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Abstract

Key message The latest results in DNA markers appli-

cation and genomic studies in olive.

Abstract Olive (Olea europaea L.) is among the most ancient

tree cropsworldwide and the source of oil beneficial for human

health. Despite this, few data on olive genetics are available in

comparison with other cultivated plant species. Molecular

information is mainly linked to molecular markers and their

application to the study of DNAvariation in theOlea europaea

complex. In terms of genomic research, efforts have beenmade

in sequencing, heralding the era of olive genomic. The present

paper represents an update of a previous reviewwork published

in this journal in 2011. The review is again mainly focused on

DNA markers, whose application still constitutes a relevant

percentage of themost recently published researches. Since the

olive genomic era has recently started, the latest results in this

field are also being discussed.

Keywords Functional Genomics � Germplasm �
Molecular Markers � Olive Genome � Olive Oil

Why olive?

Olive (Olea europaea L.) cultivation began thousand years

ago in the Mediterranean. Recent archaeobotanical studies

suggest that olive domestication started about five to six

thousand years ago in the Near East (reviewed in

Kaniewski et al. 2012). It is highly likely that this plant was

one of the first domesticated tree species, becoming a

symbol that for centuries has been shaping the landscape

and marking the history of the rural population. Nowadays,

olive is, after oil palm, among the most valuable oil fruit

tree, covering more than 10 million hectares of land

worldwide (FAOSTAT 2014—faostat3.fao.org). Olive

cultivation is concentrated ([98% of the devoted surface)

in the Mediterranean basin, where the plant is used for

table olive and oil production and where a large proportion

of the produced olive oil is also used (Baldoni and Belaj

2009). Moreover, olive cultivation is currently expanding

in non-traditional producing territories such as the United

States, South America, Australia, Japan and China. In

Australia and Argentina, olive is now a well-established

production reality, with irrigated and highly mechanised

orchards.

Olive oil and table olives are perceived as healthy foods,

and in fact, olive oil, mainly Extra Virgin Olive Oil

(EVOO), has unique organoleptic and nutraceutical prop-

erties that have been highlighted by several studies. Olive

oil represents the most important lipid fraction of the

Mediterranean cuisine and is characterised by a peculiar

fatty acid composition (55–83% of oleic acid, 3.5–21% of

linoleic acid and 1% of linolenic acid—Cunnane 2003); in

addition, it is high in antioxidant substances. The con-

sumption of EVOO is related to reduced risks of cardio-

vascular disease and lower death rates in persons at high

cardiovascular risk (Guasch-Ferré et al. 2014), in addition
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to a variety of other health-related aspects (Keys 1995;

Pérez-Jiménez et al. 2007; Rigacci and Stefani 2016).

Regarding the beneficial molecules in EVOO, Oleaceae

fruits are rich in compounds such as simple phenolics,

carotenoids, tocopherols and anthocyanins, which are fre-

quent in several plant species, but they also possess an

entirety of phenolic compounds, oleosides or secoiridoids,

specific of the Oleaceae and few other families (Ryan et al.

2002). The protective activity of EVOO against degener-

ative and chronic diseases as well as tumours could be

mainly ascribed to this complex set of secondary metabo-

lites, which are also important for many of the sensory

characteristics of EVOO (Servili et al. 2004, 2014).

Regarding the species, olive is a member of the Olea-

ceae family, which contains approximately 25 genera and

at least 600 different species distributed in temperate and

tropical areas (Besnard et al. 2009). Differing opinions

exist on the nomenclature and hierarchies concerning the

olive genus and species. Green (2002) classified 33 species

and nine subspecies in the genus Olea. The Olea europaea

complex comprises six subspecies: O. europaea subsp.

europaea, O. europaea subsp. cuspidata, O. europaea

subsp. laperrinei, O. europaea subsp. maroccana, O.

europaea subsp. cerasiformis and O. europaea subsp.

guanchica.

These subspecies have spread across the Mediterranean

basin (subsp. europaea), the Macaronesia (subsp. cerasi-

formis, guanchica and maroccana), the Saharan mountains

(subsp. laperrinei), and from South Africa to South Asia

(subsp. cuspidata) (Médail et al. 2001; Green 2002). Cul-

tivated olive and its wild Mediterranean relatives were

further recognised as different varieties and, respectively,

defined as O. e. subsp. europaea var. europaea and O. e.

subsp. europaea var. sylvestris (Green 2002). This dis-

tinction is currently still debated as it was largely based on

morphological traits, such as the small fruit and pit size

characteristics of the wild variety, an approach that is

considered to be highly imprecise and a potential source of

inaccuracies (Ganino et al. 2006). Finally, another inter-

esting and still open debate in olive studies, concerning the

origin of cultivated olive, is whether domestication should

be considered a single (Besnard and Rubio de Casas 2016)

or multiple (Diez et al. 2015) event.

Olive trees are evergreen, outcrossing and can be veg-

etatively propagated. The species has an extensive genetic

patrimony that resulted from plant lifetime and scarcity of

genotype turnover. The large germplasm includes more

than 1500 cultivars that are predominantly present in

southern European countries such as Italy, Spain, France

and Greece (Bartolini 2008). Therefore, olive represents an

interesting case among agricultural crops and its wide

genetic patrimony could represent an invaluable source of

variability for breeding purposes (Baldoni and Belaj 2009).

Cytogenetic and ploidy analyses in Olea europaea

Olea europaea has 46 chromosomes and is a diploid species

(2n = 2x = 46) (Breviglieri and Battaglia 1954). However, in

olive, karyological studies are difficult since the chromosomes

are small, similar in morphology and numerous. As previously

revised (see Bracci et al. 2011 for more detailed references),

cytogenetic studies have been carried out to distinguish the

olive chromosome pairs and to determine the genome size

content of Mediterranean olive genotypes from different

countries. Values ranging between 1.45 and, circa, 2.3 pg of

DNA per haploid genome, with 1C = 1400–1500 Mbp

(Loureiro et al. 2007), have been reported, evidencing high

variability between genotypes. Further, it has recently been

estimated that nuclear DNA content can diminish following

radiation, as a consequence of the irradiation dose, from 2.972

to 2.963 and 2.935 pg/2C nucleus of the control, for 10 and

30 Gy (grey) treated plants, respectively (Oražem et al. 2013).

Ploidy level was also investigated in the Olive complex.

The presence of tetraploids and hexaploids was detected in

subsp. cerasiformis and maroccana, respectively (Besnard

et al. 2008; Brito et al. 2008; Garcı́a-Verdugo et al. 2009).

In addition, the coexistence of diploid and triploid indi-

viduals within the same population was also detected in a

South Algerian population of the Laperrine’s olive using

nuclear microsatellite profiles and flow cytometry (Besnard

and Baali-Cherif 2009). The frequency of triploids remain

relatively low (ca. 3%), but until now, such a pattern has

not been detected in any other olive subspecies.

The effect of tetraploidy on olive floral and fruit biology has

been studied in Leccino Compact (LC), a mixoploid olive

mutant of the cultivar Leccino (L) (Caporali et al. 2014). The

mutant has both diploid and tetraploid cells. The authors con-

cluded that tetraploidy induced larger floral structures as nor-

mally occurring in tetraploid plants, but with little influence on

fruit size despite the much larger cell size. The genetic stability

of two micropropagated wild olive species (Olea europaea

subsp. cerasiformis and O. europaea ssp. europaea var. syl-

vestris) using flow cytometry and microsatellite markers was

compared (Brito et al. 2010).Nochanges inploidy level byflow

cytometry or mutations were found among micropropagated

plants, suggesting for the tested markers, genetic uniformity

throughout the process.

Ribosomal and cytoplasmic DNA variation

Polymorphisms in ribosomal and cytoplasmic DNA, such as

intergenic spacer (IGS), and internal transcribed spacer (ITS),

are frequently employed for phylogenetic analysis. Since

these sequences do not have an active and strictmechanism of

conservation, they can show high nucleotide variability that

can be detected and evidenced in various ways.
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Ribosomal DNA polymorphism

The origin of the Olea europaea complex has been studied

analysing the variability in the sequence of the ITS of the

nuclear ribosomal genes. Nuclear ribosomal genes are

repeated in tandem in the genome but the analysis of their

variation in the olive complex has been a challenge. Early

works with restriction fragment length polymorphisms

(RFLP) revealed a high complexity of internal spacers that

was difficult to use for investigating phylogenetic relation-

ships between olive taxa (e.g. Besnard et al. 2001). Several

pseudogenic ribosomal regions were then identified in the

Olive complex (Besnard et al. 2007b). The first ITS (ITS1) of

a pseudogene type was successfully isolated by Hess et al.

(2000) and Besnard et al. (2007a), and used to investigate

phylogenetic relationships between Macaronesian olives or

to identify subspecies (and hybrids) in the invasive range

(Australia and Hawaii). A phylogenetic study of the whole

olive complex based on this pseudogene was also proposed

by Besnard et al. (2007b). Finally, Besnard et al. (2009)

isolated ITS1 of functional ribosomal genes with specific

primers and investigated phylogenetic relationships in Olea

and related genera. These data (coupled to plastid DNA

polymorphisms) supported a polyphyletic origin of Olea and

the distinction of four main lineages. Among Olea species,

the split between subgenera Olea and Paniculatae was esti-

mated in the Early Miocene or Late Oligocene. Within

subgenus Olea, section Ligustroides and the Olive complex

(section Olea) diverged in the Early Miocene. The diversi-

fication of these two sections in Africa was likely contem-

porary to the Saharan desertification.

Cytoplasmic DNA polymorphism

Mitochondrial (mtDNA) and plastidial DNA (cpDNA)

markers have been widely used in olive with different aims,

such as to study the genetic structure of the olive trees in the

Mediterranean (Besnard et al. 2002) and to evaluate the

biogeographical history of the Oleaceae family (Besnard

et al. 2009). Besnard et al. (2007c) used plastid DNA to

obtain a phylogenetic reconstruction of olive laperrinei (O.

europaea subsp. laperrinei). This analysis supported a

maternal origin of laperrinei populations in South Algeria,

where allelic richness was observed, and proved that the

barrier represented by the desert limits long-distance gene

flow. After the sequencing of the olive chloroplast genome

reported by Mariotti et al. (2010), cytoplasmic DNA,

focusing on plastid DNA, has been extensively used. Bes-

nard et al. (2011) carried out a sequencing of the whole olive

plastid genome of trees with different cpDNA lineage with

the goal to developmarkers useful for profiling olive cpDNA

haplotypes. A low variability of cpDNA was confirmed,

evidencing, at the same time, a nucleotide divergence

between the different chloroplast genomes not higher than

0.07%. Besnard et al. (2014), using 64 cpDNA loci (mater-

nally inherited) and 11 nuclear microsatellites, examined the

origins and spread of invasive Australian olive populations

by analysing a large sample of native and invasive acces-

sions. Similarly, Besnard et al. (2013) used both nuclear and

plastid markers to analyse population genetics of Mediter-

ranean and Saharan olives. They reported the presence of a

mixture between Mediterranean and Saharan olives, con-

firming that Laperrine’s olive has been involved in the

diversification of cultivated olives. Further studies carried

out using plastidDNAmarkers on Laperrine’s and cultivated

olives have been recently reviewed (Besnard et al. 2012).

Finally, Chalak et al. (2015) used cpDNA to study the extent

of the genetic diversity in Lebanese olive (Olea europaea

L.), evidencing a mixture of an ancient germplasm and

recently introduced varieties.

The low discriminating power of plastid DNA poly-

morphisms (ca. 80% of cultivars share the same cytoplasm;

Besnard et al. 2011) is a limitation for traceability analyses,

and consequently nuclear DNA polymorphisms are more

suitable (see below). However, rare plastid haplotypes are

potentially quite informative, and due to the high number

of plastids in a cell, PCR methods are easily amenable to

detect such polymorphisms even from degraded DNA

(Pérez-Jiménez et al. 2013).

Applications of DNA-based molecular markers
in Olea europaea

Studies on genetic variability of the Olea europaea

complex

The detection and study of genetic resources are key factors in

crop breeding. In olive, this information is of paramount

importance since a high number of different genotypes are

currently cultivated. For these reasons,molecularmarkers have

been extensively used for germplasm characterisation,

enhancing and refining the classicalmorphological description,

which is strongly limited by environmental influences. Olea

europaea classification has also resulted in improving our

understanding of Olea taxa inter-compatibility with the

Mediterranean olive. Historically, several classes of markers

have been used for this purpose, such as RAPDs (random

amplified polymorphic DNAs), AFLPs (amplified fragment

length polymorphisms), ISSRs (inter simple sequence repeats),

SSRs (simple sequence repeats), and more recently, mainly

because of the introduction of next generation sequencing,

SNPs (single nucleotide polymorphisms). See Bracci et al.

(2011) for a deeper description of all these marker classes.

Microsatellites (SSRs) are usually considered as the

marker of choice for germplasm analysis, which is evident
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by the high number of papers on that can be retrieved by a

database (SCOPUS) survey by searching for analysis of

olive genetic diversity by means of microsatellites. Despite

of this, a surprisingly high number of papers, mainly based

on RAPDs, AFLPs and ISSRs, have been published

recently. In previous years, when sequence information

about olive was scarce, these markers had the advantage to

enable genetic analysis without any a priori knowledge of

DNA sequencing. Nowadays, irrespective of the high

number of microsatellites already available for olive, these

markers are still frequently being used in several studies.

RAPDs, ISSRs and AFLPs

The use of RAPD markers has been extremely common,

alone or in combination with other markers (AFLPs,

ISSRs, SSRs), to analyse the extent of genetic variability

present in the germplasm of varieties of countries charac-

terised by an old history of olive cultivation and oil pro-

duction: Malta (Mazzitelli et al. 2014), Jordan (Brake et al.

2014), Greece (Linos et al. 2014), Egypt (Elsheikh et al.

2014), Iran (Sheidai et al. 2014), Pakistan (Awan et al.

2011), and Turkey (Coskun and Parlak 2013). In other

papers, RAPD markers have been considered to study the

potential presence of intra-cultivar variability (Çelikkol

Akçay et al. 2014; Figueiredo et al. 2013; Leva and

Petruccelli 2012), the genetic relationships between culti-

vars (Gomes et al. 2012), the genetic characterisation of

minor cultivars in local regions (Parra-Lobato et al. 2012),

the results of in vitro mutagenesis, and the detection of

possible mutants in olive calli caused by the use of sodium

azide (Alborzian Deh Sheikh and Moradnejad 2014).

Generally, ISSR markers have been used in combination

withothermarkers, and thenumber ofmanuscripts basedon the

use of ISSR alone to analyse the genetic diversity of olive

cultivars is relatively low (Kaya 2015). In addition to other

markers, ISSR have been used to study and characterise the

genetic variability in local olive germplasm (Zhan et al. 2015;

Brake et al. 2014; Elsheikh et al. 2014; Linos et al. 2014; Leva

and Petruccelli 2012; Noormohammadi et al. 2012) Further,

Kaya and Yilmaz-Gokdogan (2016) have used ISSRs in addi-

tion to two retrotransposon-based marker systems (IRAP—

inter-retrotransposon amplified polymorphism and REMAP—

retrotransposon-microsatellite amplified polymorphism) for

the molecular characterisation of olive cultivars.

The AFLP markers have been considered for a wide

range of applications, such as association mapping to dis-

cover interesting traits (Kaya et al. 2016; Ipek et al. 2015b),

analysis of the true hybrid nature of crosses between dif-

ferent cultivars (Cáceres et al. 2015), analysis of the

mutagenic effect of X-ray irradiation on olive shoot cul-

tures (Oražem et al. 2013) and the characterisation, in

association with other marker types, of the olive

germplasm of particular regions (Kaya et al. 2013; Strikić

et al. 2011; Albertini et al. 2011).

SSRs

In the last five years, SSRs have been used to survey the

diversity in national olive germplasms of both Mediter-

ranean and non-Mediterranean countries, such as China

(Qin et al. 2016; Zhan et al. 2015), Argentina (Torres et al.

2014), Colombia (Beghè et al. 2015), Iran (Mardi et al.

2016; Sorkheh and Khaleghi 2016; Noormohammadi et al.

2014; Mousavi et al. 2014), Palestine (Obaid et al. 2014),

Turkey (Sakar et al. 2016a, b; Ipek et al. 2012; Ercisli et al.

2012; Işik et al. 2011), Algeria (Abdessemed et al. 2015;

Dominguez-Garcia et al. 2012), Spain (Fernández i

Martı́ et al. 2015; Delgado-Martinez et al. 2012), Italy

(Caruso et al. 2014; Las Casas et al. 2014; Marra et al.

2013; Colao et al. 2011; Rotondi et al. 2011b; Corrado

et al. 2011), Greece (Linos et al. 2014), Tunisia (Ben-Ayed

et al. 2014a, b; Abdelhamid et al. 2013), Morocco (El

Bakkali et al. 2013a, b), Australia (Rehman et al. 2012) and

Croatia (Ercisli et al. 2012). Independent research groups

(Ben Ayed et al. 2016; Trujillo et al. 2014; Xanthopoulou

et al. 2014; Haouane et al. 2011) have carried out analysis

of the genetic relationships between the different acces-

sions maintained in ex situ conservation germplasms, col-

lecting large amounts of samples from all over the world.

Olive trees have a long lifespan, because of this and of

thousands of years of olive cultivation numerous ancient

trees are still present. These plants are extremely important

from a scientific point of view, because apart from their

historical and cultural significance, they are of high interest

because of their genetic potential and their relationships

with other olive varieties currently cultivated (Lazović

et al. 2016). Ancient trees have been recently investigated

using SSR markers (Lazović et al. 2016; Sakar et al. 2016b;

Barazani et al. 2014; Petruccelli et al. 2014; Salimonti et al.

2013). Chalak et al. (2015) analysed 73 olive trees,

including six monumentals from four main Lebanese areas,

with 12 nuclear SSRs and 39 plastid DNA markers. The six

monumental trees evidenced three different molecular

profiles, one of which corresponding with profile of

‘‘Baladi’’, a widespread traditional cultivar. The findings of

the study suggest that Lebanese olives were locally selec-

ted in ancient times, in the preliminary stages of olive

cultivation, and they served as starting material for deriv-

ing, both by vegetative and sexual propagation, the present

traditional varieties. Diez et al. (2011) analysed centennial

olive trees by nuclear SSRs. The results evidenced a high

percentage of unidentified genotypes among the oldest

olives supporting their incredible value as a reservoir of

genetic diversity. Barazzani et al. (2016) analysed the

genetic structure of naturally growing olive trees in Israel.
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The microsatellite analysis evidenced the genetic diversity

of these trees from old cultivated olive trees supporting

they might represent wild var. sylvestris. Further, it was

showed a similarity in genetic structure of these naturally

growing trees with the suckers of old cultivated trees

suggesting that wild trees were used as rootstocks.

The evaluation of genetic diversity is of high interest for

the adequate management of germplasm collections and for

efficient breeding programs. In this respect, a topic of

interest is the evaluation of the genetic diversity existing

between and within cultivars. However, the complexity of

the olive germplasm, the lack of references and the errors

or inaccuracies in the denominations of the cultivars

impedes the classification process. A high number of

studies dedicated at cultivar genotyping have been carried

out recently, with the specific aim to solve these problems.

When SSRs have been used for such purpose, they evi-

denced that some cultivar names refer to a polyclonal

population (Bracci et al. 2009; Ben-Ari et al. 2014; Caruso

et al. 2014; Ipek et al. 2012).

Various analyses have recently been carried out to

characterise the genetic variability in Mediterranean wild

olive, and along with the analysis of cultivated olive, to

reconstruct the domestication origin of this species (Diez

et al. 2015; Hosseini-Mazinani et al. 2014; Noormoham-

madi et al. 2012; Belaj et al. 2011). Overall, these studies

allowed identification of genepools both in cultivated

olives (Haouane et al. 2011; Belaj et al. 2012; Besnard

et al. 2013; Diez et al. 2015), and in oleasters (Belaj et al.

2011; Besnard et al. 2013; Diez et al. 2015), as well as the

detection of recent admixture events between Mediter-

ranean olive and non-Mediterranean relatives (Besnard

et al. 2013, 2014; Cáceres et al. 2015).

SNPs

Single nucleotide polymorphisms (SNPs) are small varia-

tions in the DNA sequence and the most abundant and

ubiquitous markers in any living organisms. For this rea-

son, SNPs, coupled with next generation high-throughput

genomic sequencing technologies, will be the marker sys-

tem of choice in the future. Since a high number of SNPs

starts to be present also in olive, they have been used more

frequently for studying genetic variability in olive. Biton

et al. (2015) developed a large set of 145,974 SNPs using

next generation sequencing technology and subsequently

used a subset of 138 SNPs to analyse 119 cultivars main-

tained in the Israeli germplasm collection. Interestingly,

they found that cultivars were grouped more in terms of

function (oil, table or double purpose) than in terms of their

geographic origin. Kaya et al. (2013) developed a set of

2987 SNPs by transcriptome sequencing, focusing solely

on transcribed genes, and successfully used these markers,

together with AFLPs and SSRs, in characterising 96 olive

genotypes from different areas of Turkey. Dominguez-

Garcia et al. (2012) compared SNPs and SSRs to study a

panel of cultivars from Algeria. While being less poly-

morphic than microsatellites, they showed an interesting

level of polymorphism. At the same time, the authors

recognised the necessity of developing more SNPs to make

them as discriminative as SSRs. Colao et al. (2011)

reported on the development of SNP markers in genes of

interest and on their use to characterise olive cultivars

grown in the Latium region (central Italy), in combination

with microsatellites and morphological features. Belaj et al.

(2012) joined molecular marker (SSR, SNP and DArT)

data and agronomical traits to analyse 361 olive accessions

of the IFAPA germplasm in Cordoba (Spain), defining their

genetic diversity and structure. These data were further

considered to construct a set of core collections of the olive

accessions maintained in the germplasm. The SNPs were

further used for: (1) the analysis of genetic identity among

five putative clones of the olive cultivar Souri (Ben-Ari

et al. 2014); (2) the traceability of olive oil (Kalogianni

et al. 2015) also by developing peptide nucleic acid (PNA)

and modified-PNA microarrays (Rossi et al. 2012); (3)

genetic mapping (Marchese et al. 2016a; Ipek et al. 2016;

Kaya et al. 2016).

Olive oil traceability

Olive oil, a premium product for its nutritional value and

health benefits, is frequently being reported as the most

adulterated plant-derived product in the world, and several

cases of adulterations and frauds have been reported in the

last years, as retrievable from the food fraud database

available online (http://www.foodfraud.org). To prevent

deliberate frauds and sophistications and to distinguish

between dishonest practices and unwanted contamination

during food production processes, the implementation of

currently available traceability procedures is necessary.

Since the mid 1990s, as extensively reviewed by us (Bracci

et al. 2011) and others (Costa et al. 2012; Agrimonti et al.

2011), scientists from the largest olive oil-producing

countries have developed a number of methods for recov-

ering PCR grade DNA of the production cultivars from

high-quality PDO productions. The rationale for this was

that since DNA is not influenced by the environment and

less influenced by processing with respect to other mole-

cules (i.e. metabolites), the molecular tools could represent

a promising and valid implementation of the traceability of

food in general and olive oil in particular (Busconi et al.

2003; Ramos-Gómez et al. 2014, 2016; Bracci et al. 2011;

Pafundo et al. 2010). Research groups have considered and

tested several approaches, and specific protocols were

adapted to existing commercial kits, but the results were,
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and still are, uncertain and have different drawbacks.

Among such drawbacks are the small quantity and quality

of the recovered DNA, the low reproducibility of both

extractions and PCR amplifications with the documented

absence of correspondence between the profiles of olive oil

and fruit DNA of the same cultivars, and the possibility to

obtain the marker profile of the main cultivar while no

signal was usually obtained for the secondary varieties

eventually present (see Bracci et al. 2011 for individual

references). Despite of this, the development of methods to

trace olive oil production by DNA analysis is still a topic of

great interest, as stated by the high number of respective

papers published in the last four years, as retrieved by main

databases (SCOPUS, Web of knowledge, Pubmed, all

accessed in October 2016).

In the following, we are discussing the results of studies

using standard and innovative approaches.

Innovative methods to analyse DNA from olive oil

A first aspect needs to be discussed is that—after at least

20 years of efforts—there is still an uncertainty about the

methods to be used to recover PCR-compatible DNA. This

step is still the limiting process influencing the overall

results of any traceability purposes and despite the avail-

ability of established methods (see Pasqualone et al. 2016;

Bracci et al. 2011 for further references), new papers

dealing with the development of protocols (Ramos-Gómez

et al. 2014; Raieta et al. 2015) or the comparison of dif-

ferent methods to find the adequate approach (Scollo et al.

2016; Ramos-Gómez et al. 2014) are published, denoting

the necessity of a continuous and active improvement of

DNA extraction for oil traceability.

Recently, Scollo et al. (2016) applied droplet digital

PCR (ddPCR) to quantify the DNA recovered from oil by

applying different methods. Again, the authors evidenced

that the methods can modify the quantity/quality of

recovered DNA and overall reproducibility. In this paper,

the use of ddPCR is to quantify precisely the extracted

DNA suggested, considering that spectrophotometric and

electrophoretic DNA quantification methods, but also

quantitative real-time PCR (qRT-PCR), because of the

possible presence of polymerase inhibitors, do not permit

reliable assessments. The ddPCR is an endpoint PCR (see

Scollo et al. 2016; Pinheiro et al. 2012; Hindson et al. 2011

for further details of the technique), enabling the quantifi-

cation of DNA irrespective of the efficiency of the PCR.

This parameter can be influenced by the presence of inhi-

bitors whose presence can result in the frequently observed

lack of reproducibility, or in the non-complete concordance

between genetic profiles of DNA from olive oils and fruits,

reported by Doveri et al. (2006). Further, using adequate

molecular markers, ddPCR could be used to detect the

presence of small amounts of DNA from different species

or varieties in the same species (Scollo et al. 2016).

The use of qRT-PCR alone or associated with High

Resolution Melting (HRM) analysis was applied to oil

traceability. For example, Ramos-Gómez et al. (2014), in

developing a new method to recover PCR grade DNA from

different vegetable oils, applied qRT-PCR to evaluate the

performance of the extraction protocols. Similarly, Ramos-

Gómez et al. (2016) compared eight different methods

based on their efficiency in the qRT-PCR assay, sensitivity

to DNA detection and DNA mixtures, sensitivity and

specificity to recover olive DNA from the oils and from

commercial oil-derived foodstuffs. The use of HRM allows

the discrimination of DNA fragments with only a single

different base. Montemurro et al. (2015) developed an

SSR-based method coupled with HRM analysis to distin-

guish Terra di Bari olive oil from non-Terra di Bari olive

oil, using different mixtures suggesting the possible dis-

tinction and identification of the PDO mixtures. The

authors of other papers (Ganopoulos et al. 2013; Vietina

et al. 2013) used appropriate molecular markers to develop

conserved nuclear and plastidial DNA plant sequences

(fatty acid desaturase, oleosin and chloroplast barcoding

rbcL regions) and applied HRM analysis to trace adulter-

ation of olive oils from different plant species at the level

of 1% (w/w).

Molecular markers for DNA-based traceability of oil

productions

Concerning the use of DNA markers for traceability pur-

poses, there is an increasing interest in using SNPs (Single

Nucleotide Polymorphism) for food analysis. While SSRs

are usually the most frequently used DNA markers in these

studies, the use of SNPs has been suggested based on the

following criteria: (1) as the DNA recovered from pro-

cessed food is usually highly degraded, SNPs provide the

advantage of enabling genotyping with shorter DNA

fragments (Uncu et al. 2015); (2) SNPs are abundant in

both coding and non-coding regions of a genome, allowing

an easy discrimination of related genotypes. Bazakos et al.

(2012, 2016), using SNPs markers residing in restriction

sites, associated with PCR–RFLP capillary electrophoresis,

could discriminate both olive cultivars and the corre-

sponding monovarietal oil from Greece and from different

Mediterranean countries (Tunisia and Lebanon), eventually

evidencing admixtures at the limit of 10%. Kalogianni

et al. (2015) reported on the first multiplex SNP genotyping

assay for olive oil cultivar identification. The assay was

carried out on a suspension of fluorescence-encoded

microspheres and allele discrimination was obtained by

primer extension reaction. Using three selected SNPs, the

authors could identify five common Greek olive cultivars
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(Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki

and Valanolia). Ganopoulos et al. (2013) associated SNPs

in plastidial regions and HRM to find contamination with

oils of different plant species. In addition, Ben-Ayed et al.

(2014a, b) used some of the SNPs identified in the olive

genome to authenticate Tunisian oil productions. Other

than SNPs, SSRs continue to be highly considered and used

in traceability studies: Montemurro et al. (2015), Ben-Ayed

et al. (2012), Rotondi et al. (2011a), Vietina et al. (2011)

and Corrado et al. (2011). Ben Ayed et al. (2016) presented

the Olive Genetic Diversity Database (OGDD) (http://

www.bioinfo-cbs.org/ogdd/), which contains genetic,

morphologic and chemical information about different

olive cultivars. In this database, the genetic information

about the cultivars is related to their SSR allele size.

An important outcome of Olea europaea genomic

studies has been the DNA sequencing of the entire plas-

tome of the Italian cultivar ‘Frantoio’ (Mariotti et al. 2010).

At the same time, papers reporting on plastidial DNA

markers for traceability were published. Spaniolas et al.

(2010) used SNPs identified in the trnL (UAA) intron to

identify the botanical origin of plant oils, with a special

reference to olive and sesame oils. Pérez-Jiménez et al.

(2013) tested the performance of plastidial markers of

different types to fingerprint 17 Spanish cultivars, evi-

dencing a rare haplotype in high-value genotypes used to

produce regional commercial oil. This supports the utility

of chloroplast DNA for oil traceability. As already repor-

ted, Ganopoulos et al. (2013) used plastidial SNPs on

chloroplast rbcL barcoding regions for traceability pur-

poses of vegetable oils. Ramos-Gómez et al. (2014) used

chloroplast markers based on rbcL and on the intron of the

trnL (UAA) gene to optimise an extraction method of PCR

grade DNA from vegetable oils. The same authors (Ramos-

Gómez et al. 2016), with the aim to develop a new QRT-

PCR method to be applied for oil traceability, designed

markers on different regions of chloroplast DNA genes

(trnE, trnQ, ycf1, clpP) and a region between PetN and

PsbM genes.

Finally, a complete review has been published recently

(Pasqualone et al. 2016), reporting on the evolution and

perspectives of traceability from tree to oil and table olives

by means of DNA markers.

Genetic improvement of olive: paternity analysis
and molecular linkage maps

Like in many other woody plants, the olive juvenile phase

is relatively long, ranging between 10 and 15 years. This

represents an obstacle to breeding by making it difficult

and expensive. Seedling-forcing protocols have been

developed to decrease the time of the juvenile phase.

However, the assessment of the agronomic performance of

mature plants still requires years of testing (Santos-Antunes

et al. 2005). Therefore, molecular markers can be useful

both to confirm the parental origins of the progeny and to

select early agronomical characteristics associated with the

markers, thereby reducing the duration and cost of olive

breeding.

Paternity analysis

Regarding the paternity analysis, SSRs are appropriate to

evidence the genetic contribution from the parents to the

offspring since they are codominant and highly polymor-

phic (Mookerjee et al. 2005). In olive breeding programs,

the effectiveness of SSRs in the identification of paternity

contribution to the progeny has been proven by a number

of authors (De la Rosa et al. 2004; Diaz et al. 2007; Klepo

et al. 2013; Shemer et al. 2014; Cáceres et al. 2015). The

results have shown that SSRs are convenient to assess

routinely the crosses and to check self-incompatibility in

olive cultivars (Diaz et al. 2006). Rehman et al. (2012)

used nuclear SSR to distinguish Australian olive geno-

types; the results supported the use of SSRs as a tool for

cultivar differentiation and identification as well as reliable

identification of mother plants for commercial propagation.

Biton et al. (2012), using microsatellite data of different

cultivars and phenotypic data of the corresponding hybrids,

evidenced the presence of significant correlation in terms

of genetic distance between cultivars and F1 performance

for three traits: percentage of dry fruit weight, oil content

and commercial oil production.

De la Rosa et al. (2013) reported on the development of

hexa-nucleotide expressed sequence tags derived from

simple sequence repeats (EST-SSRs). These markers had

high levels of polymorphism, and the long-core repeat

motif permitted an accurate genotyping. The markers were

tested successfully on a set of cultivars used as genitors in

the olive breeding program of Córdoba (Spain).

The self-(in)compatibility of two cultivars, the Spanish

‘‘Arbequina’’ and the Greek ‘‘Koroneiki’’, recently intro-

duced in cultivation in Sicily, has been investigated

(Marchese et al. 2016b). Self-pollination and open-polli-

nation tests, observation of fruit set and DNA analyses with

SSR markers were carried out to ascertain whether these

cultivars were self-fertile and/or inter-compatible. The

results evidenced that none of the ‘‘Arbequina’’ seeds

originated from self-fertilisation and none of them had

‘‘Koroneiki’’ as the pollen parent. In contrast, ‘‘Koroneiki’’

was predominantly self-compatible, with 70% of the seeds

originating from self-fertilisation.

The clarification of the genetic determination of self-

incompatibility in olive has been carried out by Saumitou-

Laprade et al. (2017). The study evidenced that self-
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incompatibility in olive is under sporophytic genetic con-

trol and that olive is characterised by a homomorphic

diallelic self-incompatibility system as other plant species

(Fraxinus ormus and Phillyrea angustifolia). The clarifi-

cation of the self-incompatibility in O. europaea will be

extremely useful to optimise fruit production.

Recently, Beghè et al. (2017) used SSRs and paternity

analysis to investigate the pollen flow, measuring pollen

immigration rate and dispersal distance, and the spatial

genetic structure in an endemic wild olive forest in

Andalusia (southern Spain). The study was carried out to

understand the mechanisms shaping the spatial distribution

of genetic variation in Olea europaea subsp. europaea var.

sylvestris.

Genetic mapping

Traditionally, genetic mapping has been carried out by

linkage analysis on segregating populations, estimating the

frequency of the recombination between the markers used

to genotype the population and between the markers and

genomic loci influencing traits of interest.

The first olive linkage map by means of 279 RAPDs,

304 AFLPs, few RFLPs and SSRs was obtained using 95

seedlings and the pseudo testcross strategy, derived from

Leccino (female parent) 9 Dolce Agogia (male parent)

cultivars in 2003 (De la Rosa et al. 2003). Two genetic

maps were obtained, covering, respectively, 2765 cM and

22 major linkage groups in the cv Leccino and 2445 cM

and 27 major linkage groups in the cv Dolce Agogia.

Subsequently, Wu et al. (2004) used 104 seedlings from the

crossing between the cultivars Frantoio (female parent) 9

Kalamata (male parent) to obtain two parental and an

integrate linkage map using the pseudo-testcross strategy.

Recently, new and interesting results were obtained in this

sector; in 2010, two papers reported on the development of

linkage maps: Khadari et al. (2010), using 147 seedlings of

a cross between the cultivars Olivière (female parents) 9

Arbequina (male parents), and El Aabidine et al. (2010),

using 140 cross progenies from the cultivars Picholine

Marocaine (female parent) 9 Picholine du Languedoc

(male parent). The first population (Khadari et al. 2010)

was analysed using more than 400 markers (AFLPs, ISSRs

and SSRs) while the second population (El Aabidine et al.

2010) was characterised using nearly 600 markers (SSRs,

AFLPs, ISSRs, RADs, SCARs). With respect to the first

maps, these two maps were obtained using a higher number

of markers, making them a more suitable tool for appli-

cations such as QTLs detection.

In 2012, Dominguez-Garcia et al. (2012), using the

progeny derived from Picual (female) 9 Arbequina (male),

generated a map using 1630 DArT (diversity arrays tech-

nology) and 38 SSR markers. Ben Sadok et al. (2013)

increased the number of markers mapped on the existing

Olivière 9 Arbequina map (Khadari et al. 2010); the

resulting female map consisted of 25 linkage groups cov-

ering 1745 cM, while the paternal map consisted of 21

linkage groups covering 1597 cM and the integrated map

of 26 linkage groups covering 2148 cM. This map is cur-

rently the most saturated map obtained for olive with

classic molecular markers. In 2014, Essalouh et al. (2014)

added new markers, EST (Expressed Sequence Tags)

derived SSRs, to further increase the saturation of the map

obtained by Khadari et al. (2010).

With respect to the maps so far developed, usually based

on small numbers of molecular markers and characterised

by a medium–low saturation, the recent development of

Next Generation Sequencing technologies has enabled the

generation of new maps with a high saturation of markers

using high-throughput markers such as SNPs. Ipek et al.

(2016) and Marchese et al. (2016a) used GBS (Genotyping

by Sequencing) to generate a high number of SNPs to

obtain highly saturated genetic maps with a higher reso-

lution capacity than those of the existing genetic maps.

Ipek et al. (2016) identified 10,941 new SNPs by applying

GBS. The resulting high-density genetic linkage map was

developed using 121 cross-pollinated full-sib F1 progenies,

derived from the crossing between cultivars Gemlik and

Edincik-Su, and 5643 markers (21 SSRs, 203 AFLPs, and

5736 SNPs). The map was constituted of 25 linkage

groups, spanning 3049 cM of the genome. Marchese et al.

(2016a) developed a saturated map with 1597-tagged SNPs

on the segregating progeny from the selfing of the cultivar

Koroneiki. Twenty-three linkage groups composed the

map, covering 11,897 cM. A further 6658 SNPs were

associated with the 23 linkage groups, albeit their order

was not determined. These articles showed that GBS is a

valuable tool to identify thousands of SNPs to generate

highly saturated olive maps.

Genetic maps are a useful tool to map QTLs (Quanti-

tative Trait Loci). Usually, the high number of character-

istics useful from an agronomic or economic point of view

is quantitative traits and controlled by a high number of

loci (QTLs) spread in the genome. Ben Sadok et al. (2013)

identified 12 QTLs on the genetic map based on Olivière 9

Arbequina (Khadari et al. 2010), with small effects for

interesting traits such as flowering; fruiting and production

at whole tree scale. The highest part of QTLs was linked to

alleles from the paternal cultivar Arbequina.

Atienza et al. (2014) analysed the same mapping pop-

ulation of Dominguez-Garcia et al. (2012). Twenty-two

putative QTLs were identified in the map of Arbequina;

more specifically, they detected QTLs for: (1) oil traits on

linkage groups 1, 10 and 17; the QTLs on linkage groups 1

and 10 explained circa the 20–30% of phenotypic variance;

(2) moisture-related traits on linkage groups 1, 10 and 17;
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(3) pulp/stone ratio in linkage groups 10 and 17 explaining

15–20% of phenotypic variation. Five additional QTLs

were evidenced in the map of Picual: four QTLs for fruit

weight on linkage group 17 and an additional QTL for

trunk diameter on linkage group 14, explaining 16% of the

phenotypic variance.

The classic approach to map loci of interest is based on

the analysis of biparental populations obtained by crossing

contrasting parental material for the phenotype of interest.

Recently, association mapping has been proposed as a valid

and complementary strategy to genetically map agronomic

traits. For association mapping studies, also termed Gen-

ome-wide Association Study (GWAS), the following fac-

tors are necessary: availability of a high number of

molecular markers (as SNPs) for genotyping a germplasm

and precise phenotypic characterisation of the same

germplasm. The aim of this analysis is to find linkage

disequilibrium (LD) between markers and traits. In classic

linkage mapping, the association between a marker and the

trait of interest is a consequence of the recombination

events taking place in the segregating population of a

biparental cross. Contrarily to this, in a GWAS experiment,

the association is a consequence of the numerous recom-

bination events that occurred over the years during the

evolution of the germplasm. This can lead to a more pre-

cise characterisation of loci of interest with respect to

classic approaches. Phenotyping a large germplasm can be

expensive and time-consuming, especially for perennial

plant species. To avoid this, the definition of a core col-

lection of an individual representative of the whole germ-

plasm can be an alternative. With this aim, El Bakkali et al.

(2013a, b) and Khadari et al. (2014), by analysing the

global olive germplasm bank (OWGB Marrakech, Mor-

occo), proposed two core collections useful for such stud-

ies, consisting of 50 and 94 individuals. These collections

grouped some of the cultivars considered as the most

important ones in Mediterranean countries and displayed a

limited genetic structure between east and west/centre gene

pools. Consequently, they could efficiently be used in

association studies. Belaj et al. (2012), using different

kinds of markers, analysed the IFAPA germplasm to define

a core collection. Different subsets of 18, 27, 36, 45 and 68

olive accessions, corresponding to 5, 7.5, 10, 12.5 and

19%, respectively, of the whole germplasm collection were

selected. Based on the obtained results, the core collection

of 68 accessions, because of a high efficiency at capturing

the alleles/traits states found in the whole collection, could

be of special interest for studies such as GWAS.

Kaya et al. (2016) reported the first GWAS study in

olive to find an association between molecular markers and

traits of interest. The authors analysed 96 olive genotypes

using SNP, AFLP, and SSR markers and five traits related

to yield, detecting eleven significant associations. The

highest number of significant associations was found for

fruit and stone weight. These results evidenced the utility

of GWAS in detecting loci of interest without the devel-

opment of a mapping population. Ipek et al. (2015a)

characterised an olive core collection using SSRs to detect

markers associated with the content of fatty acids in the oil

to be used in marker-assisted breeding of olive. The authors

found strong correlations between SSR DCA14 and stearic

acid content and between SSR GAPU71B and oleic acid

content.

Genomics studies

Genome sequencing

Knowledge of genome sequences is crucial for our

understanding of plant biology; therefore, the genome

sequences of a large number of organisms are expected to

be completed in the near future. In olive, three sequencing

projects started in the last years, namely the Italian OLEA

project (Muleo et al. 2012), the international IOGC Inter-

national Consortium, sequencing the genome of a wild

olive (O. europaea, var. sylvestris; Unver et al. 2016), and

the sequencing of an over 1000-year-old tree of the Spanish

variety Farga (Cruz et al. 2016). The latter project was the

first one to provide a draft of the olive genome, spanning a

length of 1.31 Gb out of the estimated 1.38 Gb genome

size, with a median C-value of 1.59 pg. The predicted

number of protein gene-coding sequences, supported also

by RNA sequencing from the different plant tissues, was

estimated to be higher than 56,000. Recently, Barghini

et al. (2014, 2015) carried out an analysis of the repeated

fraction of the olive genome and reported a peculiar

structure of this genome, as compared to that of other

plants, with a large percentage of satellite DNA related to a

few satellite tandem repeat families Oe80, Oe86, Oe178,

Oe179 and Oe218, representing approximately 97% of this

class of repeated elements. Among the repeated sequences,

retrotransposons represent 40.265%; DNA transposons

5.514% tandem repeats 31.161% of the olive genome. In

terms of the two-main superfamilies of LTR-retrotrans-

posons, Gypsy and Copia-like LTR are present in a ratio of

1.17:1, indicating that the first ones are more abundant,

even if the number of Gypsy families is smaller than the

number of Copia, and that the Gypsy retro-transcription

event started earlier in the genetic flow of the olive tree

genome development (Barghini et al. 2014). The charac-

terisation of olive short interspersed nuclear elements

(SINEs) nonautonomous retrotransposons was recently

carried by Barghini et al. (2016) providing one of the first

sets of these elements in dicotyledonous species and adding

new information on olive genome evolution. Generally,
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SINEs have been detected in single copy or just lowly

repeated and often associated with genic sequences. The

comparison of olive SINEs and other LTR families sug-

gested that SINE expansion in the genome occurred in very

ancient times, preceding LTR expansion, and likely before

the separation of the rosids from the asterids.

Functional genomics

Functional genomics is the study of the gene function as

well as of other parts of the genome. In olive, the identi-

fication and annotation of genes prior to genomic

sequencing were based on expressed sequence tag (EST)

identification, initially focused on pollen allergens and fruit

traits. Olive pollen causes respiratory allergies worldwide

(cases have been reported in Mediterranean countries,

North and South America and Australia). In the Mediter-

ranean area, a high percentage (above 30%) of the residing

people is affected by this problem (Bousquet et al. 1984),

and allergens (Ole e 1 to Ole e 10) have been detected in

olive pollen (Rodrı́guez et al. 2002; Hamman-Khalifa et al.

2008). The nucleotide sequence of Ole e 1 gene is char-

acterised by high heterogeneities and polymorphisms.

Hamman-Khalifa et al. (2008) evidenced that the origin of

the cultivar is basically the main factor for Ole e 1 variance

among pollens. Polymorphisms in the nucleotide sequence

influence the amino acid sequence and the folding of the

protein, leading to high variability in Ole e 1 allergenicity.

Data agree with observations carried out both in vivo and

in vitro about the capacity of olive cultivar allergens in

binding IgE antibodies. Interestingly, polymorphisms in

gene Ole e 1 are that high that even strictly related varieties

can be recognised as dissimilar, which is the case in cul-

tivars ‘Picholine marocaine’ and ‘Menara’, usually con-

sidered a clonal selection of the first.

A number of studies have focused on genes important in

determining fruits and oil traits, such as the genes involved

in fatty acid biosynthesis, namely enoyl-ACP reductase,

plastidial stearoyl-ACP desaturase (SAD), omega 6

microsomal (FAD2-1, FAD2-2) and plastidial (FAD6)

desaturase, omega 3 microsomal (FAD3-A, FAD3B) and

plastidial desaturase (FAD7-1 and FAD7-2), acyl-CoA

diacylglycerol acyltransferase (DAGAT) and the respective

enzymes for electron donor cytochrome b5 reductase for

microsomal desaturases and ferredoxin-NAD(P) reductase

for plastidial desaturases (Hernández et al. 2011). Oleosin

enzymes have been identified (Hatzopoulos et al. 2002).

Some studies have been carried out to clone, characterise

and analyse the spatial/temporal activation of genes

involved in these pathways (Banilas et al. 2005; Poghosyan

et al. 2005; Hernández et al. 2005, 2009, 2016). In olive,

Cultrera et al. (2014) isolated six acyl carrier protein ACP

cDNAs and characterised their genomic sequences coding

for plastidial ACP isoforms. Three OeACP loci, with one

pair of alleles each, were recognised and transcript abun-

dance of OeACP1 was found extremely low in comparison

to the other OeACP genes. The OeACP2 was abundant in

fruit and leaf tissues, while OeACP3 was highly expressed

in flowers. The expression pattern of ACP genes during

fruit development was correlated with the amount of pro-

tein, suggesting that OeACP2 and OeACP3 proteins are

involved in the synthesis of fatty acids and triacylglycerol

accumulation. Recently, Parvini et al. (2016) studied the

specific contribution of different stearoyl-ACP desaturase

(SAD) genes to the oleic acid content in olive fruit and

isolated three distinct cDNA clones encoding three SAD

isoforms. Measuring lipid content and gene expression

analyses, they showed that OeSAD2 seems to be the main

gene contributing to the oleic acid content of the olive fruit.

Furthermore, data show that the microsomal oleate desat-

urase gene OeFAD2-2 is responsible for the linoleic acid

content in virgin olive oil.

Beside fatty acid composition, minor components play a

crucial role in human health and protect DNA, proteins and

lipids from oxidative damage. Regarding this aspect, phe-

nolic compounds have been extensively analysed, and as

previously reviewed by Hatzopoulos et al. (2002), high-

quality olive oils resistant to oxidation processes can be

obtained by increasing these antioxidant molecules in olive

fruits. Studies related to the biosynthetic pathways of

antioxidants have been performed (Shibuya et al. 1999;

Hatzopoulos et al. 2002; Saimaru et al. 2007), resulting in

the cloning of a monosaccharide transporter (OeMST2)

(Conde et al. 2007). In 2009, the identification of genes

differentially expressed during fruit development was

achieved by Alagna et al. (2009), using high-throughput

sequences (454-sequencing). The authors sequenced four

different cDNA libraries obtained from transcripts isolated

in different periods of fruit development (at the beginning

and at the end) from varieties Coratina and Tendellone

(characterised, respectively, by high and low-phenolic

contents). Galla et al. (2009) identified a large set of dif-

ferentially expressed genes at three different olive pheno-

logical stages (i.e. initial fruit set, completed pit hardening

and veraison) in the Leccino cultivar. In this case, four

subtractive hybridization libraries were constructed and the

sequenced clones (1132 in total) showed 60% of similari-

ties to known proteins. Alagna et al. (2012) studied several

phenolics (oleuropein, demethyloleuropein, 3–4 DHPEA-

EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside

and lignans) in fruits of 12 olive cultivars, identifying

transcripts homologous to genes involved in the pathways

of these secondary metabolites. The mRNA levels of

transcripts putatively involved in phenolic biosynthesis

measured in fruits of high- (Coratina) and low-phenolic

(Dolce d’Andria) varieties at three different developmental
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stages of fruits significantly correlated with the concen-

tration of phenolic compounds. 45 days after flowering,

OeDXS, OeGES, OeGE10H and OeADH, encoding puta-

tive 1-deoxy-D-xylulose-5-P synthase, geraniol synthase,

geraniol 10-hydroxylase and arogenate dehydrogenase,

respectively, were highly represented, suggesting that they

play a key role in secoiridoid accumulation during fruit

development. Recently, Alagna et al. (2016) could identify

candidate genes belonging to the secoiridoid pathway in

olive. The functional characterisation of the olive homo-

logue of iridoid synthase (OeISY) proved that it is an

unusual terpene cyclase that couples an NAD (P)H-de-

pendent 1,4-reduction step with a subsequent cyclisation.

These results are evident that OeISY likely generates the

monoterpene scaffold of oleuropein.

A number of other functional genomics investigations

concern the fitness of olive in stressful environmental

conditions. The expression of aquaporin genes was studied

by Secchi et al. (2007) to evaluate the impacts of drought

on olive. The authors found a strong down-regulation in

these genes following drought, most likely resulting in

reduced membrane permeability to water, preventing water

loss. Bruno et al. (2009) isolated a geranylgeranyl reduc-

tase (OeCHLP) gene and hypothesised its role in organ

development and responses to abiotic and biotic stresses in

relation to tocopherol activity. Recently, Perez-Martin

et al. (2014) carried out an experiment of short-term water-

stress and recovery in olive, measuring the changes in leaf

gas exchange, chlorophyll fluorescence and plant water

status and evaluating correlations with the expression

levels of three genes: two aquaporins (OePIP1.1 and

OePIP2.1) and one stromal carbonic anhydrase. Based on

their results, both aquaporins and carbonic anhydrase are

involved in the regulation of stomatal (gs) and mesophyll

conductance (gm). Using structural equation modelling, the

authors proved that both OePIP1.1 and OePIP2.1 could

explain most of the variations observed for gs and gm, while

the carbonic anhydrase had a small effect on gm.

Olive is moderately resistant to salinity and shows

mechanisms of exclusion/retention of salt at the root level,

thereby avoiding Na? and Cl- accumulation in the aerial

organs. Up to now, specific molecular and genomic studies

on this topic in olive are scarce. Bazakos et al. (2016)

investigated the molecular responses of olive leaves and

roots to salinity using next generation sequencing technol-

ogy. In this study, many differentially expressed genes

related to salt tolerance were found, and in leaf transcripts

corresponding to glutathione reductase, superoxide dismu-

tase and proline dehydrogenase were identified. Rossi et al.

(2016) showed that phenolic compounds remain stable or are

strongly depleted under long-time treatment with sodium in

the salt-sensitive cultivar Leccino, determining a strong up-

regulation of key genes of the phenylpropanoid pathway. In

the salt-resistant cultivar Frantoio, the content of phenolic

compounds was always high and the up-regulation of the

phenylpropanoid genes was less intense.

Beside abiotic stresses, lowwinter temperatures can cause

extensive damage to olive plants. Transcriptome analysis of

olive leaves during cold acclimation resulted in the identi-

fication of 6309 differentially expressed transcripts in cv

Picual (de la Leyva-Perez et al. 2015). Similarly, Guerra

et al. (2015) performed an RNA-Seq analysis of short- and

long-term transcriptional changes during cold acclimation,

identifying specific cold response genes of olive.

Finally, olivemust copewith several biotic stressors (such

as insects, fungi, bacteria and viruses), and the understanding

of the molecular basis of the olive response to these stressors

is of fundamental importance for breeding and innovative

crop management solution. Since an exhaustive description

of all these genomic studies is not possible in this review, a

comprehensive and detailed analysis can be found in a book

recently edited by Rugini et al. (2016).

Conclusions and future perspectives

In this review, an update of the research work done in olive

genetics and genomic has been given. Considering the state of

the art reported in Bracci et al. (2011) the progress in these

areas have been relevant as proved by the number of publi-

cations released. Very likely this result has been determined

by the increasing relevance of olive oil and fruits for human

nutrition that represent a driving factors for researcher’s

activities and curiosity. The recent release of the olive geno-

mic sequence and the expected resequencing of several olive

varieties will speed up further the application of molecular

tools in taxonomy, varietal identification, traceability and

breeding of this species. In the next decade, functional geno-

mics studies assisted by agronomical and physiological phe-

notyping tools and by a tighter integration of the different

omics sciences (genomics, epigenomics, transcriptomics,

proteomics and metabolomics) will be helpful in explaining

olive fitness and yield performance in hostile environment.
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chloroplast and mitochondrial DNA polymorphism to study

cytoplasm genetic differentiation in the olive complex (Olea

europaea L.). Theor Appl Genet 105:139–144

Besnard G, Christin PA, Baali-Cherif D et al (2007a) Spatial genetic

structure in the Laperrine’s olive (Olea europaea subsp.

laperrinei), a long-living tree from the central Saharan moun-

tains. Heredity 99:649–657

Besnard G, Henry P, Wille L, Cooke D, Chapuis E (2007b) On the

origin of the invasive olives (Olea europaea L. Oleaceae).

Heredity 99:608–619

Besnard G, Rubio de Casas R, Vargas P (2007c) Plastid and nuclear

DNA polymorphism reveals historical processes of isolation and

reticulation in the olive tree complex (Olea europaea). J Bio-

geogr 34:736–752

Besnard G, Garcı́a-Verdugo C, Rubio de Casas R, Treier UA, Galland

N, Vargas P (2008) Polyploidy in the olive complex (Olea

europaea L.): evidence from flow cytometry and nuclear

microsatellite analyses. Ann Bot 10:25–30

Besnard G, Rubio de Casas R, Christin PA, Vargas P (2009)

Phylogenetics of Olea (Oleaceae) based on plastid and nuclear

ribosomal DNA sequences: tertiary climatic shifts and lineage

differentiation times. Ann Bot 104:143–160

Besnard G, Hernández P, Khadari B et al (2011) Genomic profiling of

plastid DNA variation in the Mediterranean olive tree. BMC

Plant Biol 11:80

1356 Plant Cell Rep (2017) 36:1345–1360

123

http://dx.doi.org/10.1007/978-0-387-77594-4_13
http://dx.doi.org/10.1007/978-0-387-77594-4_13
http://www.oleadb.it/
http://dx.doi.org/10.1093/database/bav090
http://dx.doi.org/10.1093/database/bav090


Besnard G, Anthelme F, Baali-Cherif D (2012) The Laperrine’s olive

tree (Oleaceae): a wild genetic resource of the cultivated olive

and a model-species for studying the biogeography of the

Saharan Mountains. Acta Bot Gallica 159:319–328

Besnard G, Bakkali AE, Haouane H et al (2013) Population genetics

of Mediterranean and Saharan olives: geographic patterns of

differentiation and evidence for early generations of admixture.

Ann Bot 112:1293–1302

Besnard G, Dupuy J, Larter M et al (2014) History of the invasive

African olive tree in Australia and Hawaii: evidence for

sequential bottlenecks and hybridization with the Mediterranean

olive. Evol Appl 7:195–211

Biton I, Shevtsov S, Ostersetzer O et al (2012) Genetic relationships

and hybrid vigour in olive (Olea europaea L.) by microsatellites.

Plant Breed 131:767–774

Biton I, Doron-Faigenboim A, Jamwal M et al (2015) Development of

a large set of SNP markers for assessing phylogenetic relation-

ships between the olive cultivars composing the Israeli olive

germplasm collection. Mol Breed 35:107

Bousquet J, Cour P, Guerin B, Michel FB (1984) Allergy in the

Mediterranean area I. Pollen counts and pollinosis of Montpel-

lier. Clin Allergy 514:249–258

Bracci T, Sebastiani L, Busconi M et al (2009) SSR markers reveal

the uniqueness of olive cultivars from the Italian region of

Liguria. Sci Hortic 122:209–215

Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Overview on

molecular studies in olive (Olea europaea L.): DNA markers

application and first results in genome analysis. Plant Cell Rep

30:449–462

Brake M, Migdadi H, Al-Gharaibeh M et al (2014) Characterization

of Jordanian olive cultivars (Olea europaea L.) using RAPD and

ISSR molecular markers. Sci Hortic 176:282–289

Breviglieri N, Battaglia E (1954) Ricerche cariologiche in Olea

europaea L. Caryologia 6:271–283

Brito G, Loureiro J, Lopes T, Rodriguez E, Santos C (2008) Genetic

characterisation of olive trees from Madeira Archipelago using

flow cytometry and microsatellite markers. Genet Resour Crop

Evol 55:657–664

Brito G, Lopes T, Loureiro J et al (2010) Assessment of genetic

stability of two micropropagated wild olive species using flow

cytometry and microsatellite markers. Trees 24:723–732

Bruno L, Chiappetta A, Muzzalupo I et al (2009) Role of geranyl-

geranyl reductase gene in organ development and stress response

in olive (Olea europaea) plants. Funct Plant Biol 36:370–381

Busconi M, Foroni C, Corradi M et al (2003) DNA extraction from

olive oil and its use in the identification of the production

cultivar. Food Chem 83:127–134
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SSR and morphological markers. Tree Gen Genomes

10:141–155

Uncu AT, Frary A, Doganlar S (2015) Cultivar origin and admixture

detection in Turkish olive oils by SNP-Based CAPS assays.

J Agric Food Chem 63:2284–2295

Unver T, Dorado G, Hernandez P et al (2016) Lessons from whole

genome sequencing of olive tree (Olea europaea L.). In: XXIV

plant and animal genome conference, W371. San Diego, CA

Vietina M, Agrimonti C, Marmiroli M et al (2011) Applicability of

SSR markers to the traceability of monovarietal olive oils. J Sci

Food Agric 91:1381–1391

Vietina M, Agrimonti C, Marmiroli N (2013) Detection of plant oil

DNA using high resolution melting (HRM) post PCR analysis: a

tool for disclosure of olive oil adulteration. Food Chem

141:3820–3826

Wu S, Collins G, Sedgley M (2004) A molecular linkage map of olive

(Olea europaea L.) based on RAPD, microsatellite, and SCAR

markers. Genome 47:26–35

Xanthopoulou A, Ganopoulos I, Koubouris G et al (2014) Microsatel-

lite high-resolution melting (SSR-HRM) analysis for genotyping

and molecular characterization of an Olea europaea germplasm

collection. Plant Genetic Resour Charact Utilisation 12:273–277

Zhan MM, Cheng ZZ, Su GC et al (2015) Genetic relationships

analysis of olive cultivars grown in China. Gen Mol Res

14:5958–5969

1360 Plant Cell Rep (2017) 36:1345–1360

123

http://dx.doi.org/10.1007/978-3-319-48887-5
http://dx.doi.org/10.1111/eva.12457

	Recent developments in olive (Olea europaea L.) genetics and genomics: applications in taxonomy, varietal identification, traceability and breeding
	Abstract
	Key message
	Abstract

	Why olive?
	Cytogenetic and ploidy analyses in Olea europaea
	Ribosomal and cytoplasmic DNA variation
	Ribosomal DNA polymorphism
	Cytoplasmic DNA polymorphism

	Applications of DNA-based molecular markers in Olea europaea
	Studies on genetic variability of the Olea europaea complex
	RAPDs, ISSRs and AFLPs
	SSRs
	SNPs

	Olive oil traceability
	Innovative methods to analyse DNA from olive oil
	Molecular markers for DNA-based traceability of oil productions


	Genetic improvement of olive: paternity analysis and molecular linkage maps
	Paternity analysis
	Genetic mapping

	Genomics studies
	Genome sequencing
	Functional genomics

	Conclusions and future perspectives
	References




