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Abstract
Key message Complete plastomes of Rheum species facilitated to clarify the phylogeny of Polygonaceae, and compara-
tive chloroplast genomics contributed to develop genetic markers for the authentication of Rheum species.
Abstract Rheum (Polygonaceae) is widely distributed throughout the temperate and subtropical areas of Asian interior. 
Rheum species are usually perennial herbs, and half of them are endemic to China with important medicinal properties. On 
account of similar morphological characteristics, species delimitation of Rheum still remains unclear. Chloroplast genomes 
of eight Rheum species, Rumex crispus and Oxyria digyna were characterized. Based on the comparison of genome structure 
of these species and the two published Rheum species, it is shown that plastome sequences of these species are relatively 
conserved with the same gene order, and three Sect. Palmata species remarkably showed high sequence similarities. Some 
hotspots could be used to discriminate the Rheum species, and 17 plastid genes were subject to positive selection. The 
phylogenetic analyses indicated that all the Polygonaceae species were clustered in the same group and showed that Rheum 
species, except for Rheum wittrockii, formed a monophyletic group with high maximum parsimony/maximum likelihood 
bootstrap support values and Bayesian posterior probabilities. The molecular dating based on plastomes indicated that the 
divergences within Polygonaceae species were dated to the Upper Cretaceous period [73.86–77.99 million years ago (Ma)]. 
The divergence of Sect. Palmata species was estimated to have occurred around 1.60 Ma, indicating that its diversification 
was affected by the repeated climatic fluctuation in the Quaternary.

Keywords Rheum · Chloroplast genome · Positive selection · Molecular markers · Phylogeny

Introduction

The genus Rheum (Polygonaceae) is widely distributed 
throughout the temperate and subtropical areas of Asian 
interior and contains about 60 species (Losina-Losinskaya 
1936), 38 of which are found in China, especially in Qing-
hai–Tibetan Plateau (QTP) (Bao and Grabovskaya-Borodina 
2003). Rheum species are usually perennial herbs and prefer 
growing in the mountainous areas at high altitudes ranging 
from 2000 to 4000 m. Species of this genus evolved diversi-
fied morphological traits in response to selection pressures 
under the harsh distributional environment (Sun et al. 2012). 
The congeneric relationships of Rheum based on the mor-
phological characters were disputed, and the variations in 
pollen ornamentation of this genus are inconsistent with 
the morphological classification (Wang et al. 2005; Yang 
et al. 2001). Although phylogeny of some Rheum species 
was inferred based on chloroplast (cp) DNA fragments, the 

Communicated by Rachel Wells.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0029 9-020-02532 -0) contains 
supplementary material, which is available to authorized users.

 * Xumei Wang 
 wangxumei@mail.xjtu.edu.cn

1 School of Pharmacy, Xi’an Jiaotong University, 
Xi’an 710061, China

2 Key Laboratory of Qiyao Resources and Anti-Tumor 
Activities, Shaanxi Administration of Traditional Chinese 
Medicine, Xi’an Jiaotong University, Xi’an 710061, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00299-020-02532-0&domain=pdf
https://doi.org/10.1007/s00299-020-02532-0


812 Plant Cell Reports (2020) 39:811–824

1 3

species delimitation of this genus still remains challenging 
due to the paucity of sufficient genetic markers (Sun et al. 
2012; Wang et al. 2005). Therefore, more specific genetic 
markers are needed to infer the phylogeny of Rheum species 
and discriminate them from other related species.

Eight sections have been established and acknowledged 
under Rheum according to the morphological traits (Bao and 
Grabovskaya-Borodina 2003). Half of Rheum species are 
endemic to China, and many Rheum species possess impor-
tant medicinal properties. For example, three species of Sect. 
Palmata, namely Rheum palmatum Linn., Rheum officinale 
Baill. and Rheum tanguticum (Maxim. ex Regel) Maxim. 
ex Balf., are the source plants of rhubarb which is as known 
as “lord or king of herbs” in China and has been used as 
an important herb in traditional Chinese medicine for more 
than 2000 years with the functions including cooling blood, 
detoxification, removal of blood stasis, removing dampness, 
abating jaundice, etc. (Chinese Pharmacopoeia Committee 
2015). Our previous studies have revealed that the above-
mentioned three species could be treated as one species 
based on genetic and morphological data, and the plasticity 
of morphological traits is frequently observed among these 
species due to influences from environmental conditions 
(Wang et al. 2014, 2018a). Other relatives, such as Rheum 
franzenbachii Munt., Rheum hotaoense C. Y. Cheng and 
T. C. Kao, Rheum wittrockii C. E. Lundstr., Rheum race-
miferum Maxim., Rheum pumilum Maxim., Rheum acumina-
tum J. D. Hook. and Thomson and Rheum przewalskyi Los. 
were closely related to Sect. Palmata, and Rheum franzen-
bachii, Rheum hotaoense and Rheum wittrockii were usually 
regarded as adulterants of rhubarb (Xiao 1981). Previous 
study indicated that Rheum species were originated from 
a common radiation in the QTP (Sun et al. 2012), which 
resulted in the complex intraspecific relationships of these 
species. Therefore, accurate species delimitation of Rheum 
may not only help to resolve the phylogenetic relationships, 
but to facilitate reliable genetic authentication of medicinal 
herb in this genus.

Chloroplast is an essential organelle in plant cell that 
plays a significant role in the process of photosynthesis and 
carbon fixation. Chloroplast is presumed to originate from 
cyanobacteria according to endosymbiosis theory (Raven 
and Allen 2003) and has its own circular genome which usu-
ally encodes 110–130 unique genes (Palmer 1985). The cp 
genome is uniparentally inherited and generally has a quad-
ripartite structure consisting of two copies of inverted repeat 
(IR) regions divided by one small single-copy (SSC) region 
and one large single-copy (LSC) region (Bendich 2004). 
The cp genome is highly conserved compared to nuclear 
and mitochondrial genomes in terms of gene structure and 
composition (Asaf et al. 2017). Therefore, a large amount of 
cpDNA markers were selected for the utility of phylogeny or 
DNA barcoding. However, commonly used cpDNA markers 

may have the limited resolution in species discrimination 
or phylogenetic analyses for closely related taxa (Dong 
et al. 2017). The complete cp genomes which contain more 
hotspot regions with single nucleotide polymorphisms and 
insertion/deletions (InDels) have been proven to be more 
informative than cpDNA fragments in inferring evolution-
ary relationships at different taxonomic levels (Caron et al. 
2000; Cho et al. 2015; Wang et al. 2018b; Yang et al. 2016; 
Yao et al. 2019; Zhou et al. 2018). With the advent of next 
generation sequencing in recent years, it has become com-
paratively easy to sequence the complete cp genome of non-
model taxa and infer phylogenetic relationships based on 
whole cp genomes (Guo et al. 2017; Ruhsam et al. 2015; 
Saarela et al. 2018).

In this study, we characterized the complete cp genomes 
of eight Rheum species, one Rumex and one Oxyria spe-
cies. We compared the plastome differences of these species 
and inferred the phylogeny of Polygonaceae based on the 
available cp genomes. Our results will be useful for marker 
development, species discrimination, and the inference of 
phylogenetic relationships in the genus Rheum.

Materials and methods

Plant materials and DNA extraction

Ten samples, including eight Rheum species, Rumex 
crispus L. and Oxyria digyna (Linn.) Hill, were collected 
from Shaanxi, Gansu, Qinghai, Sichuan, Tibet, Yunnan and 
Shanxi provinces, China (Table S1). Young leaves were put 
into silica gel for DNA extraction. Voucher specimens were 
deposited at the herbarium of Xi’an Jiaotong University, 
Xi’an, China. Total genomic DNA was isolated using a cetyl 
trimethyl ammonium bromide protocol (Doyle 1987), and 
the quantity and quality of the extracted DNA was deter-
mined by both agarose gel electrophoresis and a NanoDrop 
2000 Spectrophotometer.

Plastome sequencing, assembly, annotation 
and validation

The DNA library with an insert size of 270 bp was pre-
pared according to the description by Zhou et al. (2018) 
and then sequenced on an Illumina HiSeq X Ten platform. 
The raw reads were filtered to obtain high-quality reads 
by removing adapters, low-quality sequences (reads with 
unknown bases “N”), and reads with more than 50% low-
quality bases (quality value ≤ 10) with the NGS QC Toolkit 
v2.3.3 (Patel and Jain 2012). The clean reads were firstly 
aligned to the plastome sequences of Rheum palmatum 
(NCBI accession NC_027728), Rheum wittrockii (NCBI 
accession NC_035950) and Rumex acetosa Linn. (NCBI 
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accession KC817303) to obtain chloroplast-like sequences 
using Bowtie v2.2.6 with default parameters (Langmead 
and Salzberg 2012). The matched paired-end clean reads 
were initially de novo assembled by SPAdes v3.6.0 (Bank-
evich et al. 2012). The derived longest contig was selected 
as seed sequence for further assembly using NOVOPlasty 
v2.6.2 (Dierckxsens et al. 2017). To validate the accuracy 
of the assembled plastome, all the clean reads were mapped 
against the unannotated cp genome in Geneious v10.1 with 
bowtie2 algorithm (Biomatters Ltd., Auckland, New Zea-
land). Some ambiguous regions with low coverage were con-
firmed by PCR-based Sanger sequencing using the primers 
designed for gap-flanking regions (Table S2). PCR amplifi-
cations were performed in a reaction volume of 25 μL with 
12.5 μL 2 × Taq PCR Master Mix, 0.4 μM of each primer, 
2 μL template DNA and 10.1 μL  ddH2O. All amplifications 
were performed in SimpliAmp™ Thermal Cycler (Applied 
Biosystems, Carlsbad, CA, USA) as follow: denaturation at 
94 °C for 5 min, followed by 35 cycles of 94 °C for 50 s, at 
specific annealing temperature for 40 s, 72 °C for 90 s and a 
final extension at 72 °C for 7 min. PCR products were visu-
alized on a 1.5% agarose gel, and the DNA fragments were 
sequenced by Sangon Biotech (Shanghai, China). The cp 
genome was aligned to its reverse complement to determine 
inverted repeat regions, and the boundaries of the inverted 
repeats and single-copy regions were also verified by Sanger 
sequencing (Table S3, Fig. S1). Annotation was primarily 
conducted using automatic annotator DOGMA (Wyman 
et al. 2004). The draft annotated results were subsequently 
inspected and adjusted manually according to the annota-
tion information of reference species in Geneious v10.1. 
Gene boundaries were manually checked to preserve read-
ing frame and start/stop codons. The circular map of each 
plastid genome was drawn using the online program Orga-
nellarGenome DRAW (Lohse et al. 2013). The complete 
plastomes have been submitted to Genbank with accession 
numbers: MN564922-MN564931.

Genome comparison, repeat structure analysis 
and markers identification

Ten newly sequenced plastomes and two previously pub-
lished plastomes of Rheum palmatum and Rheum wittrockii 
were compared and visualized using mVISTA software 
(Frazer et al. 2004) in a Shuffle-LAGAN mode with the 
annotation of Rheum palmatum as a reference. The align-
ment of 12 cp genomes was retrieved by MAFFT v7.402 
(Katoh and Standley 2013). Sliding window analysis was 
conducted to analyze DNA polymorphism and nucleotide 
diversity (Pi) with 200 bp step size and 600 bp window 
length using DnaSP v6.0 (Rozas et  al. 2017). Some of 
the highly divergent non-coding regions were selected to 
design primers and validated based on PCR-based Sanger 

sequencing (same as the previous PCR protocols) after the 
comparison of these plastomes. IR expansion/contraction 
and gene distribution at the IR/SC borders of these plasto-
mes were also compared. Tandem repeat sequences were 
identified by the Tandem Repeats Finder v4.09 (Benson 
1999) with the following parameters: 2 for the alignment 
parameter match and 7 for mismatch and InDels. REPuter 
program was utilized to identify dispersed and palindromic 
repeats with a minimum repeat size of 30 bp and sequence 
identity of no less than 90% (hamming distance equal to 3) 
(Kurtz et al. 2001). Simple sequence repeats (SSRs) were 
searched using the MISA Perl script (Thiel et al. 2003) with 
the following minimum number of repeats: ten for mono, 
five for di-, four for tri-, and three for tetra-, penta, and hexa-
nucleotide SSRs.

Estimation of substitution and selective pressure 
analysis

To detect selective pressures on the plastid genes, non-syn-
onymous (dN) and synonymous (dS) substitution rates as 
well as the dN/dS ratios of each protein-coding gene were 
calculated using the yn00 program in PAML v4.9 (Yang 
2007). The site-specific model was further selected to detect 
signatures of natural selection using EasyCodeML (Gao 
et al. 2019) based on the CODEML algorithm (Yang 2007). 
Six substitution models were used to test each plastid gene, 
namely M0, M1a, M2a, M3, M7, and M8 models. The site-
specific model assumed that ω (dN/dS) ratio is the same 
across branches of the phylogeny but varying among differ-
ent sites (Gao et al. 2019). Log likelihood values of every 
model were compared against neutral model by means of a 
likelihood-ratio test to detect statistical significance.

Phylogenetic inference

Phylogenetic analysis was conducted based on 28 taxa 
(Table S4), including 25 Polygonaceae species, and three 
Plumbaginaceae species (Plumbago auriculata, Cerato-
stigma willmottianum and Limonium tenellum) were set as 
outgroups. Ten cp genomes were obtained from the present 
study, while others were retrieved from NCBI GenBank 
(accession numbers were summarized in Table S4). All the 
cp genome sequences were aligned using MAFFT v7.402 
with default parameters (Katoh and Standley 2013). The 
ambiguous and most variable sites in the multiple align-
ments were removed using Gblocks v0.91b (Talavera and 
Castresana 2007). To obtain robust phylogenetic relation-
ships, three methods, including maximum parsimony (MP), 
maximum likelihood (ML) and Bayesian inference (BI), 
were used to construct phylogenetic trees. MP analysis was 
performed in PAUP v4.0b10 with 1000 bootstrap replicates 
(Swofford 1998), and addition-sequence was set as 1000 
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replications for heuristic search. The ML analysis was con-
ducted using IQ-TREE (Nguyen et al. 2015) with the best 
best-fit model selected by ModelFinder (Kalyaanamoorthy 
et al. 2017) (Table S5), and the bootstrap replicates were 
1000. MP/ML bootstrap support (BS) values were shown at 
each node. BI analysis was conducted using MrBayes v3.2.6 
(Ronquist et al. 2012) with the nucleotide substitution model 
inferred from Modeltest v3.7 (Table S5). The Markov Chain 
Monte Carlo (MCMC) algorithm was run for one million 
generations and sampled every 100 generations with one 
cold chain and three incrementally heated chains. The first 
25% of trees were discarded as burn-in, and the remain-
ing trees were used to build a majority-rule consensus tree 
with posterior probability values for each node. Likewise, 
the above-mentioned three phylogenetic-inference methods 
were used to infer the phylogenetic tree from the 58 shared 
cp genes (Table S6) with the same settings.

The estimation of divergence time

Divergence time was estimated using BEAST v2.4.5 under 
uncorrelated lognormal relaxed clock and birth–death model 
of speciation (Bouckaert et al. 2014). For BEAST analysis, 
all the InDel sites in the multiple alignments were removed 
using Gblocks v0.91b (Talavera and Castresana 2007). 
GTR + G + I model of nucleotide substitution selected by 
Modeltest v3.7 was used to construct tree. Due to lack of 
specific fossil records for Rheum species, we used the fos-
sils from other Polygonaceae species and the estimated 
divergence time in previous studies as the calibration points 
(Manchester and O’Leary 2010; Yao et al. 2019). All cali-
bration priors were treated as a normal distribution with a 
mean and a wide SD. The Polygonaceae crown group was 
constrained to a mean age of 75.7 million years ago (Ma) 
and SD of 1.07 Ma (Yao et al. 2019). The Rumiceae, Polygo-
neae and Fagopyreae clustered in the group which was con-
strained to a mean age of 66 Ma and SD of 0.5 Ma (Man-
chester and O’Leary 2010). The MCMC simulation was run 
for 2.0 × 1010 generations with 10% discarded as burn-in. 
Tracer v1.7.1 was used for checking the convergence of the 
chains through sufficient effective sample sizes (ESS) value 
(> 200) (Rambaut et al. 2018).

Results

Plastome features and genome composition

A total of 7,087,845–8,586,533 paired-end reads were 
retrieved with a sequence length of 150 bp. After filter-
ing and mapping, 255,572–1,088,699 clean reads were 
successfully mapped to the reference plastome (Table 1). 
Average sequencing depth ranged from about 224 × (Rheum Ta
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przewalskyi) to 1,007 × (Rheum hotaoense) (Table 1). With 
a combination of de novo and reference guided assemblies, 
plastomes of eight Rheum species, Rumex crispus and O. 
digyna were obtained. The size of ten newly sequenced 
cp genomes ranged from 160,698  bp (O. digyna) to 
162,048 bp (Rheum hotaoense) (Table 1). All the plasto-
mes possess the typical quadripartite structure, consisting 
of a pair of IRs (30,534–31,023 bp) separated by the LSC 
(86,145–86,997 bp) and SSC regions (12,784–13,172 bp) 
(Table 1). The overall GC content among the ten newly 
sequenced plastomes and the two previously published 
plastomes of Rheum palmatum and Rheum wittrockii was 
very similar (37.3–37.6%). Each plastome identically 
encoded 131 predicted genes, including 79 protein-coding 
genes (PCGs), 30 tRNA genes and four rRNA genes; 17 
genes in the IR regions were found to be duplicated (Fig. 
S2, Table 1). Across these cp genomes, rpl23 was found to 
be a pseudogene with two copies located in the IR regions, 
respectively. Three PCGs (ycf3, clpP and rps12) harbored 
two introns, while nine PCGs (rps16, petD, atpF, rpl16, 
petB, rpl2, ndhA, ndhB, rpoC1) and six tRNA genes (trnV-
UAC, trnL-UAA, trnG-UCC, trnA-UGC, trnI-GAU, trnK-
UUU) harbored one intron. No introns were detected from 
the remaining plastid genes.

Comparative analyses of plastomes

To infer the cp genome divergence among these 12 spe-
cies, overall sequence alignments were compared using 
the annotation of Rheum palmatum as a reference (Fig. 1). 
The aligned results showed that cp genome sequences of 
these species are relatively conserved with the same gene 
order. Especially, three Sect. Palmata species showed 
highly similar sequences (Fig. 1). No gene relocation or 
inversion were detected among these plastomes. However, 
some highly variable hotspots were found in the intergenic 
regions. The sliding window analysis also indicated that 
the divergence in intergenic regions is higher than that in 
genic regions, and the LSC/SSC regions are more variable 
than the IR regions (Fig. 2). The most divergent non-coding 
regions among these cp genomes were rps16-trnQ(UUG), 
trnS(GCU)-trnG(UCC), trnR(UCU)-atpA, atpF-atpH, 
psbM-trnD(GUC), trnE(UUC)-trnT(GGU), trnT(GGU)-
psbD, ycf3-trnS(GGA), rps4-trnT(UGU), trnL(UAA) intron, 
trnT(UGU)-trnL(UAA), psaJ-rpl33, rpl33-rps18, rps18-
rpl20 and clpP intron1. Some of these variable regions were 
used to design primers (Table S2) for validating the discrim-
inatory powers, which indicated that the above-mentioned 
variable hotspots could be utilized as potential genetic mark-
ers to discriminate Rheum species (Fig. S3).

Additionally, we found that the IR/SC boundary regions 
were still relatively conserved among these species (Fig. 3). 
Comparison of these 12 plastomes in Rumiceae revealed 

a few expansion and contraction of the IRs. Some genes 
including rps19, ndhF, rps15, ycf1, rpl2 and trnH(GUG) 
were found in the LSC/IR and SSC/IR borders. Of these 
genes, rps15 was found to be 64 bp, 49 bp, 80 bp away 
from the SSC/IRa border in Rheum wittrockii, O. digyna and 
Rumex crispus, respectively (Fig. 3), but it was similarly dis-
tributed in the remaining species. Except rps15, the remain-
ing five genes showed similar distribution status at SC/IR 
borders in 12 plastomes. Especially, the above-mentioned 
six genes located in SC/IR borders of three Sect. Palmata 
species were never shifted.

Identification of SSRs and repeat sequences

A total of 809 SSRs were identified across the cp genomes 
of 12 Rumiceae species by MISA analysis. The number of 
SSRs per plastome/species ranged from 53 (Rheum prze-
walskyi) to 77 (Rheum palmatum). The majority of SSRs 
were mononucleotide repeats (423), followed by dinucleo-
tide (178), trinucleotide (111), tetranucleotide (84), pen-
tanucleotide (12) and hexanucleotide (1) repeats (Fig. 4). 
Mono nucleotide repeat motif (A/T), dinucleotide repeat 
motif (AT/TA), trinucleotide repeat motif (AAT/ATT) and 
tetranucleotide repeat motif (mostly AAAT/ATTT or rarely 
ACAG/CTGT) were present in each plastome (Fig. 4). Most 
of SSRs were located in non-coding regions, but a few of 
them were distributed in genic regions (Table S7). Over half 
of the SSRs were found in the LSC region, whereas low 
proportions of SSRs were found in the SSC or IR regions.

The analysis of the 12 plastomes using Reputer recog-
nized 523 repeats. The repeat number of each species ranged 
from 34 (O. digyna) to 49 (Rheum racemiferum and Rheum 
przewalskyi). Forward repeats are the most abundant types 
(260), followed by palindromic (235) and reverse (22) 
repeats (Table S8). The reverse repeats are rare in these 12 
cp genomes, and only 22 reverse repeats were found. By 
searching the tandem repeats with Tandem Repeats Finder, 
the results indicated that the tandem repeat number of 12 
plastomes ranged from 3 (O. digyna) to 25 (Rumex crispus) 
with a total number of 116 (Table S9). We found that most 
repeats were located in the intergenic or intron regions, and 
only a few repeats were distributed in protein-coding regions 
(ycf1, ycf2 and psaA, psaB, rpl14) (Table S8, S9).

Estimation of substitution and selective pressure 
analysis

The dS values of 76 PCGs between 12 paired Rumiceae 
species ranged from 0 to 1.4488 with an average value 
of 0.0361, and dN values ranged from 0 to 3.0185 with 
an average value of 0.0161 (Table S10). A total of 3709 
paired dN/dS values were recovered, most of which 
were less than 1, indicating that the majority of cp genes 
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were under purifying selection. Twelve cp genes includ-
ing matK, ndhB, ndhD, ndhF, ndhG, psaJ, psbL, rpoA, 
cemA, rpl32, ycf1 and ycf2 were detected with dN/dS 
values > 1, indicating that these genes had undergone 

positive selection. Based on the site-specific model of 
CODEML, nine genes (atpE, ndhD, psaJ, psbC, rpl16, 
rpoC2, rps3, ycf1 and ycf2) with positively selected sites 
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were identified (Table S11). By combining the results of 
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YN and CODEML algorithm, we found that a total of 17 
cp genes were under positive selection.

Phylogenetic inference

Three phylogenetic methods (MP/ML/BI) yielded almost 
identical topologies with generally high support val-
ues. The monophyly of Polygonaceae was strongly sup-
ported based on the available cp genome dataset (MP/
ML, BS = 100; BI, PP = 1) (Fig. 5a). Species belonging to 

three tribes including Rumiceae, Polygoneae and Fagopy-
reae were also clustered in the same clade, respectively. 
Except for Rheum wittrockii, which was clustered with 
Rumex species in the same clade, other Rheum species 
formed a monophyletic group with high BS and PP values. 
This result also confirmed the monophyly of Sect. Pal-
mata. The phylogenetic analysis also produced the similar 
result based on 58 shared CDS regions with three different 
methods (Fig. 5b).
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Fig. 4  Statistics of repeat elements in the plastomes of 10 Rheum 
species, Rumex crispus and Oxyria digyna. a Number of forward, 
palindromic, complement and reverse repeats. b Number of tandem 

repeats. c Number of different simple sequence repeat (SSR) types 
detected in 12 plastomes. d Frequency of identified SSR motifs in 12 
plastomes
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Fig. 5  Phylogenetic tree of 28 taxa using maximum likelihood, maxi-
mum parsimony and Bayesian inference based on dataset of the 58 
shared genes and complete plastome sequence. a The phylogenetic 
tree inferred from complete plastome sequence dataset. b The phylo-

genetic tree inferred from the dataset of 58 shared genes. ML topol-
ogy was shown with ML bootstrap value/MP bootstrap value /Bayes-
ian posterior probability at each node. The pentastar indicates that the 
support rate of branch is 100/100/1.0
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Estimation of divergence times

Using three Plumbaginaceae species as outgroups and the 
phylogeny generated here, divergence times of the major 
clades within Polygonaceae were estimated based on the 
dataset comprised of 28 plastome sequences (Fig. 6). Our 
analyses based on the two combined MCMC runs produced 
sufficient effective sample sizes (> 200) for all relevant 
parameters and suggested adequate sampling of the poste-
rior distribution. The results suggest that the splits in crown 
group Polygonaceae were dated to the Upper Cretaceous 
(especially in the Campanian period, 73.86–77.99 Ma). The 
divergence between Rumiceae and Polygoneae was esti-
mated as c. 54.23 Ma (41.30–64.15 Ma). The divergences 
within Rumiceae clade were dated to Oligocene (32.01 Ma, 
15.35–48.97 Ma). The divergence time of Sect. Palmata 
clade was estimated to have occurred as c. 1.60 Ma.

Discussion

The ten newly obtained cp genomes in the present study 
not only offered an opportunity to comprehensively com-
pare cp genome sequences of Rumiceae, but also provided 
sufficient genetic resources for species discrimination and 
phylogenetic utility in Rheum. The cp genomes display the 
typical quadripartite structure with a LSC and a SSC region 
which are separated by two IRs. All the analyzed Rheum 
species exhibit 131 predicted genes and share the same gene 
content and gene synteny. Major structural changes such as 
gene loss and genome rearrangement have been reported in 
several angiosperm lineages (Cai et al. 2008; Weng et al. 
2013; Wicke et al. 2016), but such changes were not found in 
the plastomes of Rheum. Especially, the overall cp genome 
structure of Sect. Palmata species was extremely conserved, 
which, to some extent, confirmed the close relationships of 
these three species.

The sizes of plastid genomes vary considerably in dif-
ferent angiosperms (63–242 kb) and even show high dis-
crepancy in the same family (46–190 kb in Orobanchaceae) 
(Frailey et al. 2018; Gruenstaeudl et al. 2017; Wicke et al. 
2013). On the contrary, Rheum species show minor differ-
ence in plastome sizes, from 159,051 bp in Rheum wittrockii 
to 162,048 bp in Rheum hotaoense. It was reported that the 
size increases of plastomes are usually caused by the expan-
sions of the IR regions (Weng et al. 2013; He et al. 2017). Of 
compared Rheum plastomes, Rheum wittrockii had the short-
est length of IRs, while Rheum hotaoense had the longest. It 
is similarly presumed that the differences in plastome size 
recorded in the present study are mainly the result of extrac-
tions or contractions of the IR regions. Genes located in 
SC/IR borders of Rheum plastomes were identical, and only 
minor length differences were detected between these genes 

and SSC/IR border. As Rheum species with close interspe-
cific relationships mainly derived from a rapid radiation, 
we deduced that the highly conserved nature of cp genome 
resulted in the similar gene distributions at SC/IR junctions.

Although cp genome is highly conserved, some variable 
hotspots that include InDels have been detected (Aldrich 
et  al. 1988). These hotspots in plastomes may provide 
several highly variable cpDNA markers. Species of Sect. 
Palmata are important in traditional Chinese medicines; 
therefore, the accurate species discrimination of Rheum is 
vital for the utilization of rhubarb. However, morphologi-
cal similarities have further hampered the authentication of 
rhubarb species. Thus the molecular identification based on 
DNA markers will provide a more effective way to overcome 
these problems. The plastome has a conserved sequence 
length from 110 to 160 kb, which far exceeds the length of 
commonly used molecular markers and can provide more 
variation to distinguish the closely related species (Li et al. 
2015; Nguyen et al. 2017). Therefore, some mutation hotspot 
regions could be tested as Rheum specific DNA markers and 
used to discriminate the rhubarb from its adulterants. These 
regions might also provide sufficient genetic variations for 
resolving the phylogenetic relationships of Rheum species.

Repeat elements detected in plastomes have been proven 
to be correlated with rearrangement, sequence divergence 
and recombination (Asano et al. 2004; Timme et al. 2007; 
Weng et al. 2013). The numbers and distributions of tandem, 
dispersed (forward and reverse), and palindromic repeats 
were surveyed in this study. Our results indicated that the 
repeat distribution status is similar in cp genomes of Rheum. 
Interestingly, most repeats were found in the intergenic or 
intron regions, and a few repeats were distributed in same 
gene regions (ycf1, ycf2) or gene with similar functions 
(psaA, psaB). Chloroplast simple sequence repeats (cpSSRs) 
are usually variable within the same species and have been 
proven to be an important molecular marker for species dis-
crimination and population genetics at lower taxonomic lev-
els (Provan et al. 2001; Ruhsam et al. 2015; Xue et al. 2012). 
The SSRs distributed in Rheum plastomes were similar, with 
the mononucleotide (A/T) being the most abundant repeat 
type. Poly (A)/(T) SSRs are pervasively found in plant cp 
genomes (Wang et al. 2018b; Yang et al. 2016; Zhou et al. 
2019). Most cpSSRs were found in non-coding regions, but 
only a few SSRs were detected in coding regions. CpSSRs 
located in non-coding regions usually show high intraspe-
cific variation in repeat numbers (Eguiluz et  al. 2017). 
Therefore, the cpSSRs will provide more valuable genetic 
resources for the species identification and population genet-
ics of Rheum.

Previous studies have revealed signatures of natural (puri-
fying or positive) selection in some cp gene regions (e.g. 
psbA, matK, rbcL) encoding proteins involved in photosyn-
thesis (Carbonell-Caballero et al. 2015; Ye et al. 2018). We 



821Plant Cell Reports (2020) 39:811–824 

1 3

found 17 protein-coding genes (atpE, matK, ndhB, ndhD, 
ndhF, ndhG, psaJ, psbL, psbC, rpoA, rpoC2, cemA, rpl16, 
rpl32, rps3, ycf1 and ycf2) being under the positive selec-
tion. Of these, matK with sufficient variant sites has been 
used as a standard DNA barcode for species discrimination, 
and it was highly divergent in Caryophyllales (Cuénoud 
et al. 2002). Eleven ndh genes in plant cp genome encode 
NAD(P)H dehydrogenase (NDH) complex which is essential 
for photosystem I cyclic electron transport and chlorores-
piration (Kofer et al. 1998). As NDH monomer is sensi-
tive to high light intensity, we inferred that the ndh genes 
might have changed greatly to generate new functions for 
the stress resistance, and previous studies also showed the 
similar results (Peng et al. 2011; Wang et al. 2018b; Yang 
et al. 2016). Psa and psb genes are primary members of 
photosystem which may evolve rapidly in some Rumiceae 
species. Plastid genes, including rpoA and rpoC2, encoding 
proteins involved in transcription and post-transcriptional 
modification have been found to evolve under positive selec-
tion (Piot et al. 2018). CemA gene is related to the synthe-
sis of PPR7 protein and may have coevolved with nuclear 
genes (Jalal et al. 2015). Therefore, we presumed that cemA 
gene may have a fast evolution rate in Rumiceae species, and 
some previous studies on other green plants also obtained 
the similar result (Xu et al. 2015; Zhou et al. 2016). It has 
been suggested that rpl and rps encode ribosomal proteins 
that have more divergent sequences than proteins related 
to photosynthesis (Xu et al. 2015). Ycf1 and ycf2 are two 
of the largest genes encoding a putative membrane protein 
(Cuénoud et al. 2002; Kikuchi et al. 2013) and have rapidly 
evolved in several species (Cho et al. 2015; Park et al. 2018; 
Wang et al. 2018b; Yang et al. 2016; Zhou et al. 2019).

The plastome has been proven to be the most important 
genetic resource for inferring the phylogeny of green plant 
and disentangling phylogenetic relationships of species that 
have experienced rapid radiations (Davis et al. 2014; Li et al. 
2019; Ma et al. 2014; Yao et al. 2019). Rheum species were 
originated from a common radiation in the QTP (Sun et al. 
2012) and shared the similar morphological traits. Phylo-
genetic relationships of Rheum species were inferred based 
on the available plastomes using MP, ML and Bayesian 
methods. Most Rheum species were clustered in the same 
clade with a high BS value, which was compatible with the 
previous phylogeny inferred from cpDNA fragments (Sun 
et al. 2012). However, Rheum wittrockii was clustered with 
Rumex species. Unexpectedly, the overall genomic structure 
of Rheum wittrockii was much more different from the con-
generic Rheum species. Therefore, high sequence divergence 
of cp genome resulted in a discordant phylogenetic position. 
The phylogenetic result also showed that Rheum palmatum, 
Rheum officinale and Rheum tanguticum were constantly 
clustered in the same clade with a high resolution value, and 
the plastome sequences of these three species also showed 

the high similarity. Previous molecular and morphological 
data indicated that these three species should be treated as 
one species complex (Wang et al. 2018a). Therefore, our 
study further confirmed the close relationships of species 
belonging to Sect. Palmata. In addition, based on the phy-
logenic trees, species from three tribes (Rumiceae, Polygon-
eae and Fagopyreae) separately formed monophyletic groups 
with high support values, indicating that cp genomes are 
suitable for resolving the phylogeny of Polygonaceae. How-
ever, limited taxon sampling may provide insufficient phy-
logenetic information which may lead to a discrepant tree 
topology (Eguiluz et al. 2017; Leebens-Mack et al. 2005). 
Therefore, sufficient samples should be recovered to obtain 
a more reliable inference of the phylogenetic relationships 
of Polygonaceae.

Based on the available plastome dataset, we estimated 
the divergence time of these Polygonaceae species. The ages 
of the major Polygonaceae splits are in agreement with the 
previously published result (Yao et al. 2019). Most Rheum 
species mainly diverged in the middle Miocene to Pliocene. 
It has been proven that the uplift of the eastern edge of the 
QTP during the Miocene and Late Pliocene facilitated the 
radiations of species (Sun et al. 2011; Wen et al. 2014). 
Therefore, the divergence and diversification of Rheum spe-
cies might have been affected by such important tectonic 
events, which was consistent with the previous phylogenetic 
study (Sun et al. 2012). According to our results, the earliest 
divergence of Sect. Palmata group was dated to Pleistocene. 
It can be inferred that the repeated climatic fluctuation in the 
Quaternary promote the divergence of these three species, 
which is compatible with the previous studies based on plas-
tid and nuclear markers (Sun et al. 2012; Wang et al. 2018a).

Conclusions

The complete plastomes of eight Rheum species, one Rumex 
and one Oxyria species were sequenced and compared. All 
the plastomes showed identical structure with the same gene 
order, and no gene relocation or inversion were detected 
among these plastomes. However, some highly variable 
hotspots were found in the intergenic regions which pro-
vided candidate genetic markers for species authentication 
and phylogeny for Rheum. Besides, based on comparative 
cp genome analyses, repeat elements were detected from 
the plastomes, and the abundant SSRs could be used to the 
species discrimination and population genetics of Rheum. 
We found that most plastid genes have undergone purifying 
selection, and 17 genes were subjected to positive selection. 
The phylogenetic analyses further confirmed the monophyly 
of Polygonaceae based on the available cp genomes, and 
also indicated that plastomes could facilitate to reconstruct 
the phylogeny of Polygonaceae. According to the molecular 
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dating based on plastome sequences, the divergence time of 
three tribes of Polygonaceae was estimated. We confirmed 
that the diversification of Sect. Palmata was caused by fluc-
tuant climate in the Quaternary.
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