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Abstract
Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and estab-
lished by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent 
discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased 
our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiologi-
cal and biochemical processes associated with plant growth and development as well as plant defense mechanism against 
wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help 
plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, 
i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend 
cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, 
but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells 
under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and 
metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its 
crosstalk with other PGRs have also been discussed.

Keywords Abiotic stress · Antioxidant enzymes · Jasmonates · Molecular crosstalk · Genetic engineering · Plant 
hormones · Stress signaling

Introduction

Plants grow in atmospheres that execute a diversity of 
environmental stresses, and the variation of any of these 
stresses can hinder the normal physiological mecha-
nisms (Raza et al. 2019a). Plants need to replicate and 
further grow to sustain their existence in harsh environ-
mental conditions, and there are several aids of uphold-
ing an equilibrium among plant growth/ development 
and stress tolerance (Harfouche et al. 2019; Raza et al. 
2020a). Being stationary creatures, plants are power-
less to evade abiotic stresses merely by moving to an 
appropriate environment. Therefore, they have advanced 
mechanisms to pay for the undesirable stressful environ-
ment by changing their developmental and physiological 
mechanisms (Raza et al. 2019a; Harfouche et al. 2019). 
Although environmental stresses can affect and disrupt 
their basic functioning mechanism, including amendments 
in gene expression, biosynthesis of distinct proteins and 
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secondary metabolites, modifications in hormonal signal-
ing and activities of antioxidant enzymes (Nemes et al. 
2018; Hasanuzzaman et  al. 2013, 2020). Antioxidant 
enzymes and PGRs play a vital role in determining the 
plant’s gene expression at the molecular level, which is 
one of the crucial mechanisms among other physiological 
developments (Aghdam et al. 2015; Faghih et al. 2017; 
Farooq et al. 2018; Ghaffari et al. 2020).

In order to respond to the different external as well as 
internal stimuli, growth, and development of plants must 
be regulated on their own. In cells, a group of molecules 
involved in signaling called phytohormone/plant growth 
regulators (PGRs) is found in a small proportion which is 
known to regulate the plant responses. Their primary roles 
in enhancing the plant acclimatization to the fluctuating 
environment by arbitrating growth, development, nutrients 
allocation and sink/source transitions have been well rec-
ognized by researchers around the world (Wani et al. 2016; 
Ku et al. 2018; Harfouche et al. 2019; Wang et al. 2020). 
Even though plant responses against abiotic stresses largely 
depends upon different factors, PGRs are considered as the 
essential endogenous substances which modulate the molec-
ular and physiological responses, thus also act as an essential 
requisite for the survival of these plants as sessile life forms 
(Wani et al. 2016; Ku et al. 2018; Raza et al. 2019b). PGRs 
work either at the site of their synthesis or are transported 
to other parts of the plants where required. These PGRs are 
jasmonic acid (JA), auxin (IAA), brassinosteroids (BRs), 
cytokinins (CKs), salicylic acid (SA), abscisic acid (ABA), 
gibberellins (GAs), ethylene (ET), and strigolactones (SLs) 
which play a vital role in the growth and the development 
of the plants (Wani et al. 2016; Ku et al. 2018; Yang et al. 
2018; Li et al. 2019; Raza et al. 2019b; Khan et al. 2020).

Notably, JA is the best characterized, well known and 
most abundant among jasmonates. In plants, JA is not only 
involved in developmental functions, but also activates the 
defense responses of plants against the pathogenic attacks 
and unfavorable environmental conditions such as cold 
(Mustafa et al. 2018; Habibi et al. 2019), heat (Degu et al. 
2016; Balfagón et al. 2019), drought (Parmoon et al. 2019; 
Ghaffari et al. 2020), salinity (Farhangi-Abriz et al. 2019; 
Alisofi et al. 2020), heavy metals (Ahmad et al. 2018; Ali 
et al. 2018), waterlogging (Kamal and Komatsu 2016; 
Ouli-Jun et al. 2017), elevated ozone (Tuominen et al. 
2004; Cui et al. 2016) and UV radiation (Liu et al. 2012). 
On the other hand, exogenous JA and MeJA have been 
reported to improve the activities of antioxidant defense 
enzymes. For instance, under salinity, superoxide dis-
mutase (SOD), and ascorbate peroxidase (APX) in black 
locust tree (Jiang et al. 2016); SOD, APX, and peroxidase 
(POD) in strawberry (Faghih et al. 2017); under water 
deficiet conditions CAT, AsA and POD in Beta vulgaris 
(Ghaffari et al. 2020); under metal stress, CAT, POD, and 

SOD activities has been improved and thus enhance the 
stress tolerance (Aftab et al. 2011).

Jasmonates are derivatives of the fatty acid, including 
basic compounds like JA, jasmonate iso-leucine conjugate 
(JA-Ile), and methyl jasmonate (MeJA) (Wasternack and 
Strnad 2018; Wang et al. 2020). The chemical structure 
of JA contains a core of 3-oxo-2–20-cis-pentenyl-cyclo-
pentane-1-acetic acid. These endogenous signaling mol-
ecules are involved in various developmental processes, 
and were previously known as stress-related hormones in 
higher plant species (Wasternack and Xie 2010; Waster-
nack and Strnad 2018). Since a couple of decades, various 
transcription factors (TFs) and genes involved in signal 
transduction process and JA biosynthesis have been rec-
ognized, including different activators and inhibitors con-
cerned with environmental signaling (Howe et al. 2018). 
For instance, JAZ proteins interact with the MYC and 
MYB TFs and overwhelm the expression of JA-receptive 
gene (Pauwels and Goossens 2011; Goossens et al. 2017). 
MYC2, (a JIN1 gene) is a bHLH TF and plays a vital role 
in the regulation of JA signaling (Dombrecht et al. 2007; 
Fernández-Calvo et al. 2011) and can interact with several 
members of the JAZ family repressors (Fernández-Calvo 
et al. 2011). In addition, ICE1 and ICE2 belong to bHLH 
TFs, interact with JAZ4 and JAZ9 for the regulation of JA-
mediated cold tolerance (Hu et al. 2013). Likewise, MYB, 
NAC, ERF, and WRKY TFs display noteworthy response 
to JA signaling, and these TFs control numerous progres-
sions in plants; e.g., the synthesis of tryptophan and glu-
cosinolates is controlled by MYB51 and MYB34 TFs, 
which also play a vital role in the downstream of MYC2 
(Fernández-Calvo et al. 2011). For example, the NAC TFs 
(ANAC019 and ANAC055) act downstream of MYC2 to 
modulate cell division, secondary cell wall synthesis, and 
seed growth (Bu et al. 2008). Two JA-responsive AP2/ERF 
TFs (AtERF3 and AtERF4) work as repressors to down-
regulate the expression of their target genes and restrict 
with the action of other activators (Fujimoto et al. 2000). 
Furthermore, in Arabidopsis, several WRKY genes, such 
as WRKY50 (Gao et al. 2011), WRKY57 (Jiang et al. 
2014), WRKY22 (Kloth et al. 2016) and WRKY70 (Li 
et al. 2017), which are regulated by the JA signaling path-
way, are mainly connected with plant defense purposes. 
In another study, WRKY57 TF associate with JAZ4 and 
JAZ8 proteins to regulate JA-induced leaf senescence in 
Arabidopsis plants (Jiang et al. 2014).

This review highlighted the physiological and biochem-
ical role of JA under several abiotic stresses. Furthermore, 
JA-mediated antioxidant defense metabolism, engineered 
JA biosynthesis, and crosstalk with other hormones have 
been described to give an overview of how JA helps in 
improving the abiotic stress tolerance in different plant 
species.
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Biosynthesis and metabolism of jasmonic 
acid

Jasmonic acid, a distinctive signaling molecule, has now 
evolved into an established phytohormone that regulates 
plant reproductive growth, nutrients storage, and assimi-
lates movement (Farhangi-Abriz et al. 2019; Alisofi et al. 
2020). Apart from its assertive role in plant growth, JA 
also enables plants to adapt to different environmental 
stresses. JA and its formative molecules come from oxy-
genated octadecanoid fatty acids and have a pentacyclic 
ring structure (Wasternack and Strnad 2018). It was the 
cyclopentanone JA that has recently been known to garner 
the most attention as a plant growth regulator belonging 
to the Jasmonate family (Wasternack and Xie 2010). Nev-
ertheless, it is clear that the biological activity of plants 
towards stress stimuli is not limited to JA, but extends to 
various metabolites and conjugates along with its cyclo-
pentenone precursors, and perhaps vary from them.

JA biosynthesis typically follows a sequential lipid 
esterification pathway involving chloroplast and per-
oxisomes, beginning with the release of α-linolenic acid 
(α-LeA) from chloroplastic galactolipids (Wang et  al. 
2019). At first, the emphasis was largely on the mechani-
cal description of enzymatic crystallization involved in 
JA synthesis. However, findings of Vick and Zimmerman 
(1983) have made a new proposition, such as a series of 
lipoxygenase (LOX), a cyclase of hydroperoxide, a reduc-
tase and ß-oxidation of the side chain of carboxylic acid. 
The first hydroperoxide cyclase step was subsequently 
described as a two-phase allene oxide synthase (AOS) 
membrane-associated reaction, the highly unstable reac-
tion in which an allene oxide cyclase (AOC) cyclized to 
12-oxophytodienoic acid (OPDA). Besides enzymatic 
reactions, spontaneous hydrolysis stimulates unstable 
epoxide to α- and ÿ-ketols and nonenzymatic cyclization 
to racemic OPDA (Brash et al. 1988), which must be con-
sidered while assaying enzyme activity, as well as during 
the quantification of JA and OPDA (Brash et al. 1988). 
Figure 1 represents the schematic layout of JA biosynthe-
sis and metabolism.

All OPDA producing enzymes are located in the chlo-
roplast and second half of the JA biosynthesis occurs in 
peroxisomes. At this stage, OPDA is reduced by OPDA 
reductase preceded by acyl-CoA oxidase (ACX), l-3-ke-
toacyl-CoA-thiolase (KAT), ß-oxidation enzymes, and 
multifunctional proteins (MFPs); thus, activated by CoA 
synthetases and 4-coumaroyl fatty acid co-esters: CoA-
ligases. In JA biosynthesis, the stereochemistry of prod-
ucts and intermediates is a key determinant. Naturally 
occurring enantiomeric forms (7R, 7S) of cis-(+)-7-iso-
JA are formed in the AOC catalyzed process. JA-L-Ile 

has been recognized as the most bioactive JA compound, 
molecular perception and signaling for JA would always 
involve an isoleucine conjugate, (+) -7-iso-JA-Ile, having 
configuration (7R,7S) (Fonseca et al. 2009).

Moreover, JA can always be converted into inactive, 
partially active, and active compounds. To date, JA and its 
formative molecules are believed to have at least twelve 
metabolic pathways (Ruan et al. 2019). These pathways 
may involve in amino acid carboxylation, esterification, 
conjugation, sulfation, hydroxylation, methylation, decar-
boxylation, O-glycosylation as well as the development of 
12-OH-JA derivatives in lactone. Although most of JA sign-
aling homeostasis provide different JA-Ile derivatives, some 
reactions in particular during stress feedback and develop-
mental responses such as leaf movement can lead to active 
compounds (Jimenez-Aleman et al. 2015; Ruan et al. 2019).

The use of many genetic and biochemical methods in 
recent years has significantly advanced our understanding of 
nested loops in JA biosynthesis and metabolism. Although 
there has been substantial progress in understanding these 
processes, some aspects remain unknown and demand the 
urgency of further research. Will the initial stages of JA 
biosynthesis be taking place on esterified and/or free fatty 
acids? It raises the question about what the substrates are 
and how they are being fed into the JA biosynthetic pathway.

Jasmonic acid in abiotic stress tolerance

The vital role of JA or MeJA in plant stress tolerance and 
adaptation has been widely documented. Interestingly, JA 
can improve the tolerance of plants to a variety of abiotic 
stresses (Table 1; Fig. 2). Plants have advanced numerous 
JA-mediated physiological, biochemical, and molecular 
mechanisms to retort, adjust, and attain tolerance to sev-
eral abiotic stresses either alone or in combination (Fig. 3). 
Under low or high concentration, JA is known as a sign-
aling molecule which stimulates the signal transduction 
pathways in response to many abiotic stresses (Figs. 3, 
4). Mainly, Jasmonate-ZIM domain (JAZ) and Jasmonate-
associated VQ-Motif GENE1 (JAV1, also known as VQ22) 
families play a vital role in JA signaling and JA-mediated 
plant defense (Fig. 4). In contrast, JAZ act as negative 
regulators of JA signaling (Chini et al. 2007; Thines et al. 
2007). The JA-associated degradation of JAZs leads to 
transcriptional reprogramming of immense array of genes 
controlled by TFs, such as MYC2, leading to the activa-
tion of defense responses and the modulation of several 
processes of plant growth and development (Qi et al. 2011; 
Song et al. 2013; Goossens et al. 2017; Wasternack and 
Strnad, 2018). Likewise, JAV1 family of repressor proteins 
act a leading regulator in JA-mediated plant defense. JAV1 
is a member of a family of plant-specific proteins with 
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the conserved short amino acid sequence motif FxxhVQx-
hTG, where “x” denotes any amino acid and “h” denotes 
a hydrophobic residue (Jing and Lin 2015). This family 
plays several roles in plant defense responses, stress toler-
ance, and growth and development (Jing and Lin 2015). 
In the subsequent sections, we summarized the dynamic 

role of JA-mediated plant tolerance to a variety of abiotic 
stresses.

Salinity stress

Salinity severely hinders the plant growth through ionic 
toxicity [sodium ion  (Na+) and chloride  (Cl−)] and osmotic 

Fig. 1  Schematic illustration of 
JA biosynthesis and metabo-
lism. Hydroperoxy octade-
catrienoic acid (HPOT) and 
oxophytodienoic acid (OPDA) 
are formed in chloroplast by 
13-lipoxygenase (13-LOX), 
allene oxide synthase (AOS), 
and allene oxide cyclase (AOC), 
after the release of α-linolenic 
acid from galactolipids. After 
transportation into peroxi-
somes, OPDA is reduced by 
OPDA reductase-3 (OPR3) 
into 3-oxo-2-(2′(Z)-pentenyl)-
cyclopentane-1 octanoic acid 
(OPC-8) and in the presence 
of acyl-coenzyme A oxidase-1 
(ACX1) undertakes ß-oxidation 
of the side chain of carboxylic 
acid to (+)-7-iso-JA, which 
has been initially formed in 
the right configuration of JA. 
In the cytosol, conjugation of 
JA with amino acids, preferen-
tially isoleucine to give JA-Ile 
which further transformed 
into JA-Ile methyl ester, JA-Ile 
glucosyl ester, 12-carboxy-
JA-Ile, 12-O-glucosy-JA-Ile, 
12-hydroxy-JA-Ile. JA also 
converted into methyl-JA, 
12-O-glycosyl-JA, 12-HSO4-
JA, Jasmonyl-amino acid, cis-
jasmone, and JA-glycosyl ester
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effects or by a combination of both factors (Marriboina and 
Attipalli 2020); and JA helps to improve the plant growth and 
stress tolerance (Table 1). Shahzad et al. (2015a) observed 
that exogenous JA could improve  Na+ exclusion in roots by 
decreasing the  Na+ uptake hence facilitating the way forward 
for salt tolerance in two genotypes of maize. During the 
first phase of stress, JA level increased, and findings suggest 

that it might be indirectly involved in the inhibition of leaf 
growth in salt-sensitive maize genotypes. As the growth 
examines exposed that JA supply in root medium prevents 
shoot extension growth and both maize genotypes were sen-
sitive to the inhibitory effects of JA. In tomato, endogenous 
JA enhanced salt tolerance mainly through maintaining 

Fig. 2  Jasmonic acid as a signaling molecule regulates the different 
plant processes by JA and its conjugate in response to several abiotic 
stresses, or in developmental progression, and also in basic features 

of agronomical importance of crop plants. Read text and Fig.  4 for 
further information about JA signaling
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reactive oxygen species (ROS) homeostasis (Abouelsaad 
and Renault 2018).

In order to lower the water stress in canola, 0.5 mM JA 
was sprayed under different NaCl levels (40, 70, 100 mM). 
Salinity lowered the lateral and primary root growth along 
with weight, density, diameter, and root–water content, 
while improved the ratio of root length/root weight. Foliar 
spray of JA increased the overall root growth but decreased 
the shoot dry weight (SDW) and primary root growth 

with no alteration in root–water content under altered 
salt-stress level (Farhangi-Abriz et al. 2019). The effect 
of MeJA studied on two tomato genotypes showed that 
salinity stress resulted in lowered biochemical and physi-
ological parameters. The different concentrations (10, 20, 
30, 40, 50, and 60 µM) of MeJA sprayed on the control 
and stressed plants resulted in significant improvement 
in growth, biochemical, and physiological characteris-
tics of tomato plants (Manan et al. 2016). Bitter melon 

Fig. 3  The major physiological, biochemical, and molecular responses of JA to plant abiotic stresses. Plant response, adapt, and gain tolerance 
via following mechanisms under single or in a combination of abiotic stresses
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was treated with 50 µM JA under 50, 150, 300 mM NaCl 
concentrations. Exogenous JA supplementation alone or 
together with NaCl improve the growth attributes as well 
as hyper-accumulation of soluble sugar, amino acids, pro-
line, and proteins; and lowering the activity of hydrogen 
peroxide  (H2O2) decomposing enzymes (Alisofi et  al. 
2020).

Examination of the effects of MeJA on chemical and 
volatile components in two contrasting salt-stressed cul-
tivars of basil showed that foliar application of MeJA 
not only increased the essential oil content but also pro-
duced obvious effects on the main oil components. Taken 
together, it significantly increased antioxidant activity and 
improved the overall plant defense (Talebi et al. 2018). 
Transcriptional analysis has shown that an enzyme Arabi-
dopsis lipoxygenase3 (LOX3) is, involved in the syn-
thesis of JA, is induced in plants in response to the high 
salinity levels. In contrast to wild type, mutant lox3 indi-
cated hypersensitivity to salinity in germination as well 

as during various developmental phases. LOX3 mutant 
with salt-sensitive phenotypes was rescued using MeJA, 
thus proposing that salinity induced impairment in mutant 
could be mediated by JA (Ding et al. 2016).

Drought stress

Generally, drought stress (DS) or water deficit (WD) con-
dition increases ion toxicity and restricts or/and reduced 
the plant growth, development, leaf and stem dry weight, 
canopy, root development and turgor pressure; specifically, 
reduced the net photosynthesis rate, and stomata conduct-
ance (Alam et al. 2014; Ilyas et al. 2017; Yosefi et al. 2020). 
In various studies, it has been indicated that signaling path-
ways of JA are linked with DS alleviation (Table 1). After 
DS, transient as well as the rapid increase of JA content 
was found in citrus (de Ollas et al. 2013) and Arabidopsis 
(Balbi and Devoto 2008) plants, but JA content was lim-
ited to basal level with stress prolongation. MeJA has also 

Fig. 4  Jasmonic acid signaling pathway under normal and stress 
conditions. JA in response to defense is regulated by JAZ and JAV1 
family of repressor proteins. JAZ proteins bind to the TFs and recruit 
corepressors, such as NINJA and TPL, to repress gene transcription 
in the absence of the active form of JA. In response to stressed con-
ditions, induced JA attach with the F-box protein (COI1), recogni-
tion component of the SCF ubiquitin E3 ligase complex to promote 
ubiquitination of JAZ and JAV1. Accordingly, the degradation of both 

repressor proteins via the 26S proteasome derepress specific TFs and 
activate developmental and defense responses. Under normal condi-
tions, JA content is low, JAV1, and JAZ proteins bind to various TF 
and limit their activity. Under stress conditions, JA content increases 
and degrade JAZ proteins, resulting in active TF that up-regulate 
genes involved in stress responses. TPL TOPLESS, COI1 coronatine 
insensitive1, SCF Skp1-Cul1-F-box protein, TFs transcription factors
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been reported to improve resistance against DS in soybean 
(Mohamed and Latif 2017), peanut (Todaka et al. 2015), 
rice (Dhakarey et al. 2017), and Brassica oleracea (Wu et al. 
2012) plants by enhancing antioxidant enzyme activity and 
osmoprotectants.

The effect of JA has been studied on thyme spp com-
prising Thymus daenensis and T. vulgaris under DS. JA 
(200 and 400 µL) treatment were given to plants in nor-
mal, slight, and mild DS. Irrigation levels had notewor-
thy effects on plant growth in the form of plant height, 
leaf area, dry weight, and branches number. Treatment 
with JA inclined the essential oil harvest and main oil 
components. p-cymene, γ-terpinene, and carvacrol per-
centage were higher in extracted oil in stressed situations 
than nonstressed plants while thymol percentage reduced 
in DS. Notably, JA significantly enhanced the thymol 
and carvacrol content, root length, antioxidant activity, 
and plant height in thyme spp while lowered the yield 
of essential oil and γ-terpinene amount (Alavi-Samani 
et al. 2015). Previously, Ilyas et al. (2017) studied the 
effects of JA on drought-stressed wheat plants. Before 
applying water stress, seed primed by 100 µM JA and its 
application mitigated the effects of DS in wheat plants. 
The results showed that 100 µM JA was found to be more 
effective as its application increased the germination up 
to 27% (Ilyas et al. 2017). In sugar beet plants, foliage 
supplementation of JA (0.5–10 µM) increased the activ-
ity of antioxidant enzymes and improved the tolerance 
against WD condition. JA application also increases the 
yield by 21 and 24%, respectively, with both concentra-
tions (Ghaffari et al. 2020).

Recent findings have shown that, under DS, JA interact 
antagonistically with CKs and regulated the process of 
xylem development from procambial cells in Arabidop-
sis (Jang and Choi 2018). Scientists have compared the 
root proteome plus morpho-physiological characteristics 
of rice wild-type plants with JA mutant cpm2 (coleop-
tile phytomorphogenesis 2) having disrupted AOC gene 
for understanding JA role in DS condition. cpm2 mutant 
has greater stomatal conductance, higher shoot ABA plus 
improved water use efficacy (WUE) than wild type in DS. 
AOC was expectedly abundant in the wild type under DS. 
Moreover, cell growth, cell wall synthesis, and numerous 
proteins take part in secondary metabolism were abundant 
in roots of cpm2 mutant plants (Dhakarey et al. 2017). 
Under DS, strawberry plants were treated with exogenous 
JA (0.01 and 0.05 mM) treatment. JA treatment lowered 
the RWC, photosynthesis pigments, total protein con-
tents, and increased the activities of antioxidant enzymes, 
including malondialdehyde (MDA),  H2O2, and proline 
contents (Yosefi et al. 2020). Similarly, in maize plants, 
exogenous MeJA (20 μM) reduced the harmful effects of 
drought-induced oxidative stress by lowering the levels 

of MDA, LOX activity, and  H2O2; it also increased the 
proline, carbohydrate, and total soluble sugar contents, 
activities of the antioxidants (CAT, POD, and SOD) were 
also increased (Tayyab et al. 2020).

Cold stress

Cold stress categorized into chilling (0–15 °C) and freezing 
(< 0 °C) temperature are considered as serious environmen-
tal issues and has been described to limit crop productivity. 
Mainly, cold stress, can cause changes in cytoplasm viscos-
ity, enzyme activities and inducing chlorosis, necrosis, and 
membrane damage in tropical and subtropical plants. How-
ever, temperature above the optimal for growth can harm-
fully influence plant processes and cellular machinery by 
damaging cell homeostasis (Ding et al. 2019). Recent studies 
provided evidence that JA is involved in senescence of leaf 
as well as tolerance towards cold stress. Notably, JA levels 
found higher in senescent leaves than in nonsenescent leaves. 
Exogenous JA application encourages leaf senescence and 
expressing genes associated with leaf senescence; thus, 
increased freezing tolerance in Arabidopsis plants (Hu et al. 
2017). Owing to the multifaceted association, JA regulates 
the C-repeat binding factor (CBF) pathway to upregulate 
downstream cold-responsive genes and eventually increases 
cold tolerance (Hu et al. 2017). Likewise, JA has been found 
to control chilling through induction of ROS-avoidance 
enzymes (Sharma and Laxmi 2016), and improve the cold 
stress tolerance in different plants (Table 1).

Scientists have examined the physiological reply of 
Taraxacum pieninicum towards JA application during cold 
storage 4 °C plus shoot micro-propagation. Results have 
revealed that during preculture JA lowered considerably 
shoots growth deprived of effect on the rate of prolifera-
tion. The supplementation of JA (24–72 µM) overcome the 
cold stress effects that was established through reduced 
proline accumulation and thiobarbituric acid reactive sub-
stance (TBARS). The proliferation of shoots and roots 
became more active in re-growth later cold storage united 
to JA treatment while root elongation reserved in this situa-
tion (Kamińska et al. 2018). Subject to storing temperature 
as well as cultivar, blood orange found sensitive towards 
chilling injury (Cl). Methyl salicylate (MeSA), γ‐aminobu-
tyric acid (GABA), and MeJA treatment after harvesting 
appeared to alleviate the Cl. 20 and 40 mM aqueous solution 
of GABA provided through vacuum infiltration at 20 °C for 
8 min at 30 kPa, while MeJA and MeSA treatment provided 
independently at 50 µM and 100 µM by dipping fruit in a 20 
L container at 20 °C for 18 h. These all treatment resulted 
in lowering the Cl by decreasing electrolyte leakage (EL), 
 H2O2 level, MDA, and improved proline content. Effective 
findings come with 100 µM—MeSA, 50 µM—MeJA and 
40 µM—GABA that improved the activity of antioxidant 
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enzymes like SOD, CAT, phenylalanine ammonia-lyase 
(PAL), and APX while lowered the activity of polyphenol 
oxidase and POD (Habibi et al. 2019).

Notably, MeJA and hot-air treatment found effective in 
lowering the CI in peach fruit. Hot air treatment delivered 
to peach fruit for 3 d at 37 °C and 10 µmol  L−1 vapor of 
MeJA at 24 h prior to storage under 5 °C. These treatments 
resulted in higher sucrose level as compared to control. 
Also improved SPS (sucrose phosphate synthase) expres-
sion and activity, and lowered invertase (AI) activity have 
been observed. These findings suggest that improved sucrose 
related to high SPS and low Al, increases tolerance to chill-
ing witnessed in MeJA and hot-air-treated peach fruits (Yu 
et al. 2016). Dragon fruit treatment with MeJA resulted in 
improved postharvest antioxidant enzyme activities and 
physicochemical characteristics in cold storage (Mustafa 
et al. 2018).

Heat stress

Heat stress (HS) is one of the major devastating environmen-
tal stresses which causes significant crop losses around the 
globe (Raza et al. 2019a, b). Owing to alteration in global 
climate, the magnitude and frequency of HS have intensi-
fied. It has been reported to result in an excessive yield of 
ROS, which is known to cause impairment in plant proteins, 
nucleic acids, and lipids (Siddiqui et al. 2015; Hasanuzza-
man et al. 2013, 2020). JA application has been found to play 
a vital to improve the HS tolerance (Table 1).

Pea plants pretreated with high MeJA concentrations, i.e., 
50, 100, and 200 µM were subjected to HS at 40 °C, and 
cold stress at 4 °C, whereas control/optimum temperature of 
20 °C was kept for 72 h. MeJA damaged the morphological 
and physiological functions of the pea plant under these tem-
peratures, while up-regulated the JA and down-regulated the 
SA and ABA (Shahzad et al. 2015b). Xu et al. (2016) treated 
the cell-suspension cultures of Aquilaria sinensis with HS 
and studied how JA affected the buildup of sesquiterpene. 
Exogenous application of JA and its methyl ester get accu-
mulated after HS shock. Gene expression involved in JA 
biosynthesis pathway up-regulated significantly, and sesquit-
erpene compounds get accumulated. JA inhibitor, i.e. nordi-
hydroguaiaretic acid (NDGA) have shown to block all such 
effects. Also, MeJA application to A. sinensis has displayed 
sturdiest effects on sesquiterpene biosynthesis compared to 
 H2O2 and SA. These findings suggest that JA is an important 
signal transducer in a cascade of intracellular signal resulted 
from HS, and ultimately JA shows the vital part in sesquiter-
pene compounds accumulation (Xu et al. 2016).

Plants face high light (HL) along with high temperature, 
and such conditions are found as a solemn threat towards 
agriculture yield since photosynthesis is sensitive to ele-
vated temperature and high light intensity. Photosystem 

II (PSII) is one of the major targets of HS and HL as the 
degree of photo-inhibition is dependent on the stability of 
PSII damage rate (induced through LS) and PSII repair rate 
(impaired in HS) (Balfagón et al. 2019). The Arabidopsis 
response against HS and HL have been studied, and the 
results showed that a combination of these stress resulted 
in enhanced JA-IIe and JA accumulation. Further, JA bio-
synthesis mutants have shown improved sensitivity to HS 
and HL when applied simultaneously. These observations 
indicated that JA has a major role in plants’ acclimation to a 
combination of HL and HS (Balfagón et al. 2019). The grape 
berries treated with HL (2500 μmol m−2 s−1), high tempera-
ture (40 °C), JA (200 μM), menadione (120 μM), and ABA 
(3.026 mM) showed high metabolic fluctuations depicting 
the pre-veraison barriers. At veraison stage, flavonoid accre-
tion boosted the berry flexibility to cue-induced alterations 
(Degu et al. 2016).

Waterlogging stress

Waterlogging may lead to the formation of hypoxic con-
ditions by affecting the light intensity, formation of toxic 
substances, and gas diffusion due to rapid depletion of oxy-
gen level in soil (Fukao et al. 2019). It has been reported to 
increase the endogenous JA concentration in Adzuki beans 
through the octadecanoid pathway. Moreover, high expres-
sion of JA and ABA under high water influx prevented the 
plants against osmotic stress (Ullah et al. 2017). In water-
logged citrus plants, the stress caused a transient increase in 
JA levels throughout the experimental phase preceding the 
JA and ABA accumulation. The increase was observed in 
different tested genotypes at different periods, whereas sig-
nificant differences in basal levels of JA in leaves of all geno-
types was observed with sensitive species having the lowest 
levels followed by the hybrid varieties of citrus (Arbona 
and Gómez-Cadenas 2008). Radhakrishnan and Lee (2013) 
studied the role of spermine (Spm) under osmotic stress in 
soybean and concluded that endogenous production of JA 
helped plants to acclimatize under osmotic stress. This regu-
lation of JA through Spm treatment might reorganize the 
membrane lipids under osmotic stress in soybean. Moreover, 
Table 1 illustrated a summary of several experiments show-
ing the positive role of JA under waterlogging stress.

The JA regulated flooding stress response in soybean 
suggested a significant increase in the asparagine synthase 
and beta-amylase proteins, which stimulated the nitrogen 
transport and storage and breakdown of the starch, respec-
tively. In contrast, JA-mediated activation of beta-amylase 
proteins was further suggested to be involved in control-
ling the root growth and starch breakdown. The proteomic 
study indicated an association of glutathione S-transferase 
(GST) with the peroxide levels leading to less oxidative 
damage under flooding stress (Kamal and Komatsu 2016). 
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The pathogenesis-related protein TaBWPR1.2 was hypoth-
esized to be involved in waterlogging response in wheat 
through JA signaling. The JA treated roots did not show any 
morphological response, but it significantly increased the 
transcript level of TaBWPR1.2 gene after 3 d of waterlog-
ging treatment. Thus, JA just activated the signaling pathway 
in seminal roots through gene upregulation and provided 
tolerance against the stress (Haque et al. 2014).

Heavy metals/metalloids stress

Owing to the documented toxicological effects and high 
bioaccumulation in food crops, heavy metals have globally 
appeared as a topic of major concern (Edelstein and Ben-
Hur 2018). The range of physiological, biochemical, and 
metabolic impacts has been reported, which are linked with 
plants grown at heavy metal polluted sites (Table 1). These 
include a reduction in plant growth, promotion of leaf senes-
cence, and inhibition of photosynthesis (Edelstein and Ben-
Hur 2018; Raza et al. 2020b; Siddiqui et al. 2020).

A study on the role of JA to alleviate the cadmium (Cd) 
stress in Faba bean revealed that supplementation of JA 
mitigated the stress on plant growth and biomass yield. It 
consequently enhanced the chlorophyll (Chl) synthesis by 
reducing Cd uptake by plants which previously might have 
resulted due to down-regulation or destruction of enzymes 
involved in Chl biosynthesis. JA application was further 
associated with the production of osmolyte and enzymatic 
antioxidants, which provided protection against the metal 
stress (Ahmad et al. 2017). Zhao et al. (2016) found that 
endogenous JA can effectively limit the Cd absorption 
and translocation to the leaves and other aerial parts of the 
tomato. They reported a positive role of JA in the regula-
tion of soluble sugar for osmotic adjustment to maintain 
the RWC under high Cd concentrations. The JA mitigated 
the Cd-induced oxidative damage given low MDA, EL, and 
 H2O2 content and high activities of antioxidative enzymes, 
including SOD, POD, and CAT. In another study, Lei et al. 
(2020) showed that Cd-treated Arabidopsis plants quickly 
induces the expression of genes helping endogenous JA syn-
thesis, and afterwards upsurges the JA level in Arabidop-
sis roots. Moreover, exogenous MeJA improves Cd caused 
chlorosis of new leaves by reducing the Cd level in root cell 
sap and shoot and reducing the expression of the AtIRT1, 
AtHMA2 and AtHMA4 genes helping Cd uptake and long-
distance translocation, correspondingly. Further, mutation 
of one of the significant JA synthesis gene (AtAOS) signifi-
cantly increases the expression of other genes responsible for 
Cd uptake and translocation, and it also confers improved 
sensitivity to Cd toxicity. Finally, findings show that Cd-
induced JA works by the JA signaling pathway and eases Cd 
toxicity in Arabidopsis through the modulation of Cd uptake 
and translocation genes (Lei et al. 2020).

Sirhindi et al. (2015) reported that JA treated Glycine 
max seedlings managed the antioxidant machinery by the 
production of SOD, POD, CAT, and APX activity by scav-
enging the nickel (Ni) induced free radicals. It resulted in 
a significant increase in soluble protein content by protect-
ing the DNA synthesis of total proteins. Likewise, Azeem 
(2018) studied the impacts of exogenous application of 
JA on maize and concluded that plants develop different 
resistance mechanisms under metal stress. JA improved the 
plant growth by reducing Ni induced negative impact of 
oxidative stress on plant growth, biomass, and low protein 
content. Likewise, JA was found beneficial for soybean 
plants in attenuating the damage caused by Ni toxicity. JA 
primed seeds showed better plant growth by improving 
the photosynthetic efficiency, osmotic imbalance, activity 
of glyoxalase system, and ROS-detoxification enzymes. 
It reduced the ROS and LOX activity which positively 
correlated with the reduction in EL and MDA production, 
while maintaining high ascorbate and GSH levels, thus 
regulating the antioxidants enzymatic and nonenzymatic 
biochemical activities (Mir et al. 2018).

Boron (B) induced toxicity is known to cause an inhibi-
tory effect in Artemisia annua, which is an essential source 
of artemisinin, an antimalarial drug. Foliar application of 
MeJA was tested as an attempt to ameliorate the toxic 
effects of B, thus improving the plant utility. The results 
showed that MeJA supplementation enhanced the growth, 
photosynthetic activity, antioxidant enzymes synthesis, 
and reduced the lipid peroxidation through ROS scaveng-
ing mechanism (Aftab et al. 2011). The lead (Pb) treated 
tomato seedlings primed with JA showed a decline in the 
Pb uptake and better growth with respect to root and shoot 
length. JA attenuated the MDA and oxygen-derived free 
radicals by lowering the expression of respiratory burst 
oxidase (RBO) and P-type ATPase transporter genes under 
stress. Moreover, it up-regulated the expression of genes 
encoding antioxidative enzymes glutathione reductase 
(GR), GST, PPO, POD, and CAT and increased the non-
enzymatic antioxidants (AsA, GSH, and tocopherol) (Bali 
et al. 2019). The chelation of heavy metals is essential for 
the regulation of plant growth under metal stress. Along 
with other protective roles of JA, it has been reported to 
effectively reduce the expression of heavy metal conveyor 
proteins and serve as an agent to regulate the synthesis 
of phytochelatins (Sofy et al. 2020). A study carried out 
to find the impacts of JA on Lycopersicon esculentum 
suggested an increase in the metal cheating compounds 
including nonprotein, protein-bound, and total thiols under 
the Pb stress through activation of the phytochelatin bio-
synthetic pathway (Bali et al. 2018). These metal-chelating 
compounds produced as a result of activation may bind 
to the Pb ions, thus reducing the toxicity and metal stress 
(Bali et al. 2019). However, the JA application in Brassica 
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juncea showing Pb-subcellular distribution did not affect 
the production of phytochelatins. This suggests the pres-
ence of other pathways which may get involved in the sig-
nal transduction pathway of phytochelatins (Agnihotri and 
Seth, 2020).

Ultraviolet (UV) radiation stress

Ultraviolet (UV) radiation in the range of 280–320 nm (UV-
B) has been documented as one of the critical environmen-
tal stress factors affecting plant health globally (Yao et al. 
2015). The effects of UV-B on hormonal regulation has been 
unevenly divided into two groups, i.e., inhibition of growth-
promoting hormones; and the improvement of stress-induced 
defense hormones (Vanhaelewyn et al. 2016). In tobacco, the 
lack of UV-B-induced antiherbivore protection in the jas-
monate deficient variety suggested that jasmonate signaling 
primarily provided resistance against the insect herbivory. 
On the contrary, in wild-type plants, it led to high accumu-
lation of phenylpropanoid derivatives to improve the plant 
defense mechanism and amplified the expression of wound-
response and jasmonate-inducible genes like trypsin protein-
ase inhibitor (TPI) (Demkura et al. 2010). JA was found to 
improve the tomato plant resistance to thrips (herbivorous 
arthropods) under UV exposure. UV did not affect JA lev-
els in any genotype, but a significant increase in the JA-Ile 
concentration was recorded in Moneymaker cultivar treated 
with high UV radiations. Absence of resistance against 
thrips in jasmonate-deficient mutant (def-1) under high and 
low UV proved the defensive role of JA. Where wildtype 
(Castlemart) cultivar showed comparatively higher resist-
ance against thrips, the silver damage (thrips feeding damage 
to leaves) induced the JA-responsive genes and increased in 
JA-Ile levels under high UV exposure (Escobar-Bravo et al. 
2019). Table 1 showing the protective role of JA under UV 
radiation.

Qi et al. (2018) explored the role of JA in enhancing 
the plant resistance to lepidopteran larvae using A. thali-
ana, Nicotiana attenuate, Oryza sativa, and Zea mays. In 
A. thaliana, UV-B enhanced the plant defense against Spo-
doptera litura through an increase in secondary metabolites 
via JA and/ or JA-Ile pathway and herbivory-induced defense 
metabolite glucosinolates (GSs) content. Furthermore, the 
JA impaired N. attenuate, and O. sativa showed JA-depend-
ent pathway against UV-B induced defense response. Mung 
bean showed induction of JA under elevated UV-B in HUM 
1 and HUM 12 cultivars. The values were comparatively 
high in HUM 12, showing better plant defense response and 
resistance against UV-B stress along with enzymatic and 
nonenzymatic antioxidants (Choudhary and Agrawal 2014).

Elevated ozone

Elevated ozone  (O3) generates ROS that causes lesions 
and induce programmed cell death in plants (Castagna 
et al. 2007). The defensive role of exogenous MeJA against 
ozone-induced injury was studied in A. thaliana, which 
showed low ET emissions and ion leakage in response to 
the applied concentration of 100 µM MeJA. The JA-induced 
gene expression through RNA gel blot analysis also showed 
high expression of AtVSP1, a JA inducible gene, in wild type 
plant under  O3 stress (Kanna et al. 2003). A study carried out 
by Cui et al. (2016) revealed the role of elevated  O3 levels 
in the modulation of the JA signaling pathway in tomato. 
Encarsia formosa is a globally recognized parasitoid used 
for the biological control of whiteflies. Results indicated that 
high emission rate of volatile compounds protected plants 
from the damaging effect of whiteflies. Furthermore, the 
presence of E. formosa was promoted by the emission of 
volatile organic compounds (VOCs), produced in response 
to the synergistic action of whitefly infestation and elevated 
levels of  O3 production. Some more examples are shown in 
Table 1.

Pellegrini et al. (2013) found that endogenous JA, an 
important phyto-regulator of  O3 response, showed a suc-
cessive increase in its accumulation in lemon balm as a 
response to short-term  O3 exposure. Further investigation 
revealed that the ET and JA production regulated the  O3 
induced cell death and the protecting function of JA was 
more prominent due to their antagonistic function after the 
early hours of fumigation, thus limiting the leaves lesion for-
mation. In addition, an  O3 induced increase in the transcript 
abundance of JA biosynthesis genes allene oxide synthase 
2 (AOS2) and AOC was observed in L. esculentum. The 
active transcription of JA-inducible gene proteinase inhibi-
tor II (PINII) confirmed the activation of the JA pathway in 
response to the  O3 treatment (Castagna et al. 2007). Elevated 
 O3 enhanced the foliar JA levels and up-regulated the LOX 
and proteinase inhibitors (PIs) activity in wild-type tomato 
under Helicoverpa armigera infestation. It also regulated 
the JA defense pathway and protected plants against oxi-
dative stress and H. armigera herbivory under elevated  O3 
concentration to provide better adaptation environment for 
the plants to grow (Ren et al. 2015).

Role of JA‑mediated antioxidant defense 
system under stressful environment

Plants develop various physiological and biochemical adap-
tations using hormone-dependent signaling pathways to deal 
with abiotic stress. As a multifunctional phytohormone, JA 
not only promotes plant growth but also upgrades plant 
defense response under stressful environment (Raza et al. 
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2019a, b; Wang et al. 2020). It appears that JA, either alone 
or in conjunction with other plant hormones, can alleviate 
plant stress and improve plant growth. Besides this, they 
also contribute to the synthesis of osmolytes, accumulation 

of metabolites, and up-regulation of antioxidant metabo-
lism (Nafie et al. 2011; Farooq et al. 2018; Ghaffari et al. 
2020). Here, Table 2 illustrates the JA-mediated antioxi-
dant defense system to enhance abiotic stress tolerance in 

Table 2  Summary of experiments documented the activities of JA-mediated antioxidant defense system to enhance abiotic stress tolerance in 
different plant species

Abbreviations are explained in the text

Plant specie Stress condition Dose and type of JA Impact on the antioxidant 
defense system

References

Salinity
 Robinia pseudoacacia 500 mM NaCl; 15 days 100 μM MeJA ↑POD and SOD Jiang et al. (2016)
 Solanum lycopersicum 50 mM NaCl; 38 days 10, 20, 30, 40, 50, 60 µM 

MeJA
↑POX and CAT Manan et al. (2016)

 Camarosa 30, and 60 mM NaCl; 15 
days

0.25, 0.5, and 0.75 mM 
MeJA

↑POX, SOD, and APX Faghih et al. (2017)

 Ocimum basilicum 30, 60, and 90 mM NaCl; 
30 days

0.5 mM MeJA ↑Total antioxidant activity Talebi et al. (2018)

 Brassica napus 110, 220 or 330 mM NaCl; 
28 days

100 μM MeJA ↑POX, CAT, and LOX Ahmadi et al. (2018)

Drought
 Glycine max 75% and 35% water field 

capacity; 15 days
0.5 μM MeJA ↑CAT, POD and SOD Anjum et al. (2011)

 Brassica oleracea Water deficit (WD) condi-
tion; 8 days

10 μM MeJA ↑APX, CAT, GR, POD and 
SOD

Wu et al. (2012)

 Beta vulgaris 50% of WD; 75 days 0.5–10 µM JA ↑CAT, AsA and POD Ghaffari et al. (2020)
 Zea mays WD; 5 days 20 μM MeJA ↑CAT, POD, and SOD Tayyab et al. (2020)

Cold
 Rubus idaeus 4ºC; 7 days 8, 16, and 24 µLl−1 MeJA ↓Total antioxidant activity Ghasemnezhad and Javaher-

dashti (2008)
 Prunus persica 5 °C; 3 weeks 0.1 mmol  L−1 MeJA ↑PPO and POD Meng et al. (2009)
 Punica granatum 2 °C; 84 days 0.01 and 0.1 mM MeJA ↑Total antioxidant activity Sayyari et al. (2011)
 Fragaria ananassa  ± 0.5 °C with 90–95% RH; 

14 days
8 and 16 mol  L−1 MeJA ↑CAT and POD Asghari and Hasanlooe 

(2015)
 Averrhoa carambola 6 °C; 16 days 0.01, 0.1, 0.2 and 0.5 mM 

MeJA
↑AsA, GA, and epicatechin Mustafa et al. (2016)

Heat
 Prunus persica 20 °C; 50 days 0.5, 1.0 and 2.0 mM MeJA ↑POD, CAT, and APX Abidi et al. (2015)
 Oryza japonica 40 °C during day and 30 °C 

night; 12 days
MeJA ↓SOD and POD Liu et al. (2016)

Waterlogging
 Capsicum annuum Waterlogging; 3 days 1 mM  L−1 MeJA ↑CAT, POD, and SOD Ouli-Jun et al. (2017)

Toxic metals/metalloids
 Capsicum frutescens 50 mg  L−1 Cd; 7 days 0.1, 1, 10, and 1000 mmol 

 L−1 MeJA
↑ POD, SOD, and GPX
↓CAT 

Yan et al. (2013)

 Oryza sativa 50 μM Cd(NO3)2; 10 days 5 μM MeJ ↑SOD, and POD
↓CAT, and GR

Singh and Shah (2014)

 Solanum nigrum 40 mg dm−3 Cd; 7 days 0.01, 0,1, 10, and
1 000 μM MeJA

↑ POD
↓CAD and SOD

Yan et al. (2015)

 Glycine max 2 mM Ni; 15 days 1 nM JA ↑SOD, POD, CAT, APX, 
and AsA

Sirhindi et al. (2016)

 Mentha arvensis 150 mg kg−1  CdCl2 1 µM MeJA ↑SOD, CAT, APX and GR Zaid and Mohammad (2018)
 Brassica napus 50 and 200 µM  NaAsO2; 

14 days
0.1, and 1 µM MeJA ↑AsA, GSH, PAL, and PPO Farooq et al. (2018)
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different plant species. Whereas, Fig. 5 indicating the vital 
role of JA as a plant antioxidant defense regulator under 
multiple abiotic stresses.

Although studies have shown JA to be an important plant 
growth and development regulator, recently its effects on 
plant defense mechanisms inducing stress tolerance have 
been of considerable interest. Endogenous JA levels are 

Fig. 5  A model representing the vital role of JA as a plant antioxi-
dant defense regulator under multiple abiotic stresses. Exogenous 
JA increases the activities of both enzymatic and nonenzymatic anti-
oxidant defense enzymes and reduces the production of ROS; ulti-
mately help plants to cope with a variety of abiotic stresses including 
abiotic-induce oxidative stress. On the other hand, it also improves 
the endogenous JA and the expression level of antioxidant enzyme 

encoding genes under stress conditions. Further, it also improves 
several physiological, biochemical, and molecular mechanisms as 
explained in Fig. 3. However, some directions are still required more 
attention, such as at what growth stage? At what dose and what is 
actual tolerance mechanisms concerning the natural crosstalk with 
other phytohormones?
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found to increase in plants that experience specific stress 
conditions; however, exogenous application of JA increases 
plant stress resistance by inducing antioxidant activity. In 
muskmelon, JA-mediated cellular defense signaling was trig-
gered by both primary and secondary metabolism as evident 
by stress regulating indices, such as ascorbate metabolites, 
phenolics, and antioxidant enzymes (Nafie et al. 2011). In 
pepper plants, MeJA treatment mitigated the waterlogging-
induced damages by increasing the activities of CAT, POD, 
and SOD (Ouli-Jun et al. 2017).

In different plants like Arabidopsis, tomato, and potato 
the endogenous JA level has been reported to increase under 
salt stress (Pedranzani et al. 2003; Ellouzi et al. 2013; De 
Domenico et al. 2019). In another study, Jiang et al. (2016) 
reported that exogenous MeJA application improved the 
black locust tree’s salinity tolerance by stimulating SOD 
and APX activities. Similarly, MeJA treated strawberry 
seedlings downgraded the adverse effects of salinity stress, 
as shown by considerably higher POD, APX, and SOD 
enzymatic activities (Faghih et  al. 2017). According to 
Farhangi-Abriz and Ghassemi-Golezani (2018), in soybean 
plants, JA application improved the osmotic and oxidative 
injuries by increasing the activities of APX and SOD under 
salinity. Similarly, MeJA also enhanced cauliflower drought 
resistance by activating both the enzymatic and nonenzy-
matic antioxidant systems (Wu et al. 2012). Similarly, under 
drought stress, exogenous JA (0.5 mM) improved GR, and 
Gly I activities in B. napus; MDHAR activity in B. campes-
tris; and DHAR, GR, GPX, Gly I, and Gly II activities in B. 
juncea and increase the stress tolerance (Alam et al. 2014). 
Under water deficit condition, Ghaffari et al. (2020) found 
the increased activities of CAT, AsA, and POD in sugar beet 
plants. Likewise, exogenous MeJA reduced the damaging 
effects of drought-induced oxidative stress by lowering the 
levels of MDA, LOX activity, and  H2O2 contents in maize 
plants. It also increased the proline, carbohydrate, and total 
soluble sugar contents, and activities of CAT, POD, and 
SOD (Tayyab et al. 2020).

Many studies have elaborated the interlinkages between 
JA signaling network in plants exposed to the toxicity of 
different heavy metals. Previous research reports have identi-
fied that MeJA treatment can mitigate Cd-induced oxidative 
stress in various plants, including Arabidopsis, chilli pep-
per, and European black nightshade, through the higher anti-
oxidant activity of APX, CAT, and SOD (Yan et al. 2013, 
2015). Thus, the use of MeJA considerably attenuates the 
damages to plants caused by heavy metals through increas-
ing antioxidant enzyme activity and secondary metabolites 
production. Exogenous MeJA treatment can counteract plant 
boron (B) toxicity by stimulating the antioxidant defense 
enzymes (CAT, POD, and SOD) and impeding lipid peroxi-
dation (Aftab et al. 2011). Resulting in JA may safeguard 
plants from the negative effects related to B toxicity. Under 

Ni toxicity, JA-treated soybean plants significantly increased 
the activities of SOD, CAT, GPX, GST, APX, MDHAR, 
DHAR, and GR; and it also stimulated the Gly system activ-
ity (Mir et al. 2018), and help soybean plants to combat the 
Ni toxicity. The Pb treated tomato seedlings primed with JA, 
up-regulated the expression of genes encoding antioxidative 
enzymes GR, GST, PPO, POD, and CAT and enhanced the 
activities of AsA, GSH, and tocopherol under Pb toxicity 
(Bali et al. 2019). Moreover, JA signaling may also con-
tribute to plant adaptation under cold stress by modulating 
the antioxidant defense. For instance, Habibi et al. (2019) 
treated blood orange fruit seedlings with MeJA (50 µM) and 
reported the improved the activities of SOD, CAT, PAL, and 
APX. MeJA treatment also reduced the activity of polyphe-
nol oxidase and POD under cold stress (Habibi et al. 2019). 
Under chilling stress, Abidi et al. (2015) found the enhanced 
activities of POD, CAT, and APX with the foliar treatment 
of MeJA in peach fruits. Enhanced activities of antioxidant 
defense help peach fruits to cope with chilling stress. In vari-
ous plants, such as tomato, mango, peach, loquat, cowpea, 
guava, and pomegranate MeJA treatment appears to allevi-
ate cold stress by increasing the synthesis of antioxidants, 
the release of phenolic compounds, and accumulation of 
heat shock proteins (Meng et al. 2009; Sayyari et al. 2011; 
Aghdam et al. 2015). Altogether, the above-referred find-
ings reinforce that JA can effectively improve plant stress 
tolerance by increasing the activity of antioxidant defense 
system.

Interaction and crosstalk with other 
phytohormones

The balance between defense mechanisms, growth and 
development, is a very complicated process in regulatory 
plant networks, and researchers have found difficulties in 
understanding the role of different hormones and their cross-
talk in those processes. Therefore, studying the hormonal 
interplay is essential to understand the hormonal reactions in 
plant stress, growth, and development. Several studies have 
shown that JA plays a significant role in regulating plant 
growth and development under stress conditions, and the 
hormonal interplay between JA and other PGRs associated 
with different developmental processes. A hormonal cross-
talk involves both positive and negative feedback, which can 
affect the hormonal biosynthesis, transport and signaling 
(Vos et al. 2015; Ku et al. 2018). Moreover, this synergis-
tic or antagonistic association between JA and other PGRs 
help plants to develop tolerance against different abiotic 
stresses (Wasternack and Strnad 2018; Wang et al. 2020). 
Figure 6 illustrates the crosstalk and interaction with other 
phytohormones.
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Insight into the mechanism of JA activity in plants under 
abiotic stress and their crosstalk with other PGRs is criti-
cal. Previous studies have reported a new insight into the 
use of specific molecular mechanisms to regulate plant gene 
expression through stress-related and growth-related signal-
ing pathways (Pauwels et al. 2010). There is an interaction 
between the auxin and JA signaling pathways, and auxin can 
stimulate the expression of JA repressive gene (TIFY10A/
JAZ1) in Arabidopsis (Grunewald et al. 2009). There is lit-
tle evidence regarding the crosstalk between JA and CKs, 
but it is noticeable that MeJA can maintain the adequate 
amount of CKs concentration needed for plant development. 
For instance, the MeJA application modulated the activity 
and gene expression of CK oxidase under salinity stress. It 
regulated the concentration of CKs in wheat by regulating 

the activity of CK dehydrogenase/oxidase (Avalbaev et al. 
2016).

Previous research indicates a complex nexus between 
JA-ABA. Both signposted pathways appeared to fine-
tune each other’s responses and other metabolic pathways 
against abiotic stress (de Ollas and Dodd 2016). Besides, 
the role of ABA receptor gene (PYL4) in the regulation of 
metabolic reprogramming in tobacco and Arabidopsis was 
also reported during JA signaling (Lackman et al. 2011). 
The study drew up the relation between JA responses and 
core–ABA signaling mechanism, which can help track the 
elicitor-induced reprogramming of plant growth and metabo-
lism. Moreover, the relationship between ABA and JA has 
been identified following plant response regulation under 
drought stress (de Ollas et al. 2015). Further, JA signaling 
is finetuned by the core repressor of GA signaling pathway, 

Fig. 6  An overview of JA-mediated crosstalk with other phyto-
hormones signaling pathways. Notably, MYC2 is the key element 
involved in communication among JA and GA. DELLAs interact with 
JAZ repressors, relieving MYC2 from JAZ repression, and enable 
JA-mediated defense responses by the activation of MYC2. MYC2 is 

also positively regulated by ABA. On the other hand, MYC2 inhibits 
SA regulation in response to abiotic stress. The JAZ inhibition of EIN 
mediates JA and ET signaling synergy in plant tolerance, while the 
reciprocal counteraction among MYC2 and EIN facilitates JA and ET 
signaling resentment. Abbreviations are defined in the text
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DELLA proteins, by competitively binding of MYC2 with 
JAZ proteins. Highly stable DELLA proteins compete with 
MYC2 to bind to JAZs without GA and trigger MYC2, 
which in turn, activates JA-responsive gene expression 
(Hou et al. 2010). Conversely, JA and SA are two of the 
basic pathways of biochemical response which can be trig-
gered by environmental stressors. Both of these function as 
essential signaling molecules that are responsible for plant 
defense response. In addition, multiple studies have shown 
the antagonistic activity of JA and SA signaling pathways 
(Spoel et al. 2003; Van der Does et al. 2013). The interplay 
between JA and BRs also play a crucial role in plant devel-
opment and stress responses (Yang et al. 2011). In rice, a 
mutually antagonistic association was proposed between the 
JA and the BR pathway (Nahar et al. 2013).Likewise, JAs are 
being argued to contribute to plant stress responses, and their 
association with other plant hormones has also been reported 
(Per et al. 2018). Ethylene response factors (ERFs) is con-
sidered to be a key regulatory channel for stress signaling 
and the number of hormones like JA and ethylene (Muller 
and Munne-Bosch 2015). Moreover, both ABA-dependent 
and -independent pathways seem to control JAs potential 
effects. In rice, drought resistance is associated with the JA 
signaling pathway. The OsbHLH148 protein which gives 
drought tolerance in rice interacts with OsJAZ1 to activate 
the expression of drought response factor (OsDREB1) (Seo 
et al. 2011). Exogenously applied JA has been observed to 
increase ABA levels in different plant species under either 
control or drought conditions (Sánchez‐Romera et al. 2014). 
Latest experiments using the JA-insensitive mutant, amido-
synthetase1-1, exposed to drought, salt, and heat stresses 
revealed blocked expression of ERF1, indicating that JA 
and ethylene are necessary for induction of ERF1 under 
different abiotic stresses. JAs foster stomatal closure, and 
it was suggested that the water stress impede the conver-
sion of 12-OPDA to JA. OPDA then works either indepen-
dently or in combination with ABA to facilitate stomatal 
closure; directing increased drought tolerance (Savchenko 
et  al. 2014). Therefore, JAs  have  been  found  to  play 
a vital role in stomatal closure under drought stress. Refer-
ring to the effects of JA, auxins are generally positive stoma-
tal opening regulators and assist in the upregulation of JAZ1 
genes belonging to a TIFY protein family, which function 
as JA signalling repressors (Chini et al., 2007; Thines et al., 
2007). Another significant phytohormone SA suppresses the 
JA-inducible RSOsPR10, which encodes a root-specific PR 
protein in rice under drought and salt treatments (Takeuchi 
et al., 2011).

Further, JA and ethylene function as antagonists in con-
trolling the responses to heat stress. Zhu et al. (2011) demon-
strated an interplay between JA and ethylene signaling path-
ways through the interaction of JAZ and its targets EIN3/
EIL1. A combined application of the MeJA and SA boost 

in citrus chilling resistance mechanisms. On the other hand, 
the involvement of cold TF inducer of CBF expression, ROS 
avoidance mechanism used by both JA and SA signaling 
pathways highlights the potential crosstalk between JA–SA 
signal transduction pathways to combat cold stress (Sharma 
and Laxmi 2016). Conclusively, JAs mitigate the negative 
impact of abiotic stress. Understanding of physiological and 
molecular processes in plant resistance to multiple stresses 
would be critical for the development of new crop varieties 
that will be better equipped to deal with inevitable climate 
changes. Also, JA signaling factors and their functions in 
crosstalk remains to be revealed at organ, tissue or cellular 
levels. Future research on unrevealing the significant insights 
into the function and control of JA and their crosstalk with 
PGRs in combined stress can bring promising results.

Engineered JA biosynthesis to enhance 
plant abiotic stress tolerance

Classical biotechnological approaches aimed at improving 
plant abiotic stress tolerance are directed towards strengthen-
ing the plant endogenous defense mechanisms; however, it 
is typically followed by growth setback and yield losses due 
to the crosstalk between developmental and stress–response 
pathways. Hormonal crosstalk is expected to influence the 
defense response, growth pattern, and eventually abiotic 
stress tolerance in plants. Enhanced understanding of the 
hormones and their interactions during plant immunity 
sets the stage for the development of plants with improved 
tolerance to abiotic stress, preserving overall plant fitness 
(Nemhauser et al. 2006; Vos et al. 2015; Wani et al. 2016). 
Genetic engineering has provided new opportunities to build 
resistance against abiotic stress among several economically 
valuable crops. The effectiveness of transgenic research, 
however, is dependent mainly on successful plant transfor-
mation procedure to ensure that transgenes are stable within 
the plant genome with functional expression. A significant 
number of plant species have been genetically altered by 
rapid developments in transformation technologies (Kausch 
et al. 2019).

Negative modulation of known SA signaling regulator, 
nonexpressor of PR Genes 1 (NPR1) by post-translation 
mechanisms stimulated the JA signaling (Saleh et al. 2015). 
The DELLA proteins, considered as GA negative regulators, 
were also found to positively regulate the JA signaling path-
ways. In the absence of GA, a JA-regulating transcriptive 
factor MYC2 may directly interfere with DELLA protein 
binding to a negative JAZ, enabling the crosstalk between 
the JA and GA pathways (Hou et al. 2010). The hormonal 
crosstalk hubs or proteins associated with various hormo-
nal signaling pathways may; therefore, be called NPR1 and 
DELLA proteins (Hou et al. 2010; Saleh et al. 2015).
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To date, much has been reported about JA-responsive 
gene transcription and regulation that has been driven by 
the master TF known as MYC2 (Song et al. 2013, 2014). 
There is relatively little research regarding terminating 
the JA-mediated transcriptional response and their driving 
mechanisms. Liu et al. (2019) explicitly demonstrated that 
MYC2, a bHLH TF encoding JIN gene, binds to the G-box 
(CAC GTG ) and G-box-associated hexamers and can interact 
with many members of the JAZ repressors (Fig. 5) (Dom-
brecht et al. 2007; Fernández-Calvo et al. 2011). Further, 
it controls the termination of JA signaling by activating a 
specific bHLH protein group called MYC2-targeted bHLH 
(MTB). JA-mediated transcriptional responses are regu-
lated negatively by these MTB proteins due to their con-
frontational effect on the functioning of the transcriptional 
activation complex MYC2-MED25 (Breeze 2019). MTB 
proteins impede the formation of transcriptional activation 
complex and contend with MYC2 to its target gene promot-
ers for binding sites. Resultantly, MYC2 and MTB proteins 
develop negative feedback to stop JA signals (Zhai and Li 
2019; Wang et al. 2019). Several genes have already been 
identified, including JA receptors, but their respective roles 
still need to be explored. Next-generation gene-editing tools, 
such as CRISPR/Cas9, have opened up new avenues for tar-
geting MTB or related genes for engineering abiotic stress 
tolerance in crops.

Interestingly, JA is important for plant growth and not 
only act as a development regulator, but also mediate 
response to environmental stress. JA metabolism and sign-
aling pathways are suitable targets for genetic engineering to 
achieve improvement in plants abiotic stress tolerance. The 
genome-editing systems like CRISPR/Cas9 have recently 
been one of the revolutionary technologies in modern agri-
cultural biotechnology. CRISPR technology, which was prin-
cipally adopted as being a non-GM (genetically modified) 
tool, could expand our efforts into the sustainable tolerance 
of multiple abiotic stresses in future crops (Zafar et al. 2020; 
Moradpour and Abdulah 2020). Moreover, yield improve-
ment for higher agricultural production using these genome 
editing technologies is paramount to combat the detrimental 
effects of climate change on the contemporary agriculture 
sector (Raza et al. 2019a; Zafar et al. 2020; Moradpour and 
Abdulah 2020).

Engineering the JA biosynthesis pathway without creat-
ing negative side effects will be a major challenge. Further-
more, the overall genetic cascade of JA could be investigated 
by comparing JA enriched/deficient plants once they have 
been subjected to stressed or nonstressed conditions. And by 
figuring out the key nodes in the JA-biosynthetic pathway, 
whose modulation could be effective without the associ-
ated penalties for abiotic stress tolerance. In the end, it will 
depend on the degree of success to use those pathways for 
engineering abiotic stress tolerance in crop plants.

Concluding remarks and future perspectives

During the past few years, JA has gained quite an atten-
tion due to its substantial participation as a developmen-
tal and defense signaling molecule against various abiotic 
stresses. Most of the changes introduced by JA are linked 
with alteration in physiological, biochemical, and molecu-
lar mechanisms through up or down-regulation of gene 
expression. Altogether, most of the scientists who have 
examined the effects of JA under different abiotic stresses 
stated that these PGRs decreased the production of ROS 
and increased the tolerance to several abiotic stresses by 
enhancing antioxidant activity in plants. Notably, the mode 
of action of JA is not similar under a variety of environ-
mental stresses due to the divergence of PGR signals and 
interactions with other hormonal signals. Many genes and 
TFs (activators/direct regulations, or repressors/indirect 
regulations) have been elaborated in the core JA signaling 
pathways, facilitating responses to external stress signals. 
The JAZ and MYC cis-regulatory elements have particu-
larly been found to play an essential role in the JA sign-
aling pathway via the amalgamation of supervisory TFs 
(MYC) and connected genes (JAZ, AOS1, AOC, LOX2, 
and COI1), as briefly explained in Fig. 4. So far, 13 ele-
ments have been recognized in Arabidopsis, most of which 
have two conserved domains, i.e., the central domain 
called the ZIM domain, and the C-terminal JA-connected 
domain (Pauwels et al. 2010; Shyu et al. 2012; Thireault 
et al. 2015). Nevertheless, investigation on plant percep-
tion of various stress signals followed by JA production 
and response to such stresses has not been fully revealed. 
Studies showed that there is an interaction and crosstalk 
(synergistic or antagonistic) between JA and other PGRs’ 
signaling pathways for modulation of the plant responses 
under normal and stressful environment. Therefore, future 
investigations on the exploitation of key insights into the 
role and regulation of JA in a combination of stresses can 
deliver yield promising results. In addition, JA signaling 
mechanisms and their functions in signaling crosstalk at 
organ, tissue, or cell levels are also untouched and yet to 
be fully understood.

In the recent years, improvements in omics approaches, 
such as genomics, transcriptomics, proteomics, and 
metabolomics have facilitated further clues on complex 
gene–protein interactions and linked networks. These 
approaches also enable a better examination of the regu-
latory networks of PGRs and crosstalk under many abiotic 
stresses. However, PGR signaling mechanisms are com-
plex and changeable, mainly under complex and unpredict-
able situations. Therefore, there is a need to fully explore 
the potential of omics approaches for the identification 
of JA-related genes, proteins, and metabolites for the 
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development of climate–resilient plants. Further, the dis-
covery of JA-related metabolic pathways can provide new 
insights to fully understand the signaling network under 
stressful environment, and related researches should be 
prolonged to various growth conditions, from lab to field. 
Moreover, the engineered JA-mediated metabolic path-
ways can open new visions into the current knowledge 
and help to further explore the JA-mediated stress toler-
ance mechanisms.
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