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Abstract

Key message Improved knowledge about plant cold

stress tolerance offered by modern omics technologies

will greatly inform future crop improvement strategies

that aim to breed cultivars yielding substantially high

under low-temperature conditions.

Abstract Alarmingly rising temperature extremities pre-

sent a substantial impediment to the projected target of

70% more food production by 2050. Low-temperature (LT)

stress severely constrains crop production worldwide,

thereby demanding an urgent yet sustainable solution.

Considerable research progress has been achieved on this

front. Here, we review the crucial cellular and metabolic

alterations in plants that follow LT stress along with the

signal transduction and the regulatory network describing

the plant cold tolerance. The significance of plant genetic

resources to expand the genetic base of breeding pro-

grammes with regard to cold tolerance is highlighted. Also,

the genetic architecture of cold tolerance trait as elucidated

by conventional QTL mapping and genome-wide associa-

tion mapping is described. Further, global expression pro-

filing techniques including RNA-Seq along with diverse

omics platforms are briefly discussed to better understand

the underlying mechanism and prioritize the candidate

gene (s) for downstream applications. These latest addi-

tions to breeders’ toolbox hold immense potential to

support plant breeding schemes that seek development of

LT-tolerant cultivars. High-yielding cultivars endowed

with greater cold tolerance are urgently required to sustain

the crop yield under conditions severely challenged by

low-temperature.

Keywords Cold tolerance � Genomics � QTL � Genetic
resource

Introduction

In view of the rising temperature extremities, LT stress

remains one of the major abiotic factors that severely impact

the normal growth and development of the plant. LT stress

poses serious threat to crop production worldwide, espe-

cially in temperate and high-elevated regions (Sthapit and

Witcombe 1998). For instance, the enormity of the risk

becomes apparent from the area (15 mha) that is constrained

annually by LT stress across the globe (IRRI 1979). Simi-

larly, almost 7 mha of rice-growing area in South and

Southeast Asia was constrained (Sthapit and Witcombe

1998). Given the tropical and subtropical origin, rice is

rendered vulnerable to LT stress below 15–20 �C causing

considerable yield loss (Yoshida et al. 1996; Nakagahra et al.

1997). In recent years, significant yield loss in rice due to LT

stress was noted in Japan (Shimono et al. 2007), Korea (Lee

2001), and Australia (Farrell et al. 2001; Singh et al. 2005).

In China, Li and Guo (1993) reported annual loss of 3–5

million tonnes of rice due to LT. Likewise, Crimp et al.

(2016) concluded that 30% of the wheat-growing area in

Australia is subject to frost-related events. Events of ‘Post-

head-emergence frosts (PHEF)’ witnessed in wheat in sub-

tropical, Mediterranean and temperate regions are consid-

ered to be devastating (Boer et al. 1993; Fuller et al. 2007),
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leading to severe yield penalty such as the instance of 85%

crop loss in Australia (Boer et al. 1993). Further, Zheng et al.

(2015a, b) assessed the yield loss in wheat in Australia due to

frost via simulation and crop modeling study. LT stress

covers injuries in plants caused by chilling (\20 �C) and
freezing (\0 �C) (Thomashow 1999), hampering key

metabolic processes (Pomeroy et al. 1985). For example,

nonfunctioning of chloroplast (Allen and Ort 2001) impairs

photosynthesis and, ultimately, causes cell death (Gomez

et al. 2004). The negative impacts of LT stress on different

growth stages include poor germination, seedling stunting,

and reduced tillering (Kaneda and Beachell 1974). Impor-

tantly, reproductive phase, especially male reproduction

processes (De Storme and Geelen 2014), remains most

sensitive to LT, adversely affecting stages from gamete

formation to fertilization stage (Thakur et al. 2010). In rice,

spikelet sterility has been reported owing to inhibition or

disruption in pollen development or reduced pollen grains in

anther (Satake 1969, 1976; Mackill and Lei 1997; Shimono

et al. 2007; Sakata et al. 2014). Similarly, inhibition in

sporogenesis, pollen germination (Clarke and Siddique

2004), abortion of flower and pod were reported in chickpea

due to LT (Nayyar et al. 2005; Kumar et al. 2011). Instances

of seedling growth inhibition and low yield were also seen

under LT stress in maize (Rymen et al. 2007). The negative

impacts of LT at different growth stages in plants are dis-

cussed elsewhere (Croser et al. 2003; Thakur et al. 2010;

Yadav 2010). Critical low temperatures causing damage in

different crops are listed in Table 1.

Given the above description, cold acclimation remains a

key mechanism adapted by plants to cope with LT stress

(Thomashow 1999). To cope with the LT stress, plant

increasingly activates ‘‘defense-related antioxidative’’ mech-

anismand induces genes producingmolecular chaperones and

cryoprotectants (Gill and Tuteja 2010; Guy and Li 1998).

Improved breeding techniques delivering genotypes that

are able to sustain yield under LT are urgently required.

Recent progress in genomics has provided a plethora of

new-generation molecular tools to strengthen crop

improvement schemes. Crop improvement schemes

informed by the modern genomics hold great potential to

sustain crop production under frequently witnessed tem-

perature extremities, especially the LT stress. Here, we

offer an overview on the molecular mechanism describing

LT tolerance in plants, and discuss the role of candidate

genes/QTLs vis-a-vis LT stress. The significance of plant

Table 1 Critical low temperatures causing damage in major crops

Crop Critical temperature Stages affected References

Rice \10 �C Germination and vegetative Yoshida (1981)

Rice (subtropical region in northern Laos) \ 15 �C Germination affected Sihathep et al. (2001)

Rice 15 to 20 �C Growth rate and metabolism Kabaki et al. (1982), Takanashi et al.

(1987)

Rice 13 to 15 �C (night) – Farrell et al. (2006)

Rice 15 ± 5 �C Reproductive stages viz.,

spikelet sterility

Nishiyama et al. (1969)

Rice 20 �C (sensitive

genotypes)

Reproductive stage Satake (1976)

15 �C (tolerant

genotype)

Wheat (Australian winter cultivar) -5 to -2 �C – Single (1985)

Winter wheat (non-acclimated) -4 to -2 �C Leaf injury Drozdov et al. (1984)

Wheat (acclimated) -13 �C – Drozdov et al. (1984), Porter and

Gawith (1999)

Wheat seedling (acclimated winter) Between -6 and

-8 �C
– Fuller et al. (2007)

Wheat seedling (non-acclimated winter) -5 �C for non-

acclimated

– Fuller et al. (2007)

Winter wheat \-5 �C Ear emergence to anthesis Spink et al. (2000)

Barley -5 C to -4 �C – Frederiks et al. (2011)

Chickpea 15 �C in Indian

subcontinent

Flower and pod abortion Srinivasan et al. (1998)

Maize 10 �C Seedling growth ceases Miedema and Sinnaeve (1980)

Maize for temperate, subtropical, and

lowland tropical

\9 to 10 �C Tassel initiation affected Ellis et al. (1992)

Sorghum \10 to 15 �C Chilling injury Peacock (1982)
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genetic resources to develop LT-tolerant cultivars in vari-

ous crops is highlighted. We also examine the literature

dealing with modern QTL mapping methods such as

GWAS to genetically dissect plant LT stress tolerance. The

relevance of emerging omics platforms including tran-

scriptomics and proteomics is also discussed.

Cold tolerance in plants: underlying mechanism
and key players

Plants respond to LT stress through perceiving stress

stimuli subsequently subjected to precisely regulated sig-

naling pathways (reviewed by Hughes and Dunn 1996;

Thomashow 1999; Xin and Browse 2000; Chinnusamy

et al. 2007, 2010; Zhou et al. 2011; Knight and Knight

2012; Miura and Furumoto 2013; Shi et al. 2015; Zhao

et al. 2015a). As reviewed by various researchers (Chin-

nusamy et al. 2010; Shi et al. 2015), transmission of signals

pertaining to cold stress in plants occurs via pathways

regulated in C-repeat binding factor (CBF)-dependent or

CBF-independent manner. The perception of LT shock in

plants is followed by changes in physico-chemical prop-

erties in cell membrane involving membrane fluidity (de-

scribed as ‘‘rigidification effect’’) and proteins (Orvar et al.

2000; Chinnusamy et al. 2007, 2010). Subsequently to it

occurs a transient influx of cytosolic Ca2? causing regu-

lation of cold-responsive (COR) genes (Knight 2000). This

Ca2? signal is transduced to nucleus via activation of Ca2?

sensors viz., CaM (calmodulin) (Miura and Furumoto

2013; Yang et al. 2010), Ca2?-dependent protein kinase

(CDPKs), and CaM-binding transcription activators

(CAMTA) embedded in nuclear membrane (Knight et al.

1996). In turn, kinase cascades are switched on to activate

inducer of CBF expression1 (ICE1), which activates tran-

scription of CBF genes (Stockinger et al. 1997; Liu et al.

1998; Novillo et al. 2004, 2007). Ultimately, these CBFs

induce CRT/DRE-regulated downstream target COR genes

(Gilmour et al. 1992; Kurkela and Franck 1990; Lin and

Thomashow 1992; Jaglo-Ottosen et al. 1998; Kizis et al.

2001), thereby conditioning cold tolerance in plant (for

details see Xiong et al. 2002; Chinnusamy et al.

2007, 2010; Zhou et al. 2011; Miura and Furumoto 2013;

Shi et al. 2015; Zhao et al. 2015a, b). However, the com-

plete mechanism of LT stress signaling pathways and tol-

erance still remains elusive and needs intensive future

study.

To date, the ‘‘ICE1-CBF-COR transcriptional cascade’’

pathway is the best characterized with regard to LT

acclimation (Shi et al. 2015). Upon sensing LT stress in

plant, various kinds of CBF/DREB1 transcription factors

(TFs) belonging to ethylene-responsive element binding

factor/APETALA2 (ERF/AP2)-type TF (Mizoi et al. 2012)

bind to CRT/DRE cis elements and CBF regulons genes.

This in turn induces COR genes such as COR15a in Ara-

bidopsis (Artus et al. 1996) and WCS120 in wheat (Houde

et al. 1992), which encode proteins akin to ‘‘cryoprotective

proteins’’ to rescue plant from cold shock (Thomashow

1999). Mostly, three types of CBFs (CBF1, CBF2 and

CBF3) (Liu et al. 1998; Thomashow 1998; Stockinger et al.

1997; Medina et al. 1999, 2011) are reported to control

expression of COR genes in Arabidopsis (Gilmour et al.

2000, 2004). Importantly, this CBF cold response network

has been found to be highly conserved across the flowering

plant species (Jaglo-Ottosen et al. 2001; Chinnusamy et al.

2010). Recently, Park et al. (2015) have reported induction

of nearly 1200 COR genes under LT stress, 170 of which

are associated with CBF regulons. The authors also

investigated 17 out of 174 COR genes regulating TF genes,

that are early cold-induced TF genes bearing homology

with the CBF-regulon TFs. Importantly, regulation of

CBF3 is controlled by ICE1 master regulator (Chinnusamy

et al. 2003), an MYC-type TF controlling 40% of COR

genes and 46% of TF genes participating in LT stress

regulation (Lee et al. 2005; Miura and Furumoto 2013).

TaICE141 and TaICE187 homologs of ICE1-induced CBF

group IV provided cold tolerance in wheat (Badawi et al.

2008). Similarly, calmodulin-binding transcription activa-

tor (CAMTA), a TF, controls the expression of CBF2 in

Arabidopsis under LT stress tolerance (Doherty et al.

2009). Involvement of CAMTA1, CAMTA2 and

CAMTA3 in inducing transcription of CBF1, CBF2 and

CBF3 to impart LT tolerance was demonstrated in Ara-

bidopsis (Kim et al. 2013). By contrast, ICE1 negatively

regulates expression of MYB15 TFs involved in negative

regulation of CBF genes (Agarwal et al. 2006). Likewise,

ZAT12, a TF serves as negative regulator of CBF1, CBF2

and CBF3 under LT stress (Novillo et al. 2007). To explore

the contribution of non-coding regulatory RNA towards LT

tolerance, Chan et al. (2016) reported that overexpression

of ‘RNA-DIRECTED DNA METHYLATION 4) RDM4)’

plays important regulatory role in LT stress tolerance via

enhancing the expression of CBF regulons. More recently,

genome editing technology CRISPR/Cas9 system was

applied in Arabidopsis to precisely discern the role of CBF

genes in cold acclimation (Jia et al. 2016; Zhao et al. 2016)

and CBF2 was reported to be more important in conferring

LT tolerance than CBF1 and CBF3 (Zhao et al. 2016).

Several researcher groups have conducted overexpression

studies of CBF gene with regard to LT tolerance across

various plant species (Jaglo-Ottosen et al. 2001; Hsieh

et al. 2002a, b; Ito et al. 2006; Pino et al. 2007). Towards

this end, the role of OST1 kinase in enhancing cold tol-

erance in Arabidopsis through increasing transcriptional

activity and stability of ICE1 is worth mentioning (Ding

et al. 2015; Lang and Zhu 2015; Zhan et al. 2015). Given
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that the expression of CBF genes is also regulated by cir-

cadian clocks (Fowler et al. 2005; Dong et al. 2011;

Lee and Thomashow 2012), ‘‘CIRCADIAN CLOCK

ASSOCIATED 1 (CCA1)’’ and ‘‘LATE ELONGATED

HYPOCOTYL (LHY)’’ were found to positively regulate

CBF genes under LT (Dong et al. 2011). By contrast,

‘‘PSEUDO RESPONSE REGULATORs (PRRs)’’ circadian

clock negatively regulates CBF genes (Nakamichi et al.

2009). Significance of light in regulation of CBF gene

expression has also been described (Fowler et al. 2005;

Franklin and Whitelam 2007; Lee and Thomashow 2012;

Novák et al. 2016). CBF regulons responsible for COR

expression were involved in LT stress tolerance (Fowler

and Thomashow 2002); however, freezing tolerance of

Arabidopsis eskimo1 (esk1) mutant was found to be inde-

pendent of CBF regulon (Xin and Browse 1998). Role of

HOS 9 and HOS10 TFs in cold tolerance in Arabidopsis

was reported (Zhu et al. 2004, 2005). Tolerance to LT was

investigated in soybean and Arabidopsis via overexpres-

sion of GmWRKY21 (Zhou et al. 2008) and TaERF1 TF (Yi

et al. 2004), respectively. Binding of AtHAP5A TF to

CCAAT motif of AtXTH21 promoter causing freezing

tolerance is also a noteworthy example of CBF-indepen-

dent cold tolerance (Shi et al. 2014; Shi and Chan 2014).

Further, activation of heterochromatic tandem-repeat

sequence regions plays important role in cold acclimation

under LT stress in Arabidopsis (To et al. 2011), maize (Hu

et al. 2012) and rice (Roy et al. 2014). Importantly, wheat

low-temperature-induced protein 19 (WLIP19) assists

activating COR genes under LT stress (Kobayashi et al.

2008). In this context, Ji et al. (2015) reported TCF1 pro-

tein regulating LT tolerance in Arabidopsis via modifica-

tion of histones in BCB gene, thus leading to reduced lignin

synthesis.

Equally important gene regulation occurs in response to

LT stress at post-transcriptional level viz., at pre-mRNA

splicing, and at the level of export of mRNA from nucleus

(Chinnusamy et al. 2007, 2010; Miura and Furumoto

2013). Mastrangelo et al. (2005) reported regulation of two

early COR genes containing introns in their mature mRNA

under LT stress in durum wheat. Likewise, existence of

STABILIZED 1 (STA1), a nuclear pre-mRNA splicing

factor which serves as regulator of pre-mRNA splicing, has

been reported under LT stress in Arabidopsis (Lee et al.

2006). Recently, significant role of RCF1 gene encoding

DEAD-box RNA helicase, assisting in proper pre-mRNA

splicing of COR genes in Arabidopsis has been examined

(Guan et al. 2013a). Equally important, contributory role of

DEAD-box RNA helicase, AtRH7/PRH75 in cold toler-

ance has also been registered (Huang et al. 2015). Addi-

tionally, considering the role of nucleoporins (NUPs) found

in nuclear pore complexes (NCPs) (Tamura and Hara-

Nishimura 2014 and references therein) allowing RNA,

nuclear proteins transport from nucleus into cytoplasm in

response to various stress signals. Dong et al. (2006)

reported involvement of AtNUP160 in LT stress tolerance

in Arabidopsis.

At post-translational level, the stabilization and regula-

tion of ICE1 is controlled by ubiquitination [initiated by

‘‘HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE

GENE 1’’ (HOS1)] (Dong et al. 2006; Chinnusamy et al.

2007; Zhu et al. 2007) and sumoylation (mediated by SIZ1)

(Chinnusamy et al. 2007; Miura et al. 2007) (for details see

Lissarre et al. 2010; Miura and Furumoto 2013). Thus,

positive regulation of ICE1 via sumoylation and negative

regulation of ICE1 via ubiquitination influence the

expression of COR gene during LT stress (Dong et al.

2006; Miura et al. 2007).

In addition, participation of epigenetic reprogramming

or modification encompassing histone modification cover-

ing histone methylation and histone acetylation dynamics

has received serious attention for its underlying significant

role in regulating transcriptional outcome of cold-respon-

sive genes (Hu et al. 2011; Ji et al. 2015; Kim et al. 2015).

Instances of histone acetylation in COR genes viz.,

ZmDREB1 and ZmCOR413 in maize (Hu et al. 2011) and

OsDREB1b in rice (Roy et al. 2014) causing LT adaptation

are remarkable, while reduction of H3K27me3 in COR15A

and ATGOLS3 genes were noted under LT in Arabidopsis

(Kwon et al. 2009). Further, activation of heterochromatic

tandem-repeat sequence regions in association with

increase in H3K9ac acetylation plays important role in cold

acclimation under LT stress in Arabidopsis (To et al.

2011), maize (Hu et al. 2012) and in rice (Roy et al. 2014).

In this context, Ji et al. (2015) reported that TCF1 protein

regulates LT tolerance in Arabidopsis via modification of

histones in BCB gene resulting in lower lignin synthesis

and, thus, causing LT tolerance.

Crop genetic resources and breeding for cold
tolerance

Genetic resources are crucial to plant breeding as these

allow access to the allelic diversity for improving the

desired traits. According to Mickelbart et al. (2015), these

serve as the valuable reservoir of ‘stress adaptation loci’

including LT stress. For instance, important sources of LT

tolerance viz., Silewah (Satake and Toriyama 1979),

Koshihikari (Sasaki 1981), Chhomrang (Sthapit 1987) and

Jumli Marshi (Lindlöf et al. 2015) were reported in

japonica rice. In general, japonica rice grown in temperate

regions shows higher LT tolerance than the indica types

(Glaszmann et al. 1990; Mackill and Lei 1997). However,

few indica-type rice also show tolerance to LT viz., BR-

IRGA 410 and IRGA 416 (da Cruz and Milach 2004).
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Jeong et al. (2000) reported lower cold tolerance in Korean

Tongil rice than the japonica-type rice.

Selection using different parameters led to the discovery

of LT-tolerant genotypes such as HSC55, M103 and Jyou-

deki in rice based on low spikelet sterility under LT stress

(Farrell et al. 2006; Ye et al. 2009), cultivar 996 based on

better pollination and pollen germination (Deng et al. 2011),

NERICA rice genotypes based on higher filled-grain ratio

(FGR) (51.9–57.9%) at reproductive stage (Wainaina et al.

2015) and 12 USDA minicore genotypes based on root and

shoot length reduction under LT stress (Moraes de Freitas

et al. 2016). The genotype Norin PL 8 containing an intro-

gressed gene from Silewah showed tolerance to LT stress at

booting stage. The LT stress tolerance of Oryza rufipogon

Griff. at both flowering and booting stages highlights the

importance of the crop wild relative in addressing the stress

problem (Liu et al. 2003). Also, the introgression lines (ILs)

derived from O. rufipogon are considered to be important

sources of LT tolerance in rice (Tian et al. 2006). Likewise, a

rice landrace KMXBG possesses LT stress tolerance for all

vital growth stages vulnerable to LT (Cheng 1993). Chinese

rice varieties B55, Bangjiemang, Lijiangheigu and one

Hungarian rice variety HSC55 were recorded to be LT-tol-

erant in all key growth stages under field condition (Ye et al.

2009). Similarly, LT tolerance at reproductive stage was

evident in field condition screening of rice cultivars HSC55,

M103 and Jyoudeki (Farrell et al. 2006).

Considering better photosynthetic activity under LT

stress, semi-winter wheat genotype Yannong 19 was repor-

ted to be having higher photosynthetic activity under LT

stress (Guan et al. 2013a, b). Significant variation for thou-

sand kernel weight and yield was recorded across more than

600 durum wheat cultivars under LT stress (Mohammadi

et al. 2015). Importantly, winter wheat cultivar Norstar was

reported to carry combination of frost-tolerant genes (Vrn-

A1w ? Fr-A2T ? Fr-B2WT alleles), thus offering LT tol-

erance at vegetative stage in wheat (Eagles et al. 2016).

Kolar et al. (1991) recorded higher cold tolerance in

winter barley than the facultative cultivars from a panel

comprising eight winter and two facultative barley cultivars,

while Franklin, Amagi Nijo andHarunaNijo genotypeswere

found to be frost-tolerant at post-head-emergence stage in

southern region of Australia (Frederiks et al. 2011).

In case of maize, cold tolerance of Swiss landraces was

evident from examination of early vigor under LT stress

(Peter et al. 2006, 2009). Therefore, utilization of genetic

resources will allow plant breeders to siphon the hitherto

unexploited genetic variation into breeding programmes

from diverse gene pools.

Conventional breeding has been instrumental in devel-

oping LT-tolerant cultivars in various crops. For example,

EP80 9 Puenteareas population in maize was reported to

be important source of LT tolerance based on both field and

controlled conditions (Rodriguez et al. 2007). In wheat,

Tiber (Kisha et al. 1992) derived from Redwin had good

winter hardiness. OAC Elmira in barley was obtained as an

outcome of conventional breeding (Falk et al. 1997).

Attempts were made to introduce LT tolerance traits from

landraces and crop wild relative into high-yielding yet

sensitive rice varieties such as Guichao 2 (Liu et al. 2003),

Towada (Xu et al. 2008; Zhou et al. 2012), Hitomebore

(Shirasawa et al. 2012), HJX74 (Zhang et al. 2004), Norin-

PL11 (Kuroki et al. 2007), Norin-PL8 (Saito et al. 1995;

Dai et al. 2004), Milyang 23 (Oh et al. 2004), Plaisant in

barley (Casao et al. 2011) and in tomato (Vallejos and

Tanksley 1983) through back-cross breeding procedure.

Nevertheless, genomics approaches have emerged in recent

years to enhance the efficacy of traditional breeding

protocols.

Understanding the genetic architecture of cold
tolerance in crop plants

Enabling access to the precisely delineated chromosomal

segments in genome that contain gene (s)/QTL (s) con-

trolling important traits is a prerequisite for undertaking

molecular breeding to accelerate trait improvement.

Genotypic and phenotypic records of mapping populations

or diversified panel are combined to establish significant

marker–trait associations (MTAs), referred to as linkage-

map-based QTL mapping and association analysis,

respectively. In this section, we briefly describe about the

QTLs for LT stress tolerance discovered across different

crops using both conventional QTL mapping and associa-

tion mapping approaches.

Linkage-map-based QTL analysis

DNA marker technology has been effectively exploited to

map the QTLs that are associated with the traits con-

tributing towards cold tolerance in plants (Table 2).

Rice

Several reports on QTLs controlling cold tolerance at

germination stage were published in rice (Fujino et al.

2004; Hou et al. 2004; Han et al. 2006; Long-Zhai et al.

2006; Fujino et al. 2008; Ji et al. 2009; Fujino and Matsuda

2010; Iwata and Fujino 2010; Fujino and Iwata 2011;

Fujino and Sekiguchi 2011; Li et al. 2013; Ranawake et al.

2014). Initially, Miura et al. (2001) reported five QTLs

conferring LT tolerance at germination stage. In the same

Plant Cell Rep (2017) 36:1–35 5
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genomic region on chromosome 4, the QTL qLTG-4 was

later discovered (Fujino et al. 2004). The QTL qCTBB-6/

qCTS-6 reported by Yang et al. (2016) coincided with the

QTL qCTG6 (Ranawake et al. 2014) controlling LT tol-

erance at germination stage. Using a map-based cloning

approach, Fujino et al. (2008) elucidated the candidate

gene ‘‘Os03g0103300’’ underlying the QTL (qLTG3-1)

that imparts cold tolerance at germination stage. Con-

cerning LT tolerance at seedling stage, a range of QTLs

were detected in rice exerting substantial impact on the

tolerance level (Qingcai et al. 2004; Han et al. 2007; Lou

et al. 2007; Koseki et al. 2010; Suh et al. 2012; Liu et al.

2013; Yang et al. 2016). Five QTLs discovered by Ji et al.

(2010) conferring LT tolerance at plumule stage explained

phenotypic variation (PV) up to 21%. Regarding seedling-

stage tolerance, chromosomal region harboring the QTL

qCTS1 was reported to be in the close proximity of the

QTLs qCTS1 (Andaya and MacKill 2003b), qCTs-1-c (Han

et al. 2007) and qCSH1 (Lou et al. 2007). Zhang et al.

(2005) reported three QTLs with a major one (qSCT-11)

explaining 30% PV for cold tolerance at seedling stage.

This chromosomal region corresponded with the chromo-

somal region containing QTLs qSCT11 (Kim et al. 2014),

qCTS11-2 (Andaya and MacKill 2003b) and qCtss11

(Koseki et al. 2010). Subsequently, fine-mapping of

qCtss11QTL unfolded the two important candidate genes

‘‘Os11g0615600’’ and ‘‘Os11g0615900’’ (Koseki et al.

2010). In a similar way, sets of candidate genes

LOC_Os01g69910, LOC_Os01g69290, LOC_Os01g69900

and LOC_Os11g37730, LOC_Os11g37720 were obtained

for the respective QTLs qSCT1 and qSCT11 through fine-

mapping (Kim et al. 2014). The QTL q14d-11 (Ji et al.

2010) flanked by RM286–RM1812 marker was found to be

different from the QTL reported by Zhang et al. (2005) on

chromosome 11. One major QTL qCTS12a on chromo-

some 12 explaining 41% PV (Andaya and MacKill 2003b)

corresponded to the chromosomal region harboring

qCTS12 reported by Andaya and Tai (2006) for vegetative

LT tolerance. Candidate gene (s) OsGSTZ1 and OsGSTZ2

were suggested to be lying under the QTL qCTS12 (An-

daya and Tai 2006). Interestingly, QTL qCTB-4-1 con-

tributing to LT tolerance at booting stage overlapped with

the chromosomal region harboring QTL qCTS4 for vege-

tative LT tolerance (Andaya and Tai 2007) on chromosome

4. Two QTLs qRC10-1 and qRC10-2 reported recently by

Xiao et al. (2014) coincided with the chromosomal region

containing qCST10 (Liu et al. 2013) and qCTSS-10 (Yang

et al. 2013a, b). Fine-mapping of qCST10 revealed

LOC_Os07g22494 as the causative locus for LT tolerance

(Liu et al. 2013). Similarly, fine-mapping of qRC10-2 by

Xiao et al. (2014) led them to advocate gene

(s) Os10g0489500 and Os10g0490100 as the prime can-

didates for the given QTL. Similarly, QTL qCTS7 (2)

(Ranawake et al. 2014) controlling LT tolerance at seedling

stage coincided with earlier known QTLs qSES7-1 and

qSES7-2 (Iwata et al. 2010). Notably, the QTLs qCTS11

(1)-2 and qCTS11 (2)-2 (Ranawake et al. 2014) were

mapped in the same genomic region reported by Misawa

et al. (2000). Likewise, QTL qCTS8 (2) (Ranawake et al.

2014) overlapped with the QTL qCTS8.1 reported previ-

ously by Wang et al. (2011). Five QTLs for leaf rolling and

seedling survival under two different LT conditions were

discovered in a recent work (Zhang et al. 2014a). Com-

bining bulk segregation analysis (BSA) with next-genera-

tion sequencing (NGS) technique has enabled the

identification of six QTLs contributing to LT tolerance at

seedling stage in rice (Yang et al. 2013a).

Concerning LT tolerance at booting stage, Saito et al.

(1995) discovered two genomic regions on chromosomes 3

and 4 that were associated with LT tolerance at booting

stage. Later, two QTLs were reported on chromosome 4

governing LT stress tolerance at booting stage (Saito et al.

2001) and three QTLs viz. qCT-7, qCT-1 and qCT-11 were

detected using RFLP and RAPD markers (Takeuchi et al.

2001). Subsequently, several QTLs were reported for LT

tolerance at booting stage (Andaya and Mackill 2003a; Liu

et al. 2003; Xu et al. 2008; Mori et al. 2011; Shirasawa

et al. 2012; Xiao et al. 2014; Zhu et al. 2015). The QTLs

qCTB-4-1 and qCTB-4-2 on chromosome 4 (Xu et al. 2008)

did not coincide with the QTL region suggested by Saito

et al. (2001) on chromosome 4. The QTL region containing

qCTB-11-1 (Xu et al. 2008) on chromosome 11 was dif-

ferent from the QTL obtained by Liu et al. (2003). Like-

wise, the markers reported by Dai et al. (2003) for LT

tolerance at booting stage did not map in the same position

on chromosomes 4, 5 and 11 as reported by Xu et al.

(2008). Difference was also observed in the mapping

position of QTL 8.1 for spikelet fertility under LT (Jiang

et al. 2011) on chromosome 8 with previous QTLs qCTB8

(Kuroki et al. 2007) and qCTF8 (Shinada et al. 2013)

detected on the same chromosome. However, the QTL

qLTSPKST10.1 reported by Ye et al. (2010) on chromo-

some 10 harbored within the same region that harbours

QTL 10.1 (Jiang et al. 2011) and qCTB-10-2 (Xu et al.

2008) (Tables 3, 4).

The QTL qCTF7 (Shinada et al. 2013) explaining 33.5%

PV was different from the QTL region reported by Zhou

et al. (2010) and Takeuchi et al. (2001). But the QTL

qRCT7 (Dai et al. 2004)-containing region remained close

to the QTL qCT-7 on chromosome 7 reported by Takeuchi

et al. (2001). The QTL qCTB-11-1 (Xu et al. 2008) shared

the genomic region harboring the QTL qCT11 as reported

by Takeuchi et al. (2001). Similarly, fer11 QTL offering

spikelet fertility tolerance at LT (Oh et al. 2004) was

located in the same region on chromosome 11 as qCT11

(Takeuchi et al. 2001). Though the QTL qRCT6b reported
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by Dai et al. (2004) remained in close proximity with the

QTL qCTB6 (Andaya and Mackill 2003a), this QTL was

not related with LT tolerance at booting stage. Mori et al.

(2011) established a novel QTL qCTB3-Silewah on chro-

mosome 3 that differed from the QTL reported by Saito

et al. (1995) on the same chromosome. Concerning LT

tolerance at booting stage, physical mapping of the QTL

Ctb1 by Saito et al. (2004) was followed by the successful

cloning of this QTL (Saito et al. 2010). Notably, the

authors recorded two genes encoding F-box protein and a

Ser/Thr protein kinase, thereby suggesting the possible role

of ubiquitin–proteasome pathway in LT tolerance in rice.

More recently, fine-mapping of one QTL (qCT-3-2) using

SNP markers precisely delineated a 192.9-kb region on the

reference genome sequence (Zhu et al. 2015). The readers

are referred to the recently published reviews for greater

details on QTLs for LT stress tolerance in rice (da Cruz

et al. 2013; Zhang et al. 2014c).

Wheat

A regulated expression of VRN1 and CBF genes is

reported to allow temperate cereal crops, especially wheat

and barley, to withstand LT stress (Francia et al.

2004, 2007; Stockinger et al. 2007; Dhillon et al. 2010;

Knox et al. 2010; Pearce et al. 2013; Zhu et al. 2014;

Mickelbart et al. 2015). Importantly, chromosomal syn-

teny/colinearity of LT tolerance loci/QTL (s) belonging to

the Triticeae family has been discussed (Cattivelli et al.

2002). Adaptive mechanism of winter wheat to acclima-

tize with freezing tolerance via higher expression of CBF

genes and limiting VRN1 transcripts till vernalization

(Dhillon and Stockinger 2013; Pearce et al. 2013; Zhu

et al. 2014; Mickelbart et al. 2015) remains in sheer

contrast to spring wheat which shows freezing tolerance

due to deletion or lower expression of CBF genes (at FR2

locus) and enhanced expression of VRN1 transcript

(at FR1 locus) (Pearce et al. 2013; Zhu et al. 2014;

Mickelbart et al. 2015).

While working out the genetics of frost-tolerance gene

(Fr1), Sutka and Snape (1989) established its linkage with

Vrn1 gene on chromosome 5A. Two loci with additive

effect orchestrating the expression of cor14b gene

describing LT tolerance were reported (Vágújfalvi et al.

2000). Three genes viz. Fr-A1, Fr-B1 and Fr-D1 ac-

counting for LT stress tolerance were mapped on chro-

mosomes 5A, 5B and 5D, respectively (Galiba et al. 1995;

Snape et al. 1997; Toth et al. 2003). Later, the XCbf3 was

identified as a causative gene underlying Fr-A2 locus on

5A chromosome and this contributes to frost tolerance in

diploid wheat (Triticum monococcum) (Vágújfalvi et al.

2003). It is important to note that the LT-related genomic

region on 5A chromosome reported by Båga et al. (2007)T
a
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Table 4 LT stress tolerance in plants obtained thorugh transcriptome sequencing

Crop Genotype name Stage Platform used Candidate gene/

differentially

expressed

gene(DEG)/miRNA

Function References

– –

Alfalfa Zhaodong Seedling Illumina GAII 35 cold-responsive

miRNA recovered

– Shu et al.

(2016)

Alfalfa Zhaodong Crown buds – 5605 differentially

expressed genes

– Song et al.

(2016)

Anthurium

andraeanum

Alabama Stem and

leave

Illumina

HiSeqTM

2000

39 cold-inducible

TFs, 4363 DEGs

LT tolerance Tian et al.

(2013a)

Apple – Leaves Illumina

sequencing

Upregulated gene

MDP0000198054

LT stress response Du et al.

(2015)

Brassica

juncea

Varuna Sliqua Illumina

HiSeq 2000

283 commonly cold

induced transcripts

LT stress signaling Sinha et al.

(2015)

Banana Musa spp. Dajiao Seedling Illumina Twelve early

responsive genes

and ICE1 and

MYBS3, 10 and 68

DEGs

LT tolerance Yang et al.

(2015)Musa spp. TruSeqTM

Cavendish

Lotus

japonicus

Gifu B-129 Seedling Illumina

HiSeq 1500

1077 DEG,41 cold-

inducible TFs

Cell wall,

phenylpropanoid

proline

regulation, and

affecting

photosynthetic

process

Calzadilla

et al. (2016)

Potato 10908-06, ED25 Tuber Illumina

HiSeq 2000

11 cold-responsive

miRNA

Adaptive response

to LT stress

Ou et al.

(2015)

Prunus

persica

Lovell Buds and

young leave

SOLID

Platform

miR5021, miR2919,

and miR414

– Barakat et al.

(2012)

Rice IRGA959-1-2-2F-4-1-4-A

and IRGA959-1-2-2F-4-1-

4-D-1-CA-1

Seedling

7 days after

germination

at 13 �C

Illumina

HiSeq 2000

technology

1361 DEGs Fatty acid

desaturase,

Dametto et al.

(2015)

Antioxidant

activity,

Cell wall structural

proteins

Cold signaling

Rice 3 genotypes – – 2242 DEGs and 318

common DEGs

Involved in

chilling stress

adaptation

Shen et al.

(2014)

Rice Y58S and P64S – Illumina

HiSeqTM

2000

platform

1497 and 5652 DEGs LT stress signaling Bai et al.

(2015)

Soybean Williams 82 Mature

nodules

Illumina-

Solexa 1

Genetic

Analyzer

11 cold-responsive

miRNAs including

gma- miR166u,

gma- miR171p,

miR2111f and

miR169c

Protection of

nodule from cold

stress

Zhang et al.

(2015)

PC17-109 Leaf tissues –
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coincided with Fr-A2 locus in diploid wheat (Vágújfalvi

et al. 2000, 2003, 2005). Furthermore, the sequences per-

taining to two CBF genes identified by Båga et al. (2007)

showed similarity with the genes Cbf14 and Cbf15 under-

lying the Fr-2 locus, which was reported by Miller et al.

(2006) in T. monococcum. In winter durum wheat, geno-

typing by sequencing (GBS) has recently allowed

researchers to locate one major QTL (for frost tolerance)

on chromosome 5 in close proximity of Fr-A2 locus (Sie-

ber et al. 2016). Importantly, the Fr-A (m)2 (harboring

clusters of CBF genes) loci orthologous to barley HvCBF

gene were mapped on chromosome 5 in T. monococcum

(Miller et al. 2006). Later, the candidate gene underlying

Fr-Am2 locus was reported to be a CBF gene in T. mono-

coccum (Knox et al. 2008). Two important SSR markers on

chromosomes 2B and 5A were found to be linked with cold

tolerance through improved heading time under LT stres-

sed conditions (Sofalian et al. 2008). In a recent study,

significance of the loci VRN1 and FR2 (harboring CBF

copies) with respect to cold tolerance was demonstrated

(Zhu et al. 2014). Importantly, the authors identified two

haplotypes of FR-A2 viz. ‘FR-A2-S’ and ‘FR-A2-T’

associated with cold tolerance in wheat. Earlier, Pearce

et al. (2013) reported deletion of CBF gene clusters in ‘Fr-

B2’ locus leading to a marked reduction in LT tolerance in

both tetraploid and hexaploid wheat.

Barley

At least 20 HvCBF genes are known to reside in barley

genome, which can be phylogenetically classified into three

subgroups, i.e., HvCBF1, HvCBF3, and HvCBF4 (Skinner

et al. 2005). Barley CBFs viz. HvCBF3, HvCBF4 and

HvCBF8 were assigned to chromosome 5H (Choi et al.

2002; Francia et al. 2004). On chromosome 5H, Francia

et al. (2004) reported two QTLs Fr-H1 and Fr-H2 for frost

tolerance (harboring HvCBF4 gene). The 11HvCBF genes

discovered later (Skinner et al. 2006) overlapped with the

genomic region harboring QTL Fr-H2 reported earlier by

Francia et al. (2004). Co-localization of QTLs associated

with cold tolerance and vernalization was also reported on

chromosome 5H (Francia et al. 2004). In addition, QTLs

were detected on chromosomes 2HL and 5HL to elucidate

frost tolerance at vegetative and reproductive stages in

barley (Reinheimer et al. 2004). Notably, three LT-toler-

ance-related QTLs in barley were reported to manifest

Table 4 continued

Crop Genotype name Stage Platform used Candidate gene/

differentially

expressed

gene(DEG)/miRNA

Function References

Spartina

pectinata

Link

Illumina

HiSeq 2500

Cold-responsive

DEGs

Nah et al.

(2016)

Tea Yingshuang, Baiye 1 – Illumina

sequencing

77 upregulated and 88

downregulated

cold-responsive

miRNA

LT stress tolerance Zhang et al.

(2014b)

Tea Longjing 43 Leaves Illumina

Hiseq 2000

DREB1b/CBF1 TFs

and cold-responsive

miRNAs

Cold tolerance Zheng et al.

(2015b)

Tomato LA1777 – – 161 conserved

miRNA and 236

novel miRNA

recovered

Involved in

chilling response

Cao et al.

(2014)

Tomato Solanum

lycopersicum and Solanum

habrochaites

– 89 miRNA LT response Chen et al.

(2015b)miR159, miR319, and

miR6022

Tripsacum

dactyloides

Pete – – Sequence variation in

known cold

tolerance gene

Gault et al.

(2016)

Tripsacum

floridanum

– – – –

Wheat Winter Norstar and winter

Manitou

Crown stage – LT acclimation Laudencia-

Chingcuano

and Fowler

(2015)
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homology with CBFs, ICE1, and ZAT12 genes involved in

regulation of cold tolerance in Arabidopsis (Skinner et al.

2006). Recently, a novel QTL FR-H3 governing 48% PV

for LT tolerance was reported in barley mapping popula-

tions (NB3437f 9 OR71 and NB713 9 OR71) (Fisk et al.

2013). Stockinger et al. (2007) reported the regulatory role

of VRN-H1/Fr-H1 locus on chromosome 5, controlling Cbf

gene expression localizing with Fr-2locus in barley under

cold stress. High-resolution mapping of Fr-H2 locus in

barley revealed seven CBF sub-clusters involved in frost

tolerance (Francia et al. 2007). Cluster of sixHvCBF genes

was reported to co-localize with Fr-H2 QTL on 5H (Ton-

delli et al. 2006). Role of CBF copies localizing with FR-1

and FR-2 loci in cold tolerance and acclimatization in

cereals and in barley has been recorded (Knox et al. 2010;

Tondelli et al. 2006). Subsequently, alleles ofVrn-H1 locus

on 5H chromosome were identified to be linked with early-

flowering trait, providing low-temperature tolerance at

reproductive stage, whereas frost-tolerance loci on 2HL

were associatedwith late-flowering alleles governed byFlt-

2L gene in barley (Chen et al. 2009). It is important to note

that higher copy number of HvCBF4 and HvCBF2 deliv-

ered greater frost tolerance (Francia et al. 2016) and the

authors also developed cleaved amplified polymorphic

sequence (CAPS) assay to distinguish between CBF2A and

CBF2B genes. Based on comparative analysis, it was

inferred that the position of CBF clusters underlying Fr-H2

locus inMorex 9 Dicktoo barley population (Skinner et al.

2006) had synteny with the genomic region containing

Fr-Am2locus (on chromosome 5A) in winter 9 spring

T. monococcum diploid wheat mapping population

(Vágújfalvi et al. 2000). Equally important, in Festuca

pratensis belonging to the Triticeae family, two QTLs

QWs5F-2 corresponding to wheat Fr-A1/Fr-H1 and the

QFt5F-2/QWs5F-1 QTL corresponding to Fr-H2/Fr-Am2

locus have been reported (Alm et al. 2011). The synteny of

FR-H2 locus harboring CBF genes in barley (Francia et al.

2007) with Fr-A2m2 locus in diploid wheat T.monococcum

(Knox et al. 2008; Tondelli et al. 2006; Miller et al. 2006)

has been thoroughly discussed by Galiba et al. (2009).

Maize

In maize, QTLs for various traits such as early seedling

vigor, root, leaf and shoot traits were registered under LT

stress condition (Hund et al. 2004; Presterl et al. 2007).

One major QTL contributing to photo-inhibition tolerance

under LT was disclosed residing on chromosome 6 (Fra-

cheboud et al. 2004). Notably, three genomic regions

located on 2, 4 and 8 chromosomal regions, contributing to

seedling LT tolerance have been registered (Rodriguez

et al. 2014).

Sorghum

In sorghum, two QTLs conferring LT tolerance at germi-

nation stage were detected each on LGs SBI-03a and SBI-

07b using a mapping population derived from the cross

Shan Qui Red 9 SRN39 (Knoll et al. 2008), whereas

considering LT tolerance at emergence stage, QTL-con-

taining regions were identified on different LGs viz. SBI-

01, SBI-03, SBI-04, SBI-06, SBI-08 and SBI-09 (Fiedler

et al. 2012).

Pea

Based on data recorded over multiple years and multiple

locations, three promising frost-tolerance-related QTLs

were reported, which also exhibited co-localization with Hr

flowering locus (Lejeune-Henaut et al. 2008). Similarly,

Klein et al. (2014) discovered a QTL cluster LG IV which

could be accounted for 70%PV for frost tolerance damage in

pea. On the other hand, the QTL clusters on LGIII were

associatedwithHr andLe loci. Two consistent QTLs for cold

tolerance were reported on LG V and LG VI. Interestingly,

these QTLs coincided with the genomic segments related to

raffinose and RuBisCO activity (Dumont et al. 2009).

Other crops

In Triticale, nine main-effect QTLs accountable for both

winter hardiness and LT tolerance were recovered from

more than 600 double haploid (DH) lines (Liu et al. 2014).

In case of soybean, three QTLs (qCTTSW1, qCTTSW2, and

qCTTSW3) were detected that controlled LT tolerance at

reproductive stage (Funatsuki et al. 2005), while a major

QTL discovered by Ikeda et al. (2009) maintained seed

development under LT stress. In Medicago truncatula,

QTLs that define leaf shoot and root orientation under LT

stress conditions were discovered (Avia et al. 2013). The

entire trait QTLs viz, number of leaves, leaf area, elec-

trolyte leakage, and other shoot and root QTLs were

assigned on chromosomes LG1, LG4 and LG6 (Avia et al.

2013). In B. napus, a total of six significant QTLs con-

ferring LT tolerance were reported under more than one

winter season (Kole et al. 2002). In tomato, wide cross

involving NC84173 (Lycopersicon esculentum) and LA722

(wild L. pimpinellifolium accession) served for the delivery

of QTLs that impart tolerance to LT stress during germi-

nation stage (Foolad et al. 1998). Similarly, Truco et al.

(2000) reported three QTLs derived from L. esculen-

tum 9 L. hirsutum, that were found to be controlling

wilting and root ammonium uptake under chilling stress.

One QTL for shoot turgor maintenance (designated by

stm9) was introgressed into L. esculentum from wild

Plant Cell Rep (2017) 36:1–35 19
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L. hirsutum, which eventually conditioned chilling toler-

ance in tomato (Goodstal et al. 2005).

Incorporating LT tolerance into susceptible
genetic backgrounds using molecular breeding
techniques

The robust QTLs/markers described in the preceding sec-

tion hold great potential to accelerate the progress of tra-

ditional breeding. These DNA markers permit precise

selection of the desirable genotypes in a time-saving and

environment-independent manner. As suggested by Cui

et al. (2013), the marker-assisted selection (MAS) becomes

crucial in a situation that demands accumulation of

favourable alleles to enhance the intensity of tolerance

level. Besides favourable allele, the allele that exerts strong

negative impact on the performance should also be taken

into account while breeding for cold tolerance. Marker

genotypes that exert negative impact on cold tolerance

were discovered in both indica and japonica rice by Pan

et al. (2015).

Marker-assisted back-crossing (MABC) is the simplest

form of marker-assisted selection (MAS) that seeks tar-

geted transfer/incorporation of QTL/gene-containing

genomic segments to elite yet susceptible genetic bases.

This approach has been found particularly suitable for

introgressing QTL having large effect on the phenotype of

interest (Varshney et al. 2012). More importantly, MABC

remains the most efficient way to pyramid different gene

(s)/QTL (s) into a single genotype (Collard and Mackill

2008). MABC has been successfully implemented to

introgress as well as pyramid different LT-tolerance-re-

lated QTL (s) into sensitive genetic backgrounds. Two

QTLs (qCTBB-5 and qCTBB-6) and two QTLs (qCTS-

6 and qCTS-12) conferring tolerance at bud bursting and

seedling stages, respectively, were pyramided into SC1-1, a

single-segment substitution line (SSSL) were derived from

the cross between Nan-yang-zhan and Hua-jing-xian 74

(Yang et al. 2016). Pyramiding of the QTLs (qCTF7,

qCTF8 and qCTF12) was attempted using SSR markers to

enhance cold tolerance at fertilization stage in rice (Shi-

nada et al. 2014). Co-segregating markers viz. In1-c3 and

In11-d1 could be exploited in MABC scheme to transfer

LT tolerance to high-yielding yet cold-sensitive rice cul-

tivars (Kim et al. 2014). Likewise, MABC also permitted

the transfer of QTLs qRC10-2 (Xiao et al. 2014) and

qCTB3-Silewah (Mori et al. 2011) controlling LT tolerance

at seedling and booting stages, respectively, from Dongx-

iang wild rice and J501 to susceptible genotypes. Two

near-isogenic lines (NILs) were recovered in the back-

ground of Towada, which contained QTL-containing

region (LT tolerance genes) from Kunmingxiaobaigu

(Zhou et al. 2012). As evident from the successful exam-

ples reported in rice, MABC holds great potential in

enhancing the LT tolerance level of high-yielding yet

susceptible cultivars, thus emerging as a promising

breeding tool for food security in the face of increasing LT

stress worldwide.

Association mapping/genome-wide association
studies (GWAS)

Relying on a panel of unrelated individuals, the GWAS tech-

nique is quick-to-implement as it does not demand artificially

created experimental populations and offers a high-resolution

genetic dissection of the complex traits (Mitchell-Olds 2010;

Ogura and Busch 2015).Moreover, the wide complementarily

of GWAS with the linkage-map-based QTL analysis has been

well accentuated by various researchers (Mitchell-Olds 2010;

Korte and Farlow 2013; Huang and Han 2014). To illuminate

the genetic landscape of LT tolerance at booting stage in rice,

association analysis of 347 rice accessions using 148 SSR

markers unearthed a set of 24 SSR markers that showed sig-

nificant association with cold tolerance (Cui et al. 2013). The

SSR markers corresponded with the QTL regions reported in

earlier studies; for instance, RM252 was adjacent to Ctb 2,

RM220 and RM 1 with Ctb1 (Saito et al. 2001, 2004, 2010),

and RM566 with qCTB9 (Andaya and Mackill 2003a, b).

Similarly, the DNAmarkers RM528, RM160, RM4B and RM

235 corresponded with qLTSSvR6-1, qCTSSR9-1, qCTSSR11-

1 and qCTSSR12-1, respectively, as reported more recently by

Pan et al. (2015) based on GWAS of 174 rice accessions with

273 SSRmarkers.Of the 52QTLs reported by Pan et al. (2015)

for cold tolerance, 27 QTLs were mapped in the vicinity of

known QTLs. An interconnected breeding (IB) population

involving eight indica varieties as donors facilitated the iden-

tification of six QTLs on three chromosomes in rice (Zhu et al.

2015). One stable QTL qCT-3-2 was detected in all four

environments accounting R2 up to 9.5%, and fine-mapping

usingNIL (derived from this IB) assigned qCT-3-2 to a 193-kb

genomic segment. This QTL (qCT-3-2) on chromosome 3was

also detected earlier in an RIL population and explained 7.1%

PV (Suh et al. 2010). In a recentGWA study, a total of 132 loci

were identified from529accessions to explain the genetic basis

of natural chilling and cold shock in rice (Lv et al. 2016).

Interestingly, 68 loci were previously registered for cold tol-

erance in rice, implying towards some overlap between cold

tolerance at different growth stages. GWAS on panels of

japonica and indica rice reconfirmed greater cold tolerance of

japonica than the indica rice (Pan et al. 2015; Lv et al. 2016).

The QTL overlaps suggested by Lv et al. (2016) in rice

remained in contrast with the observation in maize where

43 MTAs based on GWAS for cold tolerance did not show
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any overlap between seedling and booting stages (Huang

et al. 2013). Huang et al. (2013) established correspon-

dence of SNP11 and SNP19 with the QTL regions dis-

covered earlier by Jompuk et al. (2005) for chilling

tolerance in maize F2:3. Based on GWAS of 306 dent and

292 flint inbreds with 49,585 SNPs, a recent study revealed

the highest number of QTLs (275 SNPs) for cold tolerance

in maize (Revilla et al. 2016). The candidate genes

underlying these QTLs coincided with the genomic regions

found by Strigens et al. (2013) including QTLs for SPAD

and early vigor in dent and flint panels, respectively. Stri-

gens and colleagues detected 19 QTLs for cold tolerance

from 375 inbred lines belonging to three breeding groups

(NA-D, EU-D and EU-F); majority of these QTLs

(QTL1_RGR to QTL10_RGR with R2 up to 52.49%) were

associated with relative growth rate, and the authors pro-

posed pleiotropy as the major reason to explain the over-

lapping of QTLs controlling multiple traits. In oat, GWAS

of 138 accessions from 27 European countries using Infi-

nium 6K Oat array led to the identification of three robust

QTLs for frost tolerance (Tumino et al. 2016). Attempts to

link these newly discovered QTLs with the known ones led

the authors to propose Mrg 11 as a new QTL, whereas two

QTLs viz. Mrg 20 and Mrg 21 found resemblance with

genomic regions harboring Vrn1 locus (KO linkage group

24_26_34) and its second copy (KO linkage group

22_44_18). Similarly, in wheat, a major-effect locus dif-

ferent from Fr-B1/Vrn-B1 and Fr-B2 was detected on 5B

through 9 K SNP array-based analysis of 1739 genotypes

(Zhao et al. 2013). Given the 60% higher prediction

accuracy of genomic selection (GS) over GWAS, the

authors advocated embracing GS technique to offer an

improved understanding of frost tolerance in wheat via

capturing QTLs having small effect sizes. In sorghum, 194

breeding lines and two F2:3 populations comprising 80 and

90 individuals were genotyped with 2620 SNPs. Associa-

tion analysis uncovered 109 SMTAs, whereas 32 and 37

QTLs were detected from the two populations. The robust

MTAs/QTLs were located on SBI-01, 02, 03, 04, 06 and 09

with the underlying candidate genes associated with

SbCBF4, CSDP1, ICE1, and cytochrome P45. (Fiedler

et al. 2016). A similar approach combining bi-parental

population (BPP) and GWAS (Gottingen Winter Bean

population: GWBP) was used recently in faba bean (Sallam

et al. 2016a). This study yielded 17 QTLs and 25 MTAs in

BPP and GWBP, respectively, with corresponding PVs

lying in the range of 2.74–29.41 and 2.66–11.89%, and

notably, a subset of five significant SNPs was found

common to both methods. The SNP loci validated in this

study viz VF_Mt5g026780, VF_Mt3g086600 and

VF_Mt4g127690 showed association with winter hardiness

and yield traits based on association mapping of GWBP

(Sallam et al. 2016b).

New-generation omics technologies to illustrate
plant LT stress response

Genome-wide expression profiling

Recent advances in functional genomics have deepened our

knowledge about the key candidate gene (s), and regulatory

network underlying LT stress signaling and tolerance

mechanism (Winfield et al. 2010; Zhang et al. 2012b; Bai

et al. 2015; Zhao et al. 2015a, b). In this regard, NGS-

enabled digital gene expression (DGE) profiling has

emerged as a sensitive and high-throughput approach to

examine the gene expression that alters during physiolog-

ical, morphological and molecular response under LT

stress in plants (Herman et al. 2006; Fowler and Thoma-

show 2002). Expression analysis of Cbf gene transcripts in

barley suggested that higher LT tolerance in recombinants

derived from Nure 9 Tremois cross was due to higher

accumulation of Cbf2 and Cbf4 gene transcript expression

(Stockinger et al. 2007). In wheat, gene expression analysis

in Triple Dark (without dominant Vrn-1 alleles) and nearly

isogenic lines (NILs) of Triple Dark (with Vrn-A1 allele)

suggested that the NILs without Vrn-1 alleles had higher

expression of Wcbf2 and Cor/Lea genes eventually reflec-

ted as lower freezing damage than the NILs carrying Vrn-1

allele (Kobayashi et al. 2005). A comparative expression

analysis of rye Cbf genes (ScCbfs) and Cor gene with

orthologous CBF and Cor genes of wheat Wcor14b and

Hvcor14b genes from barley suggested their ‘‘temperature-

dependent and light-regulated diurnal response’’ (Campoli

et al. 2009). To elucidate the gene expression under LT

stress conditions, expression profiling has witnessed a shift

from conventional microarray analysis (Monroy et al.

2007; Cho et al. 2012; Zhang et al. 2012b) to DGE (Fowler

and Thomashow 2002; Tian et al. 2013a; Shen et al. 2014;

Yang et al. 2015). Microarray analysis revealed changes in

the transcripts of 300 genes in spring and winter wheat

under LT stress and the encoded proteins from most of the

genes suggested their involvement in key metabolic pro-

cess in wheat (Gulik et al. 2005). Similarly, transcript

levels of 450 genes altered in response to cold treatment in

contrasting wheat cultivars, thus implying towards the

possible participation of 130 candidate genes in signaling

and regulatory mechanism viz., TFs and protein kinases

(Monroy et al. 2007). Under field and controlled condi-

tions, transcriptome analysis of two cold-acclimated winter

wheat lines differing in freeze survival suggested an

increase in the expression of Cbf-2, -A22 and B-22 genes,

while Cbf genes (Cbf-3, 5, 6, 12, 14 and 19) were differ-

entially expressed in cold-acclimated higher-freeze-sur-

vival and lower-freeze-survival lines in comparison to non-

acclimated controls (Sutton et al. 2009). Importantly, Ta1-
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FFT and Ta6-SF fructan biosynthesis gene and Cor/Lea

genes point to their relevance in cold acclimation in wheat

(Yokota et al. 2015). To this end, changes in COR gene

expression and CBF regulon under LT stress recruiting

transcriptome study in wheat have been critically reviewed

elsewhere (Winfield et al. 2010). In rice, mechanistic

complexity of LT tolerance was reported to be higher in

indica type than the japonica type given the fact that the

former withstands LT stress by activating both CBF-de-

pendent and CBF-independent pathways through recruiting

various TFs (Bevilacqua et al. 2015). Comparative tran-

scriptional profiling of two chilling-tolerant (LTH, JM) and

two chilling-sensitive (IR29 and PB1) rice cultivars

revealed differential expression of 182 genes by twofold,

and the set of genes was referred to as Common Cold

Induced (CCI). On the other hand, 511 genes termed as

Cold Induced in Tolerant (CIT) were expressed in chilling-

tolerant cultivars, whereas 2101 genes were expressed

differentially only in the cultivar JM (Chawade et al. 2013).

Participation of various regulatory genes involving anti-

oxidant enzyme genes, genes associated with signal

transduction of abscisic acid (ABA), salicylic acid (SA)

regulatory phytohormones and OsDREB2A gene became

evident by genome-wide expression profiling under LT

stress (Zhao et al. 2015b). Differential expression of lipid

transfer protein (LTP) genes was also reported in LT-tol-

erant and LT-sensitive genotypes in rice (Moraes de Freitas

et al. 2016). Based on mRNA expression profiling, higher

expression of plasma membrane intrinsic proteins (PIPs) in

LT-tolerant rice in comparison to sensitive cultivar under

LT stress highlighted their importance in LT stress, and it

has been recorded through mRNA expression profiling (Yu

et al. 2006). Analysis of rice genotypes IL112 and GC2

using Affymetrix GeneChip provided one candidate gene

LOC_Os07g22494 responsible for seedling LT tolerance

(Liu et al. 2013). Employing Agilent Rice Gene Expression

Microarray 4 9 44 K in two chilling-tolerant rice varieties,

i.e., Sijung and Jumli Marshi led the authors to propose that

genes confer chilling tolerance in Sijung largely through

enabling protection of the cell wall and plasma membrane.

On the other hand, Jumli Marshi exploits detoxification

mechanism to withstand chilling stress through ROS

scavenging and safeguarding chloroplast translation (Lin-

dlöf et al. 2015). Based on a microarray analysis in barley,

the role of VRN1 was reconfirmed by Greenup et al. (2011)

as the contig corresponding to HvVRN1 remained upregu-

lated in prolonged cold and vernalized plants. Authors also

observed increased transcript levels for two genes

HvCOR14B and WSC19 in both short-term and prolonged

cold treatments and in vernalized plants. By contrast,

HvCBF9 showed upregulation in response to short-term LT

stress. Some genes reported to be significant for cold tol-

erance in wheat (associated gibberellin biosynthesis

pathway) did not register any response in this study.

Expression level of 102 genes was showing up to eightfold

difference under freeze stress at -5 �C based on Affyme-

trix Wheat GeneChip microarray in wheat genotype Yumai

34 (Kang et al. 2013); the authors obtained a set of genes

viz., WCOR413, LEA, aquaporin 2 showing expression

levels similar to those recorded previously in wheat and

barley for spring freeze stress. By employing GeneChip

Wheat Genome Array, Skinner (2015) recorded more than

twofold upregulation of 2000 genes in Tiber wheat cultivar

under freezing (-3 �C for 24 h) and thawing (?3 �C for

24 or 48 h) treatment, suggesting the involvement of genes

participating in cell signaling, and activating stress

responsive mechanism. Likewise, Arabidopsis NimbleGen

ATH6 Microarrays analysis of 10 Arabidopsis ecotypes

collected from different geographical regions revealed

ecotype-specific regulatory TFs that respond to LT stress

(Barah et al. 2013). Based on a microarray analysis in

Festuca pratensis, Rudi et al. (2011) found two candidate

genes FpQM and FpTPT contributing to LT tolerance.

Genome-wide transcriptome analysis in tolerant and wild

lines of rice delivered a set of 78 genes related to chilling

stress(Cho et al. 2012). In another study, differentially

expressed genes involved in OsDREB1 and OsMyb4 reg-

ulons were found to be contributing to LT stress tolerance

in rice (Zhang et al. 2012a). The study established genes

encoding membrane fluidity and defensive proteins as

instrumental in conferring LT tolerance in the line K354.

Notably, Zhang et al. (2012b) found a common set of genes

associated with cold signaling and transcription regulation,

which showed upregulation in contrasting rice genotypes

LTH and IR29 under early chilling response. Whereas, the

given genotypes differed in regulatory gene expression,

thus offering adaptation ability to the chilling-tolerant

genotype under late phase of chilling stress. Considerable

transcriptional variation was observed between Solanum

commersonii and S. tuberosum concerning genes involved

in CBF regulons, and importantly, putative orthologous LT

regulatory genes common to S. commersonii, S. tuberosum

and A. thaliana were recovered (Carvallo et al. 2011).

Transcriptome analysis in contrasting lines Champagne

(freezing tolerant) and Terese (freezing sensitive) in pea

suggested that the chilling tolerance was induced compar-

atively early in Champagne than in Terese via expressing

CBF, COR and LEA genes; however, freezing tolerance of

Champagne was due to orchestrating safeguard mechanism

of antioxidant production, and cell wall modification (Lu-

cau-Danila et al. 2012). While molecular markers devel-

oped from the differentially expressed genes obtained from

quantitative polymerase chain reaction (qPCR) led to the

detection of five candidate genes conferring LT tolerance

existing in previously reported three LT-tolerant QTLs

(Legrand et al. 2013).
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RNA-seq has shed light on a variety of genes showing

differential expression in response to LT stress tolerance

(Bai et al. 2015; Chen et al. 2015b). For example, more

than 300 differentially expressed genes under LT stress

were discovered in rice using RNA-seq analysis of three

LT-tolerant and one LT-sensitive genotypes (Shen et al.

2014). In another study, RNA-seq analysis of indica rice at

germination stage under LT stress indicated marked

changes in cellular response encompassing cell division,

Ca2? signaling, sucrose synthesis and antioxidant activity

(Dametto et al. 2015). Anther transcriptome analysis in rice

revealed 1497 and 5652 differentially expressed genes,

thus suggesting their role in signal transduction and tran-

scription regulation of cold tolerance, respectively (Bai

et al. 2015). RNA-seq driven by Illumina sequencing aided

in disclosing 39 TFs viz., AP2/ERF, zinc finger, NAC,

MYB involved in LT stress in Anthurium andraeanum

(Tian et al. 2013a). A recent RNA-seq based comparative

transcriptome analysis in banana and plantain elucidated

significant difference in expression levels of several genes

including ICE1 and MYBS3 under different LT stress

treatments (Yang et al. 2015). Similarly, RNA-seq analysis

of LT-treated leaf tissue of Spartina pectinata revealed

active involvement of genes ranging from transcription

regulators, anti-freezing proteins to epigenetic regulatory

genes providing freezing stress tolerance (Nah et al. 2016).

The recent transcriptomic studies provide valuable insights

on genome-scale expression profiling of various genes

including regulatory genes involved in key metabolisms

and development pathways under LT.

Non-coding RNAs, their targets and LT stress

The NGS technology has offered unprecedented opportu-

nity to capture non-coding RNA (ncRNA) molecules

including miRNA, siRNA and lncRNA that make signifi-

cant contribution to abiotic stress tolerance in plants

(Khraiwesh et al. 2012; Matsui et al. 2013). Recent studies

have facilitated discovery and functional characterization

of cold-responsive ncRNAs and their possible targets

(Chen et al. 2012; Thiebaut et al. 2012; Niu et al. 2016). In

this context, the role of miR-167 and miR-319 in response

to cold stress in rice is worth mentioning (Lv et al. 2010).

Examination of Osa-miR319b (a family of miRNA319 in

rice) to find the contribution towards LT tolerance

unearthed targeting of TFs like OsPCF6 and OsTCP21)

Wang et al. 2014). Moreover, overexpression of Osa-

miRNA319 targeting OsPCF5 and OsPCF8 genes con-

ferring LT in transgenic rice could be potentially harnessed

to develop LT-tolerant rice cultivar (Yang et al. 2013b).

NGS analysis of small RNA libraries in poplar (Populus

tomentosa) provided set of cold-responsive miRNAs

showing down- (21) and up-regulation (9) (Chen et al.

2012). Likewise, role of miR475b in freezing tolerance has

been unfolded via cloning MIR475b gene in Populus

suaveolens (Niu et al. 2016). Likewise, in tea, RNA-seq

analysis using Solexa sequencing led to the identification

of 31 upregulated and 43 downregulated miRNAs in

Yingshuang genotype and 46 upregulated and 45 down-

regulated miRNAs in Baiye 1 genotype, respectively,

under LT stress (Zhang et al. 2014b). Interestingly, from

this study, a total of 763 related target genes were recov-

ered via degradome sequencing. In tomato, cold-responsive

miRNAs were obtained under LT stress such as miR159,

miR319, and miR6022 from Solanum lycopersicum and

S. habrochaites (Chen et al. 2015b) and miR167, miR169,

miR172, miR 393 and miR397 (Koc et al. 2015). Inter-

estingly, conservative role of these non-coding molecules

in conferring LT stress tolerance across different plant

species has been supported by various studies. The recent

examples include miR319 and its putative targets GAMyb,

and PCF6 in sugarcane (Thiebaut et al. 2012) and miR156,

miR159, miR167, miRNA172, miRNA396 and miRNA398

in alfalfa (Shu et al. 2016). Further exploration of non-

coding RNA world will assist in unraveling novel ncRNAs

and their targets that participate in LT signaling and

crosstalk in plants. Recently, microRNA (miRNA) and

small interfering RNA (siRNA) functioning at post-tran-

scriptional level are receiving attention owing to their

significant contribution in both biotic and abiotic stress

tolerance (Ariel et al. 2015; Liu et al. 2015b). Evidences of

miRNA contributing in LT stress in Arabidopsis (Zhou

et al. 2008), rice (Wang et al. 2014), Populous (Chen et al.

2012), Brachypodium) Zhang et al. 2009), tea (Zhang et al.

2014b), and tomato (Chen et al. 2015b) have been

recorded.

Analyzing proteomes to describe plant LT stress

tolerance

As a complement to transcriptomics, proteomics allows

characterization of the gene product at both translational

and post-translational levels, thus revealing the complete

landscape of the proteins involved in LT acclimatization

in plant (Janmohammadi et al. 2015). In this section, we

summarize the role of proteomics in understanding LT

stress in crop plants. Role of proteomics in deciphering

LT stress tolerance lies at various levels ranging from

cellular metabolism and energy production, oxidative

stress damage, cold acclimation to cellular signaling

(Cui et al. 2005; Hashimoto and Komatsu 2007; Neilson

et al. 2011; Dumont et al. 2011; Sandve et al. 2011;

Kosová et al. 2013). Proteins participating in energy

metabolism might play crucial roles in providing LT

stress tolerance. For example, alteration in proteins

involved in photosynthesis, transport and energy
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metabolism was recorded in LT-treated rice at seedling

stage by iTRAQ assay (Neilson et al. 2011). Proteins

contributing to sugar synthesis, regulating transcription

and translation activity in chloroplast might cause LT

acclimation in pea (Grimaud et al. 2013). Likewise, to

elucidate the role of proteins contributing in LT toler-

ance at germination stage, expression of 85 and 196

proteins was examined, respectively, in tolerant and

sensitive rice cultivars with shotgun proteomics analysis

under LT stress (Lee et al. 2015). The expressed proteins

obtained in tolerant cultivars suggested their participa-

tion in gibberellin and ABA-mediated signaling in LT

tolerance. In addition, various proteins involved in pro-

tection mechanism from oxidative stress under LT stress

were found. The LT imposed on winter and spring wheat

cultivars caused an increase in stress and development

proteins in winter wheat line, and an increase in proteins

contributing in cell division re-establishment in spring

wheat line (Kosová et al. 2013). Proteomics study in LT-

treated cold-tolerant and cold-sensitive wheat cultivars

suggested an increase in antioxidant-related proteins in

LT-tolerant cultivar and an abundance in proteins

involved in carbohydrate metabolism in LT-sensitive

cultivar (Xu et al. 2013). While investigating proteins

contributing to LT acclimation in alfalfa, proteomic

study revealed greater insight into the changes of key

proteins involved in cellular metabolism ranging from

photosynthesis to stress-alleviating proteins. In this

context, ‘autologous metabolism and biosynthesis’ hal-

ted in freezing-tolerant ZD cultivar, while W5 freezing-

sensitive cultivar activated the proteins associated with

protection mechanism against cold stress (Chen et al.

2015a). In pea, higher adaptation of Champagne geno-

type for chilling stress was elucidated owing to the

presence of higher proteins involved in photosynthesis

and protection mechanism (Dumont et al. 2011). In

addition, dehydrins and late embryogenesis abundant

proteins participate in conferring chilling tolerance in

plant (Hanin et al. 2011). Greater accumulation of

dehydrin 5 (DHN5) protein in winter barley lines in

comparison to spring lines adequately explained the

enhanced LT acclimation of winter barley (Kosová et al.

2010). The dynamics of dehydrin especially Wcs120 and

Dhn5 in cold acclimation in barley and wheat, respec-

tively, has been reviewed elsewhere (Vı́támvás and

Prásil 2008; Kosová et al. 2011). Furthermore, the role of

proteins associated with ‘‘cell signaling, cellular trans-

port and cell membrane’’ in response to LT stress in

perennial grasses has been reviewed (see Sandve et al.

2011). Therefore, efforts are needed to combine pro-

teomic and transcriptome data to gain deeper insight into

the ‘gene regulatory network’ associated with LT stress

tolerance in plants.

Conclusion and future prospects

Given the current trajectory of population growth world-

wide that projects 9 billion people by 2050 (Godfray et al.

2010), LT stress can further aggravate the growing problem

of food insecurity. To meet this challenge, plant breeding

requires to efficiently tap the rich gene/allelic diversity

contained in crop germplasm resources. This in turn paves

the way for introducing unexploited genetic resources

including wild crop relatives, landraces and advanced

breeding lines into existing crop improvement schemes.

Recent advancements in genomics can significantly

underpin crop improvement to develop LT stress-tolerant

crops. The QTLs controlling LT tolerance-related traits

could be immediately deployed in breeding schemes

through MAS or MABC. Alternatively, the QTL-contain-

ing segment may be targeted for fine-mapping or map-

based cloning. Emerging QTL discovery methods such as

GWAS make best use of the available phenotypic records

and high-density DNA marker systems. As QTLs with

small effect sizes substantially contribute to cold tolerance,

genomic selection that adequately captures these minor

QTLs holds greater relevance. In parallel, consolidating the

information emanating from multiple omics platforms viz.

transcriptomics, and proteomics would allow researchers to

pinpoint the causative gene (s) involved in LT signaling

and cold acclimation in plants. To this end, the reference

genome sequences established in major crops open up

opportunities for identification of specific DNA sequences

that are involved in plant LT tolerance. We envisage that

the modern omics technologies can significantly support

conventional breeding to ensure sustainable crop produc-

tion under LT stress.
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