diseases like cancer and diabetes, selec-
tive profiling of biomarkers is essential. Due to the differential 
characteristics of highly targeted profiling, the previous detec-
tion should not be considered as metabolomics (Clifford et al. 
2018). Another significant issue is salt concentration; low level 
leads to the problem in the profiling of various species, as well 
as affects the ionization efficiency of MS (Wang et al. 2018b). 
To improve the identification process and dynamic range, vari-
ous analytical techniques have been progressed, as discussed 
in Sects. 2 and 3 (Sumner et al. 2003; Hall 2018).

Metabolomics data availability, legal issues, 
and benefits

Metabolomics is still covering overdue other omics 
approaches concerning data sharing and availability. Data 
sharing is being progressively obligatory by publishers 
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and has been indicated as a resolution to the duplication 
crisis. In the age of publicly available, reusable, and open 
science, materials should be made accessible to the scien-
tific community. Progressing metabolomics examination 
by helping data sharing and availability restricted by the 
Nagoya Protocol on access and benefit-sharing should 
be a key target of metabolomics researchers (Watanabe 
2015). The ideas of data sharing and open data are gradu-
ally imperative in science. Sharing data openly and freely 
is a vital way of cultivating reproducibility and screening 
that scientists are assured in their effort (McKiernan et al. 
2016).

Interestingly, works with material shared in a reposi-
tory also obtain extra citations than those lacking openly 
accessible data (Drachen et al. 2016). On the other hand, 
acknowledging the creative supplier upon reusing avail-
able data is imperative both as a recompense for data 
originators and to essay the attribution of examination 
discoveries (Piwowar and Vision 2013). Minimal submis-
sion and domain-definite databases to detention and dis-
tribute core data in metabolomics have risen in the 90s, 
afterwards forming a preliminary round of standardiza-
tion exertions by the Metabolomics Standards Initiative 
(MSI) (Sansone et al. 2007; Deborde and Jacob 2014). 
Metabolomics data should acquiesce following the MSI 
guiding principles (Sansone et al. 2007). Currently, there 
are several publicly available metabolomics data reposi-
tories, such as MetaboLights (https​://www.ebi.ac.uk/
metab​oligh​ts/), MetabolomeXchange (http://www.metab​
olome​xchan​ge.org/), OmicsDI (https​://www.omics​di.org/), 
Metabolomics Workbench (https​://www.metab​olomi​cswor​
kbenc​h.org/), MetaPhen (https​://www.metab​olome​-expre​
ss.org/pheno​meter​.php), MeRy-B (http://servi​ces.cbib.u-
borde​aux.fr/MERYB​/), GNPS (https​://gnps.ucsd.edu/Prote​
oSAFe​/stati​c/gnps-splas​h.jsp), Dryad (https​://datad​ryad.
org/), Figshare (https​://figsh​are.com/), Zenodo (https​://
zenod​o.org/), and SciLifeLab Data Repository (https​://
www.scili​felab​.se/commu​nity-pages​/syste​ms-data/repos​
itory​/).

The metabolomics field continues to progress original 
data standards and procedures as its evolutions. For instance, 
SPLASH (http://splas​h.fiehn​lab.ucdav​is.edu/), a hashed 
identifier for mass spectra, has been published (Wohlgemuth 
et al. 2016), which advances the exchange of mass spectra 
and agrees for attribution and duplicate discovery. In some 
specific databases, authors may submit data with domain-
specific repositories and controlled access owing to personal 
privacy or academic issues by informing the consents and 
getting ethical agreements, etc. Currently and shortly, unlim-
ited data availability can play a significant role in educating 
next-generation scientists in metabolomics and correspond-
ing applications without spending much money and time on 
the original or/and initial data analysis and validation.

Conclusion and future directions

Metabolomics has gained an important place in plant biol-
ogy exploration. The advancement of expertise from a sin-
gle metabolite study to HTP examines producing several 
ways to diversify metabolites from a single drive, which 
has covered the system from the detection of improved 
models for metabolite systems and the documentation of 
robust biomarkers. There are enormous applications in 
plant research, such as identifying the candidate gene’s 
functions (using integrated omics, i.e., transcriptomics 
and metabolomics) for investigating the entire biologi-
cal apparatus in cells and dichotomizing the relation-
ship between genotype–phenotype in response to several 
stresses, including HS. Numerous examples from the cur-
rent scientific works demonstrate how metabolomics may 
produce novel data on the possessions of hybridization on 
plant and genotype-environment connections that could 
not have been so effortlessly gained with targeted investi-
gations alone. In a rapidly changing climatic era, HS has 
become the most critical threat for crop production glob-
ally since it significantly affects the growth, development, 
and efficiency of plants. Nevertheless, the range to which 
this happens in particular climatic regions hangs on the 
possibility and period of HS and the daylight timing of 
HS. Therefore, under HS, plants modify themselves to 
adjust to the current stress by modulating genes, proteins, 
and metabolites regulation. It is vital to clarify the roles 
of recently acknowledged stress-responsive metabolites 
and genes to know the stress responses of plants. Metabo-
lomics has a vast role in plant genetic breeding in which 
the HTP genotyping or sequencing techniques reliant 
on NGS tools together with metabolomics; hence, it has 
meaningfully decreased the diverse developmental period 
through MAB. Moreover, the combination of metabo-
lomics, post-genomics, and several genetic techniques 
has also presented thrilling ways to investigate genetic 
procedures for plants in response to their metabolisms. 
A set of systems biology approaches can help to explore 
the multifaceted metabolic ways that oversee significant 
regulatory functions in plant metabolism. Furthermore, 
some persisting bottlenecks still require more attention 
for the precise documentation of compounds by different 
analytical techniques.

Crop production must be doubled by 2050 to guarantee 
future food security and to cope with the challenge of the 
“zero hunger” anticipated by the Food and Agriculture 
Organization (FAO), but several environmental stresses, 
mainly HS, are offsetting this goal. In the future, metabo-
lomics can be employed for the identification of novel HS-
responsive biomarkers to exploit plant metabolisms and to 
determine the mode and depth of stress. MAB, including 
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mQTL and mGWAS, can discover several ways in crop 
enhancement to produce high yielding, stress-resistant cul-
tivars and generate climate-resilient ready-to-grow varie-
ties. Moreover, single cell-based metabolomics research 
in plants should be employed to gain insight into each 
cell/tissue-mediated stress responses at the metabolic 
level. Additionally, metabolomics tools can be employed 
for metabolome profiling of genetically engineered plants 
that employ the most promising genome-editing (CRISPR/
Cas) technique for risk evaluation and supervisory mat-
ters related to genetically engineered plants. Further, meta-
bolic engineering of HS-related metabolic pathways and 
genes can open new windows for future research and the 
development of improved HS tolerant genotypes. Recently, 
speed breeding has emerged as a fascinating tool where 
plant metabolomics is prepared to see miracles for crop 
improvement under HS conditions. In the end, the combi-
nation of omics, genome editing, and speed breeding can 
do substantial wonders to feed millions worldwide.
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