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Abstract

Key message Comprehensive metabolomic investigations provide a large set of stress-related metabolites and meta-
bolic pathways, advancing crops under heat stress conditions. Metabolomics-assisted breeding, including mQTL and
mGWAS boosted our understanding of improving numerous quantitative traits under heat stress.

Abstract During the past decade, metabolomics has emerged as a fascinating scientific field that includes documentation,
evaluation of metabolites, and chemical methods for cell monitoring programs in numerous plant species. A comprehensive
metabolome profiling allowed the investigator to handle the comprehensive data groups of metabolites and the equivalent
metabolic pathways in an extraordinary manner. Metabolomics, together with transcriptomics, plays an influential role in
discovering connections between stress and genes/metabolite, phenotyping, and biomarkers documentation. Further, it helps
to decode several metabolic systems connected with heat stress (HS) tolerance in plants. Heat stress is a critical environ-
mental factor that is globally affecting the growth and productivity of plants. Thus, there is an urgent need to exploit modern
breeding and biotechnological tools like metabolomics to develop cultivars with improved HS tolerance. Several studies
have reported that amino acids, carbohydrates, nitrogen metabolisms, etc. and metabolites involved in the biosynthesis and
catalyzing actions play a game-changing role in HS response and help plants to cope with the HS. The use of metabolomics-
assisted breeding (MAB) allows a well-organized transmission of higher yield and HS tolerance at the metabolome level
with specific properties. Progressive metabolomics systematic techniques have accelerated metabolic profiling. Nonethe-
less, continuous developments in bioinformatics, statistical tools, and databases are allowing us to produce ever-progress-
ing, comprehensive insights into the biochemical configuration of plants and by what means this is inclined by genetic and
environmental cues. Currently, assimilating metabolomics with post-genomic platforms has allowed a significant division
of genetic-phenotypic connotation in several plant species. This review highlights the potential of a state-of-the-art plant
metabolomics approach for the improvement of crops under HS. The development of plants with specific properties using
integrated omics (metabolomics and transcriptomics) and MAB can provide new directions for future research to enhance
HS tolerance in plants to achieve a goal of “zero hunger”.

Keywords Abiotic stress - Bioinformatics - Crop improvement - Metabolites - Metabolomics-assisted breeding - mQTL -
mGWAS - Omics - Systems biology - Extreme temperature - Zero hunger

Introduction

Metabolomics has become an excellent scientific field for the
past two decades (Fernie et al. 2004), even though this tech-
nique has been executed since the 1970s (Jellum 1977). In
Communicated by Manzer H. Siddiqui. early 2003, metabolomics was introduced as an essential tool
for metabolites profiling, systems biology, and it was also
linked with genome-wide metabolome modelling (Weckw-
erth 2003). In recent years, massive advancement has been
Key Lab of Biology and Genetic Improvement of Oil made in the “omics” technologies, i.e., genomics, transcrip-
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based on the omics tools have increased the ratability and the
speed of the growing breeding scheme in order to develop
the climate-resilient and nutrient-rich genotypes, which are
vital for securing food security (Alseekh and Fernie 2018).
Metabolomics is used as a critical tool to obtain data for
systems biology, functional genomics, and omics approaches
(Fig. 1) (Saito and Matsuda 2010; Zampieri et al. 2017). The
biochemical phenotype of tissues or cells can be correctly
defined by studying the metabolome components determined
by gene expression. An organismic biochemical status can
be checked by quantitative/qualitative analysis of cellular
metabolites, which can be further used to check genes func-
tion (Weckwerth 2003; Dos Santos et al. 2017).

The changes in mRNA are compulsory for protein syn-
thesis during transcription, but levels of protein should be
strongly correlated with increased levels of mRNA (Selbach
et al. 2008). Translated proteins do not need to be always
active; thus, considering these reasons, alterations in the pro-
teome level do not correlate to changes in the biochemical
phenotype. In proteome and transcriptome profiling, proteins

and mRNA are identified via databases or sequence simi-
larity. When the database information is not available, the
results of the analysis are limited. In order to understand any
biological sample, metabolite profiling is beneficial when
the database information is not available for transcriptome
and proteome analysis (Weckwerth 2008, 2011). Since the
chemical alteration of metabolites happens in any cellular
metabolism, quantitative and qualitative metabolomics pro-
filing of various organs, cells, and tissue are considered as an
important target for analytical metabolomic fields (Durand
et al. 2010; Templer et al. 2017). Hence, metabolites are a
known product of cellular functions, and their levels are crit-
ically linked with plants’ reactions to genetic manipulation
and environmental responses. Therefore, metabolomics stud-
ies are used for the identification and measurement of pri-
mary and secondary/specialized metabolites in plants used
in biological processes. Primary metabolites are the major
components of the reproduction of plants and their normal
growth, whereas specialized metabolites are used to provide
strength to pants in harsh conditions. Primary metabolites
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Fig.1 An overview of the integration of omics, mainly metabolomics
for crop improvement under heat stress. Central dogma showing
the movement of biological information from genomics to phenom-
ics to get the required phenotype under heat stress. Notably, omics,
mainly metabolomics or/and genomics tools, improved several traits
via the flow of biological information. Interestingly, the exploitation
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of metabolomics, metabolomics-assisted breeding platforms, genome
and metabolic engineering using the CRISPR/Cas system, and
the speed breeding on a large scale can help to improve the overall
plant health under heat stress conditions and can help to feed billions
worldwide
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are limited, conserved in the structure, and are found widely
in the whole plant kingdom, whereas specialized metabolites
level varies over the plant kingdom (Alseekh and Fernie
2018; Fang and Luo 2019). Therefore, the information on the
biologically active metabolites, mainly specialized metabo-
lites, is essential.

Plant’s metabolic networks are very complicated and con-
sist of many biochemical steps, including the metabolomic
network of primary and specialized metabolites pretentious
by the different plant stressful environments. Hence, it is
essential to quantify and identify changes in metabolite
composition through proper analytical methods. Nowadays,
various integrated technologies are used, such as nuclear
magnetic resonance (NMR) spectroscopy, mass spectrom-
etry (MS), capillary electrophoresis-MS (CE-MS), liquid
chromatography-MS (LC-MS), gas chromatography-MS
(GC-MS), and Fourier transform ion cyclotron resonance-
MS (FT-ICR-MS) (Kim et al. 2010; Vinaixa et al. 2016; Peu-
kert et al. 2016; Mitchell et al. 2018). With the advancement
of MS-imaging techniques, including matrix-assisted laser
desorption (MALDI) and desorption electrospray (DESI)
ionization platforms combined with high-resolution MS, it
is feasible to conduct in-situ metabolome analysis (Blanksby
and Mitchell 2010). Therefore, for liquid phase separations,
ultrahigh performance liquid chromatography (UPLC)
and high-performance-LC (HPLC) are used for metabolite
analysis in various applications; these are a robust analyti-
cal method that permits the discovery of plant metabolites
when it is integrated with another technique like MS (Theo-
doridis et al. 2012; Khan et al. 2017). A recent method for
multi-component analysis is the metabolic profiling that is
employed for the examination of acids and urinary drugs
coupled with GC/MS. For metabolite profiling, GC based
techniques like NMR and HPLC are used and exceptionally
important in the research field (Gorling et al. 2016). Nowa-
days, metabolites and cellular proteins are widely analyzed
by modern mass spectrometry, a rare trend before. Systems
biology and functional genomics use genome-scale molecu-
lar analysis to get the desired phenotype (Weckwerth 2011;
Aebersold and Mann 2016; Chaturvedi et al. 2016; Ghatak
et al. 2017).

Modern analytical technologies provide the basis to study
biological systems. In plants, gene expression is changed
by various stress responses that can alter qualitative status
in the metabolite pool; therefore, metabolite identification
becomes more difficult (Sweetlove et al. 2014; Razzaq et al.
2019). Plants face both biotic and abiotic stresses and are
sessile organisms that have to cope with these conditions.
Due to climate changes, among abiotic stresses, heat stress
(HS, > 25 °C) is considered the most threatening factor
affecting the growth and productivity of several plant species
(Hasanuzzaman et al. 2013; Raza et al. 2019, 2020a). In the
past few years, significant researches have been conducted to

exploit the HS effect on the metabolome profile of numerous
plants (Templer et al. 2017; Thomason et al. 2018; Lawas
et al. 2019; Dhatt et al. 2019). Omics approaches such as
transcriptomics, proteomics, metabolomics, bioinformatics,
and high-throughput DNA sequencing have aided functional
analysis of regulatory networks that control plant abiotic
stress responses. Such research has noticeably augmented
our knowledge of comprehensive plant systems in responses
and adaptation to a variety of stress conditions (Urano et al.
2010). Mainly, metabolomics plays an essential role in the
genetic improvement of various crops under HS. Different
institutes and various commercial branches are all work-
ing towards the advancement of metabolomics. However,
the measurement of metabolites is critical in plant molecu-
lar and/or physiological responses to HS and to elucidate
the function of genes in functional genomics and systems
biology. This review highlights the state-of-the-art plant
metabolomics and its application in functional genomics
and systems biology for the genetic improvement of crops
under HS.

Plant metabolomics: an overview

Metabolome has been defined as the last receiver of the
flow of biological information to get the desired phenotype
(Fig. 1). However, a metabolite is generally described as a
molecule with a size of < 1.5 kDa (Wakayama et al. 2015).
From the last decade, plant metabolomics has emerged as
a highly recommended and widely used approach from an
exclusively hypothetical idea. Plant metabolomics studies
have been usually adapted to study the metabolites from
different crop plants. Due to the untargeted nature of many
metabolomic techniques, the study will deliver an extensive
indication of both the primary and specialized metabolites
(van Dam and van der Meijden 2018). In 1993, a consider-
able amount of estimated metabolites was ranged between
100,000-200,000 (Mazza and Miniati 1993). Approximately
2 lac metabolites are present in plants, out of which seven
to fifteen thousand are present in individual species (Fernie
et al. 2004), and three to five thousand are existing in plant
leaves (Kim et al. 2010). Nevertheless, the number of esti-
mated metabolites seems to increase with the advancement
in analytical tools (Last et al. 2007).

Except for simple identification, selective metabolite
profiling used to find results for biological characteristics
of plants, which includes (1) ecotypes for taxonomic or
biochemical information and fingerprinting of species, (2)
check the response of metabolites under physical stimuli
and exogenous chemicals, (3) learn the symbiotic associa-
tion and developmental process, metabolite content com-
parison of transgenic and wild type plants (Sumner et al.
2003; Templer et al. 2017; Alseekh and Fernie 2018). In
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all the above-mentioned studies, metabolome profiles were
combined with other omics tools for comprehensive under-
standing, such as complex regulatory networks that control
global gene expression, protein alteration, and metabolite
configuration under stress conditions (Weckwerth 2011). To
study the chemical configuration of different plant species,
metabolite profiling is integrated with the markers (Schauer
et al. 2006). As metabolomics plays an essential role in plant
research except for individual cell-metabolome analysis for
root hairs, pollen tissues, a trichome, guard cells were also
studied (Nigele et al. 2017). Findings showed that metabo-
lome analysis could be convenient for a single cell type,
and it may vary from cell to cell. The phenotype of any
plant depends on the metabolite concentration and synthe-
sis in various organs of plants at different developmental
stages; thus, the nature of metabolites is relevant to tissues/
organs characteristics (Roldan et al. 2014). Due to consid-
erable differences in biochemical pathways at the cellular
and sub-cellular levels in crops, the application of various
metabolomics techniques with different protocols, notably
augmented. In short, metabolomics can be helpful for the
detection of novel gene functions and clarification about the
governing metabolisms in a metabolome network.

Current analytical techniques for plant
metabolomics research

Metabolomics has developed as an outstanding scientific
field; however, a single analytical technique is not adequate
to detect and quantify the metabolites (Weckwerth, 2003;
Templer et al. 2017). Presently, various metabolomic tech-
niques are being applied in plant metabolomics research, as
discussed in the introduction. Out of these, GC, MS, NMR,
and HPLC dominate the metabolite tools. Two basic tech-
niques, MS and NMR, are used in modern metabolomics,
including the generation of metabolomics data. Interestingly,
NMR is preferred to MS because of its high capacity in
detecting protein binding sites, direct binding of target pro-
teins, physical properties of ligands, and uncovered protein
structure coupled with ligands. Metabolite exposure reli-
ant on NMR uses magnetic properties of various nuclei of
atoms. The different applications, such as metabolite profil-
ing and fingerprinting, metabolic flux, and atomic structural
details of different biological samples, are integrated with
NMR. Owing to the non-destructive nature of NMR with a
smaller molecular weight is widely used to detect metabo-
lites (Eisenreich and Bacher 2007; Kim et al. 2010). Hence,
this technique is so sensitive, and it has a low abundance of
biomarkers that causes its limited use. Except for NMR, the
MS technique has the best sensitivity, and researchers can
get an extensive range of metabolome data. This technique
would help researchers to detect molecules and metabolic
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biomarkers that can rebuild metabolic networks and path-
ways. Different ionization methods such as matrix-assisted
laser desorption/ionization (MALDI-TOF), atmospheric
pressure chemical ionization (APCI), and electrospray ioni-
zation (ESI) were accurately detected by MS (Issaq et al.
2009). To get accurate results, MS is coupled with various
techniques such as field asymmetric waveform ion mobility
spectrometry (FAIMS), CE, GC, FT-ICR, and LC. Figure 2
indicates the comparison of frequently working analytical
techniques in plant metabolomics research.

Notably, MS has obtained a progressively vital role in
the field of metabolomics and proteomics due to the signifi-
cant progress that has been made in instrument technolo-
gies. The frequently used technique for untargeted analysis
is GC-MS (Rohloff 2015). Sample derivatization was done
by the GC-MS technique, making the compound volatile;
however, some compounds are left as underivatized during
analysis. GC-MS has been recognized as a high-through-
put analytical technology with a high rate of sensitivity for
metabolic profiling. GCxGC-TOF-MS enhanced the out-
put through the segregation of co-eluting peaks (Hurtado
et al. 2017). Higher mass primary and specialized metabo-
lites (< 1500 Da) are detected by targeted and untargeted
techniques facilitated by LC-MS that uses ESI and APCI
(Turner et al. 2016). Identification of several metabolites
increases peak resolution, and mass accuracy was done in
a short time with the help of UPLC coupled with QTOF-
MS (Chawla and Ranjan 2016). In targeted and untargeted
metabolomics analysis, high-resolution separation of metab-
olites is mainly done by CE-MS (Ramautar et al. 2019).
FT-ICR-MS is driven by high-resolution mass analysis that
provides extensive and reliable detection of metabolites. It
is also coupled with separation techniques to settle complex
matrices, and ion separation was also done by this technique
(Ghaste et al. 2016; Nakabayashi et al. 2016; Lopes et al.
2017).

Data produced from the above-mentioned techniques are
processed by Met-Align, PlantMAT, MET-XAlign, MET-
COFEA, XCMS, and ChromaTOF, etc. (Table 1). Statistical
analysis of identified metabolites is followed by using a com-
bination of (1) univariate analysis (Student ¢ test; ANOVA;
Mann—Whitney U test; Benjamini—Hochberg false discovery
rate correction; Kruskal Wallis 44%), and (2) multivariate
analysis (principal component analysis (PCA); partial least
squares discriminant analysis (PLS-DA); orthogonal par-
tial least squares (O-PLS); high-content screening (HCA);
heatmap, correlation analysis, neural networks, genetic algo-
rithms, and random forest methods. Currently, several differ-
ent software and online tools are available for metabolome
analysis, like MetaboAnalyst, MetaboliteDetector, Meta-
MapR, MetExplore, Cytoscape, g:Profiler, Gene-set enrich-
ment analysis (GSEA), Metabolite-set enrichment analy-
sis (MSEA), EnrichmentMAP, Workflow4Metabolomics
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Fig.2 Comparison of frequently working analytical techniques in plant metabolomics research

(W4M), and different statistical analysis tools, etc. (Hiller
et al. 2009; Chong et al. 2018; Reimand et al. 2019; Giaco-
moni et al. 2014; Weber et al. 2017). A list of accessible
online databases/tools and software for the analysis, data
processing, statistical analysis, biomathematical modelling,
and functional interpretation of metabolomics data is shown
in Table 1. Notably, enlisted tools/software are suitable to
analyze and identify the different metabolites related to vari-
ous agronomic parameters.

Key steps and workflow for plant
metabolome analysis

Plant metabolomes have chemically diverse and multifaceted
structures. Wide range metabolic pictures and vast identifica-
tion of metabolomes can be made with the help of analytical
and metabolic strategies as well as analytical procedures and
extraction protocols (Gorrochategui et al. 2016; Christ et al.
2018; Wolfender et al. 2018). The metabolomic analysis is
based on four major steps: (1) design of the experiment, (2)
preparation of the samples, (3) data acquisition by using ana-
Iytical procedures, and (4) identification of compounds and
data extraction with the help of statistical analysis. Finally,
these steps are used to interpret biological data, results vali-
dation, and submission to public repositories. These steps

are necessary and interlinked, as shown in Fig. 3, followed
by various sub-steps to propose biochemical strategies (Gor-
rochategui et al. 2016; Wolfender et al. 2018).

Metabolite identification is made by sample prepara-
tion, i.e., a critical step that plays an essential role in iden-
tification. Sample preparation consists of many steps, like
selection, harvesting, drying procedure, and metabolite
extraction. The researcher selects plant material based on
experimental design. In order to not affect the results with
unwanted material, every step should be performed with
care. Contamination, sample degradation, use of enzyme
inhibitors, organic solvents, acids could also affect the
metabolome results (Kim et al. 2015; Kim and Verpoorte
2010).

Plants metabolites are as complex in their structure as
in polarity, stability, solubility, quantity, volatility, and size
(Riedelsheimer et al. 2012). Various metabolite extraction
methods are used for plants, but it all depends on various
factors like a solvent’s physicochemical properties and bio-
chemical composition. Commonly used methods are soni-
cation, superficial fluid extraction solvent, and solid-phase
extraction (Kim and Verpoorte 2010; Vilkhu et al. 2008).
Nevertheless, no technique can identify all kinds of metab-
olites with high results. Sample analysis can be done by
advanced methods by which ultra-complex metabolites can
also be measured (Salem et al. 2017). Analytical platforms’
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Workflow and steps involved in data analysis in plant metabolomics
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Fig.3 Schematic presentation of the workflow and steps involved
in the high-throughput data analysis in plant metabolomics. There
are four major steps in the metabolome analysis, i.e., experimental
design, sample preparation, data acquisition, and data analysis pro-

ranges were described in Fig. 2, having their selectivity, sen-
sitivity, and limitations. A platform can be chosen based on
metabolites, their class, concentration level, physical and
chemical properties (Allwood and Goodacre 2010). A new
method discovered that syndicates separation of metabolites,
DNA, long RNAs, small RNAs, and proteins could be pos-
sible from a single sample. This procedure is used to under-
stand the inter-relation structure (Weckwerth et al. 2004,
Valledor et al. 2014; Wang et al. 2016a). The molecular
dynamics structure of a cellular organization is the outcome
of biochemical regulation. So, there is a need to know about
biochemical regulation to get insight the covariance data
about structures (Nigele et al. 2014; Wang et al. 2016b).
Presently, various approaches/methods are available for
metabolomics analysis (Fig. 4). Metabolomics can be clas-
sified based on the data quality and the number of identi-
fied metabolites. Mainly, metabolites are classified into
three classes. First-class is the metabolite-targeted investi-
gation dealing with the discovery and the exact quantifica-
tion of each targeted metabolite or small group of targeted
metabolites. The second class is defined as metabolite
profiling, which provides information about the detection,
documentation, and estimated evaluations of a large set
of targeted metabolites integrated with specific biochemi-
cal pathways. The third class is described as metabolite
fingerprinting. This class can be applied for the complete
metabolite comparison lacking the knowledge of metabo-
lite identification. Generally, a spectral study is used for
the metabolome fingerprinting. Metabolite variations

! Data

il .

i ¥ : Interpretation
i * Pathway analysis

public repositories, |+
and data exchange

duced by any analytical approach, which ultimately leads to identify-
ing metabolites, interpretation of the biological data, results valida-
tion, and submission to public sources

have been observed in the whole chromatographic design
variations without the prior information of the examined
metabolites. Hence, the identification of the metabolites is
not required because the deducible theory does not man-
age this method; consequently, it is the open method for
innovative discoveries (Carraro et al. 2009).

Metabolomic studies in plant stress
response

Productive molecular breeding that is dependent on
the comprehensive and helpful molecular mechanisms
responsible for plant development, that acquire through
the systems biology approaches along with metabolomics,
under normal and stress conditions. In nature, unfavour-
able climatic conditions mainly consist of multiple fac-
tors in which every single stress is accompanied primarily
by or followed by other stress (Kralova et al. 2012). To
understand the role of single stress, a precise fluctuating
technique was developed, and plants were exposed to indi-
vidual stress to unravel the systems biology (Nakabayashi
and Saito 2015; Bowne et al. 2018; Razzaq et al. 2019).
In-plants stress physiology and biochemistry, the metabo-
lomic studies are becoming increasingly common (Fig. 5).
The subsequent section covers a review of the applications
of metabolomics to explore the plant responses to HS.

@ Springer
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Classification of metabolomics analysis

N
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Fig.4 Classification of metabolomics analysis. The level of an identi-
fied metabolite can supply the knowledge about the biochemical posi-
tion in response to the environment and genetic manipulation, even at
a single gene level. With the advancement in the “omics” approaches,
we can find out what genes and proteins are being expressed and pre-

The role of metabolomics in HS tolerance
and adaptation

Plants require ideal temperatures for better productivity.
Temperature variations can severely harm and terminate
the plant’s developmental progressions. Notably, HS over-
whelmingly suppresses plant growth and development by
harmfully disturbing main metabolic advances like pho-
tosynthesis, primary and/or secondary metabolisms, lipid
and hormonal signaling (Raza et al. 2019, 2020b; Youl-
dash et al. 2020; Sabagh et al. 2020). Likewise, extended
HS can harm root length, plant height, grain quality, and
biomass production amongst most field crops (Kilasi et al.
2018; Hiitsch et al. 2019; Youldash et al. 2020). Another
antagonistic effect of HS is the adverse effect on the plant
root system, which offers support, nutrient and water uptake,
and transportation to other plant organs, causing interrupted
pollination, flowering, and root growth (Valdés-Lopez et al.
2016; Sehgal et al. 2017). Extended HS can induce cellular
oxidative injury due to ROS production (Raza et al. 2020b;
Youldash et al. 2020). Plants own several adaptive, escap-
ing, and/or acclimation mechanisms to deal with HS condi-
tions. Additionally, main tolerance mechanisms that employ
ion transporters, proteins, osmoprotectants, antioxidants,
and other influences elaborated in signaling cascades and

@ Springer

sent, and now what patterns and amount of many cellular metabolites
are present. Metabolomics seeks for the detection, identification, and
quantification of low molecular weight metabolites to get useful data
in a biological scheme. The quality of obtained data and the number
of metabolites may vary with the analysis, plant, and cell/tissue type

transcriptional regulations are triggered to balance stress-
induced biochemical and physiological amendments (Hasa-
nuzzaman et al. 2013). Plant responses to HS differ with
the temperature fluctuation, extent, and plant type. Elevated
HS causes cellular damage/cell death within minutes, which
may cause a shattering failure of the cellular body. Further,
HS differentially affects the constancy of numerous proteins,
membranes, RNA species, and cytoskeleton assemblies and
modifies the productivity of enzymatic responses in the cell
(Hasanuzzaman et al. 2013, 2020). Consequently, informa-
tion about how plants adapt, respond, and tolerate HS condi-
tions is vital for the development of plant productivity under
changing climatic conditions. To reduce the adverse impact
of HS, reviewing how the plants have advanced stress toler-
ance, surviving mechanisms will bring new ideas and lead to
ground-breaking approaches in breeding for climate-resilient
crops. In this line, one of the rapidly emerging systems biol-
ogy approaches, named “metabolomics” played a very vital
role and helped to reveal the mechanisms responsible for
metabolites-mediated phenotypic effects under HS. Thus,
recently many investigations have been performed to unravel
the metabolic responses of several plant species under HS
(Table 2).

Mainly, HS causes metabolic redeployment on the way
to homeostasis, sustaining vital metabolism, and producing
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metabolites with HS-defensive and signaling features. For
example, untargeted metabolome profiling of soybean (Gly-
cine max L.) leaf was achieved under HS. In response to
HS, several differently produced metabolites (DPMs)
(carbohydrates, lipids, amino acids, peptides, cofactors,
nucleotides, and secondary metabolites) were detected in
leaves. Numerous DPMs (ribose, deoxyribose, gluconate,
xylose, xylitol, lysine, alanine, methionine, and isoleucine)
involved in cellular processes pathways, e.g., glycolysis, the
pentose phosphate pathway, TCA cycle, and starch biosyn-
thesis, were affected by HS. In short, the up-regulation of
sugar and nitrogen metabolisms can significantly help to
cope with the HS (Das et al. 2017). Moreover, Thomason
et al. (2018) reported the untargeted LC—MS based metabo-
lome analysis of wheat (Triticum aestivum L.) plants under
post-anthesis HS. Among several DPMs, L-tryptophan and
pipecolate were significantly up-regulated and exhibited a
negative association with yield-related traits under HS. Like-
wise, two metabolites (Drummondol and anthranilate) were
downregulated and positively associated yield traits under
HS. Furthermore, the biosynthesis of aminoacyl-tRNA and
secondary metabolites were significantly affected by HS.
The study emphasized that numerous DPMs are distinguish-
ing the heat-stressed genotypes from controls, and this might
be used as possible biomarkers for genetic advancement
investigations (Thomason et al. 2018). In tomato (Solanum
lycopersicum L.) pollen, several putatively notorious sec-
ondary metabolites went to three major sets, i.e., alkaloids,
flavonoids, and polyamines, in response to HS (Paupiere
et al. 2017). Moreover, Wang et al. (2018a) performed the
metabolome analysis of wheat at the grain filling phase and
identified 98 DPMs (60 decreased and 38 increased) induced
by HS. Carbohydrate-related metabolic contents were sig-
nificantly reduced, whereas amino acids and starch bio-
synthesis-related contents were increased under HS (Wang
et al. 2018a). Similarly, Qu et al. (2018) reported that some
vital compounds such as malate, valine, isoleucine, glucose,
starch, sucrose, proline, glycine, and serine were effectively
produced in response to CO, and HS in maize (Zea mays L.)
plants (Qu et al., 2018).

In another study, HS influencing rice (Oryza sativa L.)
seed was observed by metabolic profiling (Dhatt et al. 2019).
Masses of sugars (sucrose, glucose, fructose), tricarboxylic
acid (TCA) cycle, and starch biosynthesis were strongly
linked with the HS tolerance in rice. In another cluster of
genes, the physical deterioration of starch granules, modifi-
cation of mature seed, and accumulation of aspartate under
HS were observed (Dhatt et al. 2019). Moreover, under
HS, Lawas et al. (2019) used three rice cultivars to per-
form a GC-MS based metabolome analysis of rice organs
at several developmental stages, i.e., flag leaves, flower-
ing spikelets, and developing seeds. In the flag leaves, the
identified metabolites (>50%) at the flowering phase were

expressively different in the two cultivars. In the flowering
spikelets, the up-regulation of the polyols, Myo-inositol, and
glycerol were observed in the heat-tolerant cultivar (N22).
In the developing seeds, putrescine level was up-regulated
in N22; some other metabolites, e.g., vanillic acid, arbutin,
arabitol, 4-hydroxy-benzoic acid, and hydroquinone were
up-regulated in Dular (heat sensitive) cultivar, and only
erythritol and Myo-inositol were up-regulated in Anjali
cultivar. Further, during the developmental stages of flag
leaves, nine DPMs were expressed in all three cultivars.
These DPMs were then well-thought-out to be precise to
the overall response to HS (Lawas et al. 2019).

The metabolome profile of the Arabidopsis thaliana plant
responded inversely toward different HS levels, i.e., con-
trol, prolong warming, and heat shock (Wang et al. 2020).
Decreased stomatal conductance and suppressed TCA cycle
were detected under prolong warming, while heat shock
improved transpiration, glycolysis pathway but limits the
biosynthesis of acetyl-coenzyme-A. Heat shock factors
(HSFA1s), DREBs, and bZIPs were observed to be up-reg-
ulated under all stress levels (Wang et al. 2020). Recently,
in a different study, the picoPPESI-MS approach was used
to reveal the metabolites in response to HS-treated single
pollen grains of heat-tolerant (N22) and heat-sensitive rice
cultivars (Koshihikari). Overall, 106 DPMs were detected
in both cultivars along with the variations in phosphati-
dylinositol (PI) (34:3) in mature pollen. More PI content
was noticed in N22 pollen, but not for Koshihikari pollen.
Interestingly, considerable low PI content was detected in
the single mature pollen grains in both cultivars (Wada
et al. 2020). Additionally, Liu and Lin (2020) evaluated the
impact of HS on Sargassum fusiforme leaf using the GC-MS
approach. Further, a robust variety of numerous metabolisms
was detected, such as organic and amino acids, sugars/sugar
alcohols, esters, and amines. These metabolisms were mean-
ingfully augmented in 10 pathways, e.g., aminoacyl-tRNA
biosynthesis; glycine, serine, and threonine metabolism; ala-
nine, aspartate, and glutamate metabolism; valine, leucine,
and isoleucine biosynthesis; cyanoamino acid metabolism;
cysteine and methionine metabolism; arginine and proline
metabolism; tyrosine metabolism; TCA cycle; and glucosi-
nolate biosynthesis under HS. These metabolic pathways
may be a way forward for the development of resistance and
improve the flexibility of Sargassum fusiforme to HS (Liu
and Lin 2020).

Recently, Wei et al. (2020) investigated the metabolic
response of lettuce (Lactuca sativa L.) seed under HS via
an untargeted metabolome profiling. The results showed that
seeds of heat-tolerant (N106) and heat-sensitive (N62) cul-
tivars employed diverse metabolic stratagems in response
to HS throughout germination. Notably, 867 DPMs were
observed between both cultivars. Particularly, N62 buds
accumulated higher levels of organic and amino acids,
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«Fig.5 The number of publications (including preprints from the
last few years) per year related to plant metabolomics under both a
abiotic and b biotic stresses from 2000 to 2019. Since the innova-
tion of metabolomics in the 1970s, it got much attention after the
2000s in plant stress studies. Currently, there is a rapidly growing
interest in the field of plant metabolomics. Notably, during the past
10 years, plant metabolomics has been altered from a morally theo-
retical idea into an extremely appreciated and extensively exploited
field. From the available literature, it can be assumed that tempera-
ture stresses (heat and cold) significantly affecting agricultural pro-
ductivity, and scientists are doing their best to develop heat tolerant
crops using metabolomics approaches. Source: Google Scholar with
custom range (Keywords (plant metabolomics + stress name such as
drought, cold, heat, salinity, heavy metals, and waterlogging), (metab-
olomics + biotic stress name such as bacteria, virus, fungi, insects,
and parasites) were used for pursuing the number of publications in
Google Scholar

sugars, sterols, phenolic compounds, and terpenoids com-
pared to N106 buds at 21 °C. N106 accumulated higher
levels of amino and organic acids, sugars, sesquiterpene
lactones, sterols, and fatty acids derivatives throughout the
germination at 35 °C. These findings cover how to connect
the metabolomics to additional external and interior influ-
ences, disturbing lettuce seed germination under HS (Wei
et al. 2020). Numerous untargeted metabolomics researches
reported that salicylic acid, ascorbic acid, phenolic second-
ary metabolites, and almost all antioxidant defense enzymes
could lessen HS indicators in several plant species (Zhang
et al. 2017; Mobin et al. 2017; Muhlemann et al. 2018; Salvi
et al. 2018). In addition, Ihsan et al. (2019) documented that
sulphur-comprising molecules, e.g., glutathione, play a cru-
cial role in HS mitigations in several plant species.

Conclusively, several DPMs have been identified that are
unique to only heat-tolerant cultivar in several plant species.
For example, in rice, the polyols, Myo-inositol, putrescine
and glycerol (Lawas et al. 2019); cysteine, serine, and thre-
onine, cytokinin, uridine diphosphate glucose, coumaryl-
alcohol, and a-L-rhamnose (Wada et al. 2020); in lettuce,
amino and organic acids, sugars, sesquiterpene lactones,
sterols, and fatty acids derivatives (Wei et al. 2020), in pep-
per, citrulline, serine, cysteine, glutamine, homocitrulline,
alanine, and ornithine (Wang et al. 2019) were significantly
up-regulated and/or accumulated in heat-tolerant cultivars.
Additionally, some examples have also been documented
in Table 2. Moreover, Fig. 6 shows the cluster of signifi-
cantly up-regulated and/or accumulated metabolites and
metabolic pathways in response to heat stress, identified
in the above-cited studies. These DPMs can be used as a
targeted biomarker for future investigations in the genetic
improvement of heat-stressed plants. For this purpose, future
researches should be emphasized on the metabolome profil-
ing of heat-tolerant cultivars rather than or in comparison to
the sensitive-cultivars.

All these studies showed that the differential expression
and accumulation of sugars, amino acids, and carbohydrates

related metabolites and metabolic/biosynthesis pathways
play a major role in response to HS. Further investigation
should be carried on for the genetic or metabolic engineer-
ing of such pathways, which can help plants to cope and
adapt to the HS environment. Further, most of the studies
were carried out in a controlled environment (growth rooms,
incubators, chamber, etc.); therefore, future research should
expand its experimental approach from the laboratory setting
to the field environment where plants face multiple stresses
at once. This may alter the metabolome profile compared to
the indoor environment. This idea will help to identify the
multiple stress responses, key metabolites, and pathways and
can be used for future research plans.

Metabolomics-assisted breeding for HS tolerance

During the past few years, metabolomics has accomplished
substantial progress in both software and instrumentation,
providing an excellent opportunity to examine the complete
metabolome profiling of numerous plant species. Metabolic
applications have helped many investigation areas, particu-
larly biotechnology, such as precise plant breeding and plant
functional genomics (Rai and Saito 2016; Christ et al. 2018).
Additionally, metabolome applications open new windows
for translational metabolome investigations in the context
of plant breeding. Current developments in post-genomic
techniques have augmented the examination method. Com-
bining plant metabolomics with additional high-throughput
(HTP) platforms will decrease the time required for crop
improvement with enhanced stress tolerance (Christ et al.
2018). Metabolomics has remarkable potential to deliver a
complete investigation of many metabolic and phenotyp-
ing analysis of plants under stressful environments (Christ
et al. 2018). Recent researches making an effort to combine
metabolomics with other omics systems, such as epigenomic
QTL (eQTL), proteomic QTL (pQTL), and metabolic QTL
(mQTL), for the mapping for quantitative traits and dismem-
bering genetic differences at the mRNA, protein, and meta-
bolic stages (Fig. 7), due to the availability of all-inclusive
datasets of several omics approaches. Interestingly, genome-
wide association studies (GWAS) together with metabo-
lomics (mGWAS), mQTLs, metabolome-wide association
studies (MWAS), and genome-phenome wide association
studies (GPWAS) are powerful platforms for the investiga-
tion of genetic differences related to metabolic characters in
plants (Fang et al. 2019; Templer et al. 2017).
Understanding the metabolic systems directing the
multifaceted machines in metabolomics have a significant
impact on metabolomics-assisted breeding (MAB) in order
to develop improved cultivars that can withstand numerous
stresses. Besides, data attained from mQTL studies lead
to further inclusive information about quantifiable genet-
ics (Acufia-Galindo et al. 2015). Metabolomics cut down
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Table 2 (continued)

&

Wei et al. (2020)

References

(N106) and heat-sensitive (N62) geno-

types
N62 buds accumulated higher levels of

867 DPMs between the heat-tolerant

Key observations

Data analysis

PCA

GC/MS and UPLC-
IMS-QTOE-MS

Approach

Specific tissue

21, 28 and 35 °C Seeds

HS condition

Plant species
Lactuca sativa

Springer

organic and amino acids, sugars, sterols,
phenolic compounds, and terpenoids at

21 °C
N106 accumulated more elevated levels

of amino and organic acids, sugars,

sesquiterpene lactones, sterols, and fatty

acids derivatives at 35 °C

Abbreviations are defined in the main text

the gap between the genotype—phenotype and unlocks new
prospects for metabolic dissevering, starting with the docu-
mentation of SNP markers or mQTL mapping examination
to discover candidate genes. Further, metabolic markers
play a vital approach for agronomic attribute detection and
examining the genetic pathways linked with plant phenotype
(Sweetlove et al. 2014).

For example, Templer et al. (2017) performed a metabo-
lome profiling of 81 barley (Hordeum vulgare L.) acces-
sions under a combination of drought and HS for the iden-
tification of mQTLs related to stress tolerance. A total of
57 metabolites were found to be linked with antioxidant
defense metabolism under HS. Identified mQTLs related
to the pathways (y-tocopherol, glutathione, and succinate)
generated antioxidant enzymatic metabolites in response
to stress. These mQTLs-based antioxidant defense help
barley to cope with a stressful environment (Templer et al.
2017). Previously, wheat mQTL analysis was performed
under both drought and HS. The result shows that 234
QTLs were linked with HS and 66 mQTL distributed all
over the wheat genome. Further, 43 mQTL were correlated
with both stresses, while only 2 were specific for HS. A
combination of 137 SNP markers for HG-related candidate
genes recognized 50 SNPs inside mQTL and these genes
elaborated in sugar metabolism, ROS scavenging, and ABA-
induced stomatal opening and closing. Recognized mQTL
and genes could be considered for future investigations and
genetic advancement of wheat under HS (Acufia-Galindo
et al. 2015). Rice mQTL investigation has been completed,
and, among 12 chromosomes, numerous mQTLs have been
perceived in flag leaf and evolving seeds (Gong et al. 2013).
Previously, Feng et al. (2012) performed the metabolic and
genetic analysis dependent on glucosinolate biosynthesis in
rapeseed (Brassica napus L.). Notably, 105 mQTLs related
to glucosinolate biosynthesis in rapeseed seed and leaves
have been observed.

Another fascinating approach, mGWAS in plants, has
arisen as an influential tool for advanced functional genom-
ics in order to define the ordinary genetic foundation of
numerous metabolic variations in the plant metabolome
study (Fang et al. 2019). mGWAS has been effectively used
to subordinate primary and/or secondary metabolites with
mechanical genetic factor, elaborated in glucosinolate syn-
thesis, amino acid and phenylpropanoid biosynthesis, fla-
vonoid metabolism in Arabidopsis thaliana and other crop
plants (Alseekh and Fernie 2018; Fang and Luo 2019). In
a previous study, Wu et al. (2016) provided an enhanced
discovery of the contributing genes for ninety-four primary
metabolites in A. thaliana by assimilating quantitative genet-
ics together with metabolite—transcript association-network
investigation. In 2018, the same group of scientists, Wu et al.
(2018), used an untargeted mGWAS approach for > 3000
LC-MS-detected semipolar metabolites from 309 A.
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Fig.6 A word-cloud illustration shows the keywords of significantly
up-regulated and/or accumulated metabolites and metabolic path-
ways identified under heat stress in different plant species. Most of
them were commonly identified in several studies, e.g., carbohydrate

isoleucine

metabolism, amino acid metabolism, primary and secondary metabo-
lisms, etc. and the metabolites involved in the biosynthesis and break-

Scheme for metabolomics-assisted breeding

M o

Heat stress
signal

Genomlcs

Transcrlptomlcs

GPWAS

down to other compounds
[ MWAS \

Metabolite Phenotype

Metabolomics m

Proteomlcs

eQTL

partL mMQTL-mGWAS j
QTL and GWAS

Fig.7 Systematic model of MAB for gene expression together with
molecular phenotype. Black arrows show that each molecular pheno-
type can be mapped onto the genome using QTL mapping and GWAS
techniques. Nevertheless, MWAS does not demand precise knowl-
edge to exploit the impacts of genetic deviant on metabolites. MWAS

thaliana seedlings grownup in control and stress environ-
ments. They employed a statistical outline for 5 different
metabolite modules and recognized 42 important attribute
locus relations, advancing the documentation of 70 aspirant
genes related to a stress response. In rice, the mGWAS study
with 175 accessions effectively recognized 323 connotations

metabolome-wide association studies, GPWAS genome-phenome
wide association studies, GO gene ontology, GC gene co-expression,
PI protein interaction, 7C trait correlation, 7Ol a trait of interest.
Other abbreviations are explained in the text. Read the text for further
information. Modified from Razzaq et al. (2019) (color figure online)

between 143 SNPs and 89 metabolites. It showed that the
metabolite contents are firmly connected with a not sig-
nificant amount of robust QTLs (Matsuda et al. 2015). In
tomato, mGWAS detected the 44 novel loci related to fruit
metabolic characters (Sauvage et al. 2014). Moreover, an
mGWAS investigation has been completed to recognize
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biochemical and genetic differences in rice metabolisms.
They recognized 36 genes related to unique metabolites
controlling nutritional and physiological characters in rice
plants (Chen et al. 2014).

In a different study, Muthuramalingam et al. (2018) con-
ducted a global investigation on the genes regulating the
threonine (Thr) metabolism using computational-mGWAS
in rice under several abiotic stresses, including HS. The find-
ings showed that 16 abiotic stress associated—Thr metabolite
making genes (ThrMPG) modified metabolite contents and
played a substantial role in defining both the physiological
and nourishing status of rice plants. A set of 1373 and 1028
SNPs were associated with complex characters and genomic
differences. Relative mapping of stress-ThrMPG exposed
the chromosomal collinearity with C4 grasses. Additionally,
the computational appearance design of these genes proph-
esied a different expression outlining diverse progressive
matters. Analysis of protein interaction showed that abiotic
stresses ThrMPG are multigenic. The outcomes provided an
important source for a more functional examination of these
candidate genes in response to several abiotic stresses for the
genetic improvement of rice (Muthuramalingam et al. 2018).

Based on the available literature, only a very few ground-
breaking studies have been carried out for the identification
of HS-related genes and QTLs using metabolomic-mediated
mQTL and mGWAS approaches. With focused-on key-locus
documentation in many stresses for secondary metabolite
levels, remains are lacking. Thus, future studies should be
emphasized in the efficient utilization of these state-of-the-
art approaches.

Persisting bottlenecks in metabolomic
studies

Although tremendous advancement has been made in the
field of metabolomics, several bottlenecks prerequisites
remain to be solved to use metabolomics to its full potential.
The elimination of these bottlenecks will help discover novel
stages for crop improvement under HS, which sequentially
will promise world food safety.

Metabolomic platforms have no such ability to change the
detailed profile of tissues and cells. This is limited due to the
dynamic range of instruments, chemical, and biological pos-
sessions of metabolites. The transcriptome and genome are
composed of linear polymers of nucleotides, which have a
similar chemical nature; due to this structure, a better ana-
lytical result would be expected. Proteome consists of a short
number of amino acids, while it appears as more complex. The
chemical nature of biopolymers is better defined, and the wide
range of proteins are identified in a single analysis by various
analytical technologies such as shotgun proteomics and 2DE
gel electrophoresis as well as methylation and phosphorylation

@ Springer

(Voelckel et al. 2017; Klose and Kobalz 1995). Chemical
complexities are much higher in complex natural products,
hydrophobic lipids, inorganic moiety, and hydrophilic carbo-
hydrates. That is why metabolome profiling was so tricky due
to the metabolome complexity and diversity. This hurdle could
be overcome using new protocols and advanced technologies
for metabolome (Weckwerth 2003; De Luca et al. 2012).

The coefficient of variation, which leads to an experimental
approach, is known as analytical variation. According to the
technology employed, this variance could be different. Quanti-
tative variation gives rise to biological alteration at the metabo-
lite level in plants grown under the same condition (Nigele
et al. 2016; Nagele and Weckwerth 2012). Resolution is lim-
ited in metabolomics due to the biological variance. Biological
variance can be reduced by pooling different samples together.
Using statistical analysis, this strategy also reduces random
variation, and it also leads to the dilution of various tissues that
are very important for metabolite regulations. Interestingly,
these variations can be minimized by various targeted analysis.
Sampling could be problematic because of multiple parameters
like growth stages, photosynthesis, and environmental stages;
thus, various strategies are also inline to minimize these vari-
ations (Sumner et al. 2003; Kim et al. 2015).

Dynamic range is a critical challenge in metabolomics.
Concentration boundaries that set-up for analytical deter-
mination are known as dynamic range. The sample matrix,
competing, and interfering compounds all limited the dynamic
range. For individual components, there is a different mass
spectrometer that has a dynamic range of 10*~10%, and this
could be limited because of other chemical compounds, e.g.,
secondary metabolites like flavonoids being interfered with
primary metabolites (Sumner et al. 2003; Blum et al. 2018).
Hence, high-level metabolites are so unique that they play a
role in the differentiation of organisms at cellular states, tis-
sues, and organs. Moreover, these are known as biomarkers.
To diagnose various diseases like cancer and diabetes, selec-
tive profiling of biomarkers is essential. Due to the differential
characteristics of highly targeted profiling, the previous detec-
tion should not be considered as metabolomics (Clifford et al.
2018). Another significant issue is salt concentration; low level
leads to the problem in the profiling of various species, as well
as affects the ionization efficiency of MS (Wang et al. 2018b).
To improve the identification process and dynamic range, vari-
ous analytical techniques have been progressed, as discussed
in Sects. 2 and 3 (Sumner et al. 2003; Hall 2018).

Metabolomics data availability, legal issues,
and benefits

Metabolomics is still covering overdue other omics
approaches concerning data sharing and availability. Data
sharing is being progressively obligatory by publishers
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and has been indicated as a resolution to the duplication
crisis. In the age of publicly available, reusable, and open
science, materials should be made accessible to the scien-
tific community. Progressing metabolomics examination
by helping data sharing and availability restricted by the
Nagoya Protocol on access and benefit-sharing should
be a key target of metabolomics researchers (Watanabe
2015). The ideas of data sharing and open data are gradu-
ally imperative in science. Sharing data openly and freely
is a vital way of cultivating reproducibility and screening
that scientists are assured in their effort (McKiernan et al.
2016).

Interestingly, works with material shared in a reposi-
tory also obtain extra citations than those lacking openly
accessible data (Drachen et al. 2016). On the other hand,
acknowledging the creative supplier upon reusing avail-
able data is imperative both as a recompense for data
originators and to essay the attribution of examination
discoveries (Piwowar and Vision 2013). Minimal submis-
sion and domain-definite databases to detention and dis-
tribute core data in metabolomics have risen in the 90s,
afterwards forming a preliminary round of standardiza-
tion exertions by the Metabolomics Standards Initiative
(MSI) (Sansone et al. 2007; Deborde and Jacob 2014).
Metabolomics data should acquiesce following the MSI
guiding principles (Sansone et al. 2007). Currently, there
are several publicly available metabolomics data reposi-
tories, such as MetaboLights (https://www.ebi.ac.uk/
metabolights/), MetabolomeXchange (http://www.metab
olomexchange.org/), OmicsDI (https://www.omicsdi.org/),
Metabolomics Workbench (https://www.metabolomicswor
kbench.org/), MetaPhen (https://www.metabolome-expre
ss.org/phenometer.php), MeRy-B (http://services.cbib.u-
bordeaux.fr/MERYB/), GNPS (https://gnps.ucsd.edu/Prote
oSAFe/static/gnps-splash.jsp), Dryad (https://datadryad.
org/), Figshare (https://figshare.com/), Zenodo (https://
zenodo.org/), and SciLifeLab Data Repository (https://
www.scilifelab.se/community-pages/systems-data/repos
itory/).

The metabolomics field continues to progress original
data standards and procedures as its evolutions. For instance,
SPLASH (http://splash.fiehnlab.ucdavis.edu/), a hashed
identifier for mass spectra, has been published (Wohlgemuth
et al. 2016), which advances the exchange of mass spectra
and agrees for attribution and duplicate discovery. In some
specific databases, authors may submit data with domain-
specific repositories and controlled access owing to personal
privacy or academic issues by informing the consents and
getting ethical agreements, etc. Currently and shortly, unlim-
ited data availability can play a significant role in educating
next-generation scientists in metabolomics and correspond-
ing applications without spending much money and time on
the original or/and initial data analysis and validation.

Conclusion and future directions

Metabolomics has gained an important place in plant biol-
ogy exploration. The advancement of expertise from a sin-
gle metabolite study to HTP examines producing several
ways to diversify metabolites from a single drive, which
has covered the system from the detection of improved
models for metabolite systems and the documentation of
robust biomarkers. There are enormous applications in
plant research, such as identifying the candidate gene’s
functions (using integrated omics, i.e., transcriptomics
and metabolomics) for investigating the entire biologi-
cal apparatus in cells and dichotomizing the relation-
ship between genotype—phenotype in response to several
stresses, including HS. Numerous examples from the cur-
rent scientific works demonstrate how metabolomics may
produce novel data on the possessions of hybridization on
plant and genotype-environment connections that could
not have been so effortlessly gained with targeted investi-
gations alone. In a rapidly changing climatic era, HS has
become the most critical threat for crop production glob-
ally since it significantly affects the growth, development,
and efficiency of plants. Nevertheless, the range to which
this happens in particular climatic regions hangs on the
possibility and period of HS and the daylight timing of
HS. Therefore, under HS, plants modify themselves to
adjust to the current stress by modulating genes, proteins,
and metabolites regulation. It is vital to clarify the roles
of recently acknowledged stress-responsive metabolites
and genes to know the stress responses of plants. Metabo-
lomics has a vast role in plant genetic breeding in which
the HTP genotyping or sequencing techniques reliant
on NGS tools together with metabolomics; hence, it has
meaningfully decreased the diverse developmental period
through MAB. Moreover, the combination of metabo-
lomics, post-genomics, and several genetic techniques
has also presented thrilling ways to investigate genetic
procedures for plants in response to their metabolisms.
A set of systems biology approaches can help to explore
the multifaceted metabolic ways that oversee significant
regulatory functions in plant metabolism. Furthermore,
some persisting bottlenecks still require more attention
for the precise documentation of compounds by different
analytical techniques.

Crop production must be doubled by 2050 to guarantee
future food security and to cope with the challenge of the
“zero hunger” anticipated by the Food and Agriculture
Organization (FAQO), but several environmental stresses,
mainly HS, are offsetting this goal. In the future, metabo-
lomics can be employed for the identification of novel HS-
responsive biomarkers to exploit plant metabolisms and to
determine the mode and depth of stress. MAB, including
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mQTL and mGWAS, can discover several ways in crop
enhancement to produce high yielding, stress-resistant cul-
tivars and generate climate-resilient ready-to-grow varie-
ties. Moreover, single cell-based metabolomics research
in plants should be employed to gain insight into each
cell/tissue-mediated stress responses at the metabolic
level. Additionally, metabolomics tools can be employed
for metabolome profiling of genetically engineered plants
that employ the most promising genome-editing (CRISPR/
Cas) technique for risk evaluation and supervisory mat-
ters related to genetically engineered plants. Further, meta-
bolic engineering of HS-related metabolic pathways and
genes can open new windows for future research and the
development of improved HS tolerant genotypes. Recently,
speed breeding has emerged as a fascinating tool where
plant metabolomics is prepared to see miracles for crop
improvement under HS conditions. In the end, the combi-
nation of omics, genome editing, and speed breeding can
do substantial wonders to feed millions worldwide.
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