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Abstract

Key message We have constructed and annotated a

web-based database of over 280 Arabidopsis genes that

have characterized mutants associated with Arabi-

dopsis acyl lipid metabolism.

Abstract Mutants have played a fundamental role in gene

discovery and in understanding the function of genes involved

in plant acyl lipid metabolism. The first mutant in Arabidopsis

lipid metabolism (fad4) was described in 1985. Since that

time, characterization of mutants in more than 280 genes

associated with acyl lipid metabolism has been reported. This

review provides a brief background and history on identifi-

cation of mutants in acyl lipid metabolism, an analysis of the

distribution of mutants in different areas of acyl lipid

metabolism and presents an annotated database (ARA-

LIPmutantDB) of these mutants. The database provides

information on the phenotypes of mutants, pathways and

enzymes/proteins associated with the mutants, and allows

rapid access via hyperlinks to summaries of information about

each mutant and to literature that provides information on the

lipid composition of the mutants. In addition, the database of

mutants is integrated within the ARALIP plant acyl lipid

metabolism website (http://aralip.plantbiology.msu.edu) so

that information on mutants is displayed on and can be

accessed from metabolic pathway maps. Mutants for at least

30 % of the genes in the database have multiple names, which

have been compiled here to reduce ambiguities in searches for

information. The database should also provide a tool for

exploring the relationships between mutants in acyl lipid-

related genes and their lipid phenotypes and point to oppor-

tunities for further research.
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Introduction

New tools in science such as genome sequencing, RNASeq,

microarrays, and metabolomics have provided enormous

new data resources. Researchers are increasingly challenged

to keep up with the avalanche of data and often feel over-

whelmed. Fortunately, there are powerful search tools

available to ‘mine’ many datasets, and there are excellent

efforts to organize these data and to provide websites where

specific data can be queried with sophisticated searches

(Geneinvestigator, to name just one). However, the accu-

mulation of new data almost always out-paces the ability to

curate it, to integrate it with other databases, and to provide

manual annotations by experts in the field.
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This review describes the results of an effort to organize,

annotate, update, and curate key information about char-

acterized mutants that impact Arabidopsis acyl lipid

metabolism. The database/catalog (ARALIPmutantDB)

has evolved out of the ARALIP website (http://aralip.

plantbiology.msu.edu) and its underlying data and anno-

tations. In addition, information from the excellent data-

base published by Lloyd and Meinke (2012) has been

incorporated. Approximately 20–30 studies on mutants of

Arabidopsis acyl lipid metabolism have been published

every year in recent years (Fig. 1). We have updated

ARALIPmutantDB to include literature up to the summer

of 2014. The database is available in Supplement Table 1,

and updated versions can also be downloaded at http://ara

lip.plantbiology.msu.edu/downloads.

The goals of this project have been to produce a catalog

of mutants that is annotated by experts, that is linked to

metabolic pathways, and that provides a resource to aid

researchers in the field of plant lipid metabolism. This

review provides a brief background on the identification of

mutants in acyl lipid metabolism, and presents an overview

of the database of these genes, and highlights some aspects

of the distribution of mutants in different pathways and

protein classes. The database provides information on the

phenotypes of mutants, pathways, and enzymes/proteins

associated with the mutants and allows rapid access via

hyperlinks to summaries of information about each mutant

and to references that provide information on the pheno-

types and, in most cases, the lipid composition of the

mutants. In addition, the database of mutants is integrated

within the ARALIP plant acyl lipid metabolism website so

that information about mutants is displayed on and can be

accessed from over 15 metabolic pathway maps. At least

30 % of the genes in the database are associated with

multiple mutants or mutants that have multiple names

(Fig. 2). These have been compiled in the database to

reduce confusion in searches for information. Overall, this

database can provide a tool for exploring the relationships

between mutants in genes and their lipid phenotypes. It is

also hoped that knowledge of the lack of mutants for

reactions, proteins, or pathways will help uncover oppor-

tunities for new insights.

Forward and reverse genetic approaches

for identification of mutants

The identification of mutants in Arabidopsis acyl lipid

metabolism began with forward genetic screens pioneered

by Chris Somerville. In 1985, Browse and Somerville

reported in Science on the identification of a mutant (fad4,

At4g27030) lacking trans-3 hexadecenoic acid (Browse

et al. 1985). The mutant was identified by generating a

population of EMS mutants and screening the fatty acid

composition of leaves of approximately two thousand of

these mutants by gas chromatography. It was initially very

surprising to lipid biochemists that the fad4 mutant had no

visible phenotypes even though it lacked a fatty acid that

had been conserved throughout more than 200 million

years of plant evolution. After this landmark publication,

using the same and similar approaches, the Somerville lab

identified mutants that represented all major desaturases

responsible for chloroplast and cytoplasmic glycerolipid
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Fig. 1 Arabidopsis lipid mutants reported in publications by year.

Publications in which acyl lipid-related mutants were characterized in

terms of function and phenotype were sorted by year. An increase in

the number of new publications characterizing novel mutants may

have peaked in 2012. The survey for 2014 included publications up to

summer of that year
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Fig. 2 Prevalence of alternate names associated with Arabidopsis

mutants of acyl lipid metabolism. 30 % of all mutants associated with

a single gene in this survey have more than one name in the literature,

with the highest number of names being seven. An alternative name

was defined as a different name for mutants which have the same gene

locus identification. Alternate names can arise for several reasons:

from different alleles or because of changes in names (e.g.,

act1 = ats1) or because mutants in the same gene were given

different names when discovered/characterized in different laborato-

ries. Therefore, the same mutant could be described with several

alternate names in different publications
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unsaturation as well as acyl transferases and other enzymes

(for review, see Wallis and Browse 2002).

Some mutants (e.g. fad4, fad5) impacted only the

‘prokaryotic’ lipids in the plastid (e.g., MGDG), whereas

others changed the composition of extraplastidial lipids

together with those lipids that were imported into the

plastid from the ER (e.g., fad2, fad3). Other key mutants

were also identified in these early studies. The act1/ats1

mutant in the plastid acyl-ACP glycerol-3-phosphate

acyltransferase was particularly illuminating because it

resulted in a shift of flux from the prokaryotic to the

eukaryotic pathway (Kunst et al. 1988). Thus, a major

contribution of these mutants was that they provided cru-

cial support and confirmation of the ‘two-pathway

hypothesis’ of plant glycerolipid metabolism.

Progress as of 1991 with the forward genetics approach

to Arabidopsis lipid metabolism was summarized in per-

haps the most influential figure published in the field of

plant acyl lipid metabolism (Fig. 3) (Browse and Somer-

ville 1991). None of the genes that were responsible for the

early mutant lipid phenotypes represented in Fig. 3 were

known at the time of their publication. This changed with

the historic first success in plant map-based cloning by

Arondel et al. (1992), which resulted in the identification of

the FAD3 gene. Map-based cloning continues to be a major

method for the identification of genes responsible for

glycerolipid phenotypes. For example, it is interesting to

note that the gene encoding FAD4 was not identified until

more than 20 years after the mutant was first identified, and

this success was achieved by map-based cloning in the lab

of former Somerville student, Christoph Benning (Gao

et al. 2009). In addition to the analysis of leaves, forward

genetic screening was applied to Arabidopsis seeds, lead-

ing to major breakthroughs in the identification of genes

crucial to the biosynthesis of seed oil. The wrinkled1

mutant, with an 80 % reduction in seed oil, was identified

by forward genetics and described by Focks and Benning

(1998). The identification by map-based cloning of the

WRI1 gene as an AP2-type transcription factor was a

landmark in understanding the control of seed oil biosyn-

thesis (Cernac and Benning 2004). Rod1 (reduced oleate

desaturation1) was identified in a GC screen of seed fatty

acids of EMS mutants (Lemieux et al. 1990). In 2009, map-

based cloning of rod1 led to the discovery of a new enzyme

reaction, phosphatidylcholine: diacylglycerolcholine

transferase (PDCT) (Lu et al. 2009).

Reverse genetics (identification of genes based on

knowledge of DNA sequences) became possible at a large

Fig. 3 Mutants in Arabidopsis acyl lipid metabolism identified by

forward genetics as of 1991. This figure is perhaps the most influential

figure published in the field of plant acyl lipid metabolism. In addition

to illustrating the mutants associated with acyl lipid metabolism, the

width of arrows indicates flux through the prokaryotic and eukaryotic

pathways of Arabidopsis leaves. Figure reproduced from Wallis and

Browse (2002), and is based on an earlier version from Browse and

Somerville (1991)
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scale with the advent of high-throughput DNA sequencing

and now is the most frequent method for establishing gene-

mutant-phenotype relationships (Fig. 4). For Arabidopsis, a

key advance was the sequencing of several thousand ran-

domly selected cDNA clones [‘expressed sequence tags’

(ESTs)] reported in 1993 and 1994 (Höfte et al. 1993;

Newman et al. 1994). This advance opened up the ability to

‘knock-down’ the expression of genes using RNA inter-

ference techniques and, equally important, to more readily

identify candidate genes corresponding to mapped muta-

tions. The number of ESTs expanded rapidly to over

100,000 by 2000, and these ESTs were estimated to rep-

resent approximately two-third of expressed genes of

Arabidopsis. The publication of the Arabidopsis genome in

2000, in addition to greatly facilitating identification of

genes by map-based cloning, encouraged the development

of new reverse genetic tools, including the hugely valuable

collection of T-DNA insertion mutants (Alonso et al.

2003), which later included sequence information at the

site of insertion (O’Malley et al. 2007). Large-scale for-

ward genetic screens of the T-DNA population, including

many projects referred to as functional genomics, led to the

discovery of plant acyl lipid metabolism genes (e.g., Ajjawi

et al. 2010, 2011). Over the past 15 years, reverse genetics

has become increasingly facile and has accounted for over

80 % of gene-mutant characterizations since 2005 (Fig. 4).

The identification of the gene encoding diacylglycerol

acyltransferase (DGAT1) was a major contribution to the

understanding of seed oil metabolism, and illustrates an

example of forward genetics being aided by DNA sequence

information from other organisms and from cDNA clones.

The tag1mutant (as11) was obtained by EMS mutagenesis

and GC screening of seed fatty acid composition. Further

characterization of as11 indicated a reduction in diacyl-

glycerol acyltransferase activity (Katavic et al. 1995). In

1999, two labs reported the sequence of the gene respon-

sible for loss of DGAT activity in tag1-1 (as11) (Zou et al.

1999) and in tag1-2 (abx45), an independently identified

low oil mutant from a T-DNA insertion population

(Routaboul et al. 1999).

Although gene-mutant connections are now most fre-

quently made via reverse genetics (Fig. 4), forward genetic

approaches have continued to provide crucial new break-

throughs, particularly in the discovery of genes where

candidate sequences could not be predicted based on the

previous work. Thus, forward genetics has led to many of

the most novel discoveries. Examples include discovery of

four genes required for transport of lipids from the ER to

the plastid (Benning 2009), and the discovery that cer7 is a

subunit of a RNA processing and degrading exosome

(Hooker et al. 2007).

This survey undoubtedly has missed many mutants in

acyl lipid metabolism that have been studied. In some

cases, authors of ARALIP or of this review simply were

not aware of the published work. In many more cases,

mutants have displayed little or no phenotype and this

information is either not published, or information on the

mutants is presented in ways that it is not easily found. For

example, Zhang et al. (2009a) describe a number of acyl-

transferase mutants that have no seed oil phenotype, but

these negative results only appear in one sentence. The

database is therefore biased (as is the literature) toward

mutants with clear biochemical phenotypes. There are also

datasets from ‘functional genomic’ screens in which large

populations of mutants have been analyzed for phenotypes,

including lipids. These include, for example, a survey of

leaf fatty acid composition of more than 5000 T-DNA

insertion mutants (Ajjawi et al. 2010). Because most results

from such surveys need to be further validated, we have not

included these results unless they are described in full

publications. To improve the database, we request our

colleagues in the plant lipid community to submit correc-

tions and additions to the authors or via the comment form

at: http://aralip.plantbiology.msu.edu/forms.
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Fig. 4 Changes in methods leading to identification for Arabidopsis

mutants. Key publications which characterize acyl lipid-related

mutants were sorted based on whether or not they were identified

using forward or reverse genetic techniques. Designations of methods

from publications before 2012 are based on Lloyd and Meinke (2012).

More recent data is based on analysis of the literature from 2012 until

July 2014. Note that many mutants were identified by a combination

of forward and reverse genetics, which is not indicated here
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Results and discussion

Development of the database

To create a central database that includes almost all acyl

lipid-associated mutants and related information, we con-

solidated several sources. We started with data from the

Arabidopsis Acyl-Lipid Metabolism website (ARALIP:

http://aralip.plantbiology.msu.edu), an annotated database

of lipid-related genes known or suspected to participate in

Arabidopsis acyl lipid metabolism. Specific annotations in

this database were provided by 27 authors of the Acyl

Lipid Metabolism chapter of The Arabidopsis Book (Li-

Beisson et al. 2013). 152 gene loci that were associated

with a characterized mutant were identified from the

ARALIP database.

We further identified mutants by comparing the ARA-

LIP database to a dataset of Arabidopsis genes with a loss-

of-function mutant phenotype that is provided in a key

publication by Lloyd and Meinke (2012). By comparing

the two lists, we identified 70 additional mutants that were

curated by Lloyd and Meinke but that were not included in

ARALIP. The Lloyd and Meinke list included details on

the phenotypic classifications and descriptions of mutants

that were not already in ARALIP, and some of this infor-

mation has been incorporated into ARALIPmutantDB.

Comparing these sets also indicated that the original

ARALIP database includes approximately 60 mutants not

in the Lloyd and Meinke set.

The ARALIP website and the Lloyd and Meinke data-

base were based on the data up to 2012 and 2011,

respectively, with publication dates of 2013 and 2012. To

provide more recent information, we searched the literature

to identify additional mutants described between January

2012 and summer of 2014. The major search tool was the

ISI Web of Science, using the search words ‘‘Arabidopsis,’’

‘‘lipid,’’ and ‘‘mutant.’’ Full text searches with Google

Scholar retrieved too many unrelated references and

Textpresso had not been updated to include references

from 2014 at the time of the search; these were therefore

less effective than ISI. We also consulted colleagues in the

field for relevant publications from 2012 onward. In this

way, we added an additional 68 mutants identified from

publication in 2012–2014. Over 280 genes with charac-

terized mutants are now included in ARALIPmutantDB

compared to the original list of 152 in ARALIP. Thus,

mutants have been characterized for approximately 30 %

of the more than 900 genes in the 2013 version of the

ARALIP database. This contrasts with the fact that, as of

November 2014, approximately 90 % of all Arabidopsis

loci are associated with T-DNA insertions (The Arabi-

dopsis Information Resource). We searched a TAIR listing

of loci without T-DNA insertions and found that only 20,

or approximately 2 % of ARALIP genes, do not have an

associated T-DNA insert (Table S2). Thus, there is a

‘reservoir’ of T-DNA insertion mutants that may provide

information on the functions of many more ARALIP genes.

Of the 20 ARALIP genes without known T-DNA inser-

tions, 8 have associated mutants that were identified

without the benefit of T-DNA insertions. Intriguingly, 6 of

the remaining 12 loci are annotated as lipid transfer protein

(LTP) and 4 as oleosins. These might represent attractive

targets for further investigation.

We identified key references for each mutant in this

database by using both ARALIP and Lloyd and Me-

inke’s (2012) list of references as a starting point. We

then searched the literature for references that charac-

terized the mutant phenotype. The earliest reference

listed for each mutant is useful because it often provides

the best information on lipid composition; information

that is often difficult to find with available search tools,

particularly when much of the data are presented in

figures or tables in older publications. The earlier ref-

erences also provide the best tool for tracking new

publications based on citations. Other related references

are also linked to the gene locus in the ARALIP

databases.

It is very common for mutants or different mutant

alleles of the same gene to have multiple names, and this

occurs for 30 % of genes in ARALIPmutantDB, with the

highest number of names being seven (Fig. 2). An alter-

native name was defined as a different name for mutants

which have the same gene locus identification. Alternate

names can arise for several reasons: from different alleles

or because of changes in names (e.g., act1 was updated to

ats1) or because mutants in the same gene were given

different names when discovered/characterized in differ-

ent laboratories. The use of different names can cause

confusion in discussions, in the literature, and can lead to

ambiguities in searches for information on the mutants

which results in researchers missing key information. This

is particularly true for new researchers entering the field.

Thus, by compiling the names we hope to improve

understanding of the large amount of literature on plant

acyl lipid mutants.

The ARALIP website and database are organized with

genes that are classified as belonging to different metabolic

pathways. Some genes fit into more than one category.

Figure 5 displays the proportion of genes in a few selected

pathways that have characterized mutants. Eukaryotic

phospholipid and TAG synthesis have the highest number

of mutants at 50, which account for 45 % of the total

records of genes assigned to these pathways. Other cate-

gories are striking in the low proportion of mutants. For

example, there are 74 genes annotated as lipid transfer

proteins (LTP) but mutants have been characterized for
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only 10 of these. In addition, over 300 genes in Arabidopsis

include the term ‘‘lipase’’ in their annotation. However, we

could find literature describing mutants for only 50 of these

genes (discussed below).In the following sections we

present a brief analysis of two areas of plant lipid research

where the proportion of mutants identified compared to the

number of genes is particularly low, and thus may offer

opportunities for new discoveries. Our hope is that by

highlighting these areas, other workers in the field will be

attracted to the opportunities they present for new discov-

eries. In these sections, the genes which are associated with

mutants are indicated by italicized locus IDs.

Arabidopsis putative lipases: why are there so many?

A large number of Arabidopsis genes that are annotated with

the term ‘‘lipase’’ were originally not included in the ARA-

LIP database because their function and catalyzed reaction is

usually poorly characterized, if at all. However, to contribute

to the general need for greater understanding of these genes,

we expanded ARALIPmutantDB to include genes that

include ‘‘lipase’’ in TAIR annotations [selected based on the

lists presented in Troncoso-Ponce et al. (2013)]. Supplement

Table 3 provides a summary of the distribution of charac-

terized mutants within the different classes of lipases.

A major enigma in the study of plant lipid metabolism is

why there may be so many genes involved in lipid breakdown

or turnover. It is striking that there are more putative lipase

genes than genes for the central anabolic pathways for fatty

acid synthesis and glycerolipid assembly. However, experi-

mental evidence confirming the in planta roles of these genes

as lipases is available for only approximately 30–40 genes

(Li-Beisson et al. 2013). The further exploration of these

putative lipases may be a path toward new insights. Indeed

major recent discoveries have included the role of a GDSL

lipase (Yeats et al. 2012, 2014) and of an a/b hydrolase (Ja-

kobson et al. 2014) in cutin synthesis. It is important to note

that the proposed role of these genes is to catalyze acyltrans-

ferase reactions, rather than lipase reactions.

Lipases which have been annotated to date are grouped

here into phospholipases (PL), phosphatidic acid phos-

phatase (PAP), triacylglycerol lipases (TAGL), monoacyl-

glycerol lipases (MAGL), GDSL lipases, and proteins

harboring an a/b hydrolase motif. A large number of these

annotations are based only on sequence homology to en-

zymer from other organizms and have not been confirmed

to be correct for the Arabidopsis genes.

Phospholipids are not only major structural components

of membranes, but also a reservoir for lipid-signaling

molecules. Phospholipases (PLs) are enzymes that catalyze

the hydrolysis of phospholipids either at the acyl ester

bond, to release fatty acids, or at the polar head group.

There are four major classes, termed A, B, C and D, which

are distinguished by the type of reaction which they cata-

lyze. PLA is divided into PLA1 and PLA2 that cleave the

sn-1 and sn-2 acyl chains, respectively. PLB hydrolyzes

both sn-1 and sn-2 acyl chains and is also known as a

lysophospholipase. PLC hydrolyzes the O–P bond adjacent

to the glycerol, releasing diacylglycerol and a phosphate-

containing head group. PLD hydrolyzes the O–P bond

adjacent to the head group, releasing PA and a head group.

PLA is divided into two groups, which are secreted and

patatin-related PLAs. The first putative PLA1 targeted into

the plastid was identified from characterization of a defective

in anther dehiscence 1(dad1, At2g44810) mutant, which is

defective in the biosynthesis of jasmonic acid (JA) in flower
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buds (Hyun et al. 2008; Ishiguro et al. 2001). A homolog of

DAD1, DONGLE (DGL, At1g05800), which is expressed in

vegetative tissues was identified to be involved in the early

phase of wound-inducible JA biosynthesis, whereas DAD1

functions in the late phase of wound-inducible JA produc-

tion. DAD1 has a preferential substrate specificity for

DGDG, suggesting that the major source of JA is the acyl

chains derived from DGDG (Hyun et al. 2008). Shoot

gravitropism 2 (SGR2, At1g31480) encodes a PLA1

involved in shoot gravitropism, and it has been suggested

that the SGR2 might be important in the formation of

membrane structure (Kato et al. 2002). The PLA2 subfamily

is known to have four genes, PLA2a, b, c, and d. PLA2b
(At1g53940) as like SGR2 is also involved in cell elongation

and shoot gravitropism (Lee et al. 2003). The role of PLA2b,

c (At4g29460), and d in the formation of membrane structure

was discovered during pollen development and germination

by the suppression of PLA2 (Kim et al. 2011). The sup-

pressor of AvrBsT-elicited resistance1 (SOBER1,

At4g22300) regulates PA levels generated in Arabidopsis in

response to biotic stress (Kirik and Mudgett 2009). In addi-

tion, the patatin-related PLAs (pPLAs) are grouped into three

subfamilies; pPLAI, pPLAII (a, b, c, d, and e), and pPLAIII

(a, b, c, and d). pPLAs preferentially hydrolyze membrane

glycerolipids such as monogalactosyl monoacylglyceride

(MGDG) and phosphatidyl-glycerol (PG). pPLAs and the

released fatty acids have been implicated in plant growth and

stress responses. pPLAI was implicated in maintaining the

levels of basal JA that plays a positive role in defense

responses (Yang et al. 2007). pPLAIIa-deficient plants were

observed to have higher levels of JA, methyl-JA, and the

oxylipin-biosynthetic intermediates than in wild type, indi-

cating that pPLAIIa (At2g26560) might function in the

removal of oxidatively modified fatty acids in membranes

for membrane repair or remodeling (Yang et al. 2012).

pPLAIIb (AtPLAIVB/PLP5, At4g37060) is involved in root

elongation under phosphate deficiency, and pPLAIIc and d
were implicated in auxin responses (Rietz et al. 2010).

Among four pplaIIIa (At5g43590), b (At2g39220), c
(At3g54950), and d (At3g63200) knock-out mutants, only

pplaIIId-KO seeds exhibited significant increase in seed oil

contents with 20- and 22-carbon fatty acids, suggesting that

pplaIIId, which is able to hydrolyze PC, may play a role in

fatty acyl flux from plastid to the ER and/or PC fatty acyl

remodeling for TAG synthesis (Li et al. 2013).

Possible functions of PLC have been identified in

response to abiotic stresses. Non-specific phospholipase C5

(NPC5, At3g03540) is reported to be involved in galactolipid

accumulation by providing DAG intermediates in leaves

under phosphate limitation condition (Gaude et al. 2008).

The npc4 mutant (At3g03530) shows decreased DAG levels,

decreased ABA sensitivity in seed germination, root elon-

gation and stomatal movement, and decreased resistance to

drought and salt stresses, suggesting that NPC4 and DAGs

promote stomatal opening under well-watered conditions

and PA promotes plant growth under water-deficit condi-

tions (Peters et al. 2010). Phosphoinositide (PI)-specific

PLC9 (At2g40116) is involved in thermotolerance of

Arabidopsis, suggesting that the released IP3 may regulate

intracellular Ca2? concentration, which could ultimately

induce genes encoding heat shock proteins (Zheng et al.

2012).

Among 12 PLDs including PLDa (3), b (2), c (3), d, e,
and n (2), in planta roles of 8 PLDs have been character-

ized. PLD and its product PA are implicated in many

cellular processes including plant growth and development,

plant responses to abiotic and biotic stresses, hormone

responses, and vesicle trafficking. PA produced by PLDa1

(At3g15730) binds to NADPH oxidase, which stimulates

ROS production in guard cells, showing that PA is a sig-

naling molecule for ABA-mediated stomatal closure

(Zhang et al. 2009b). PLDa1 (At3g15730) and PLDd
(At4g35790) cooperatively function in ABA-induced sto-

matal closure and seed germination (Uraji et al. 2012;

Distefano et al. 2012). PLDa3 (At5g25370) is involved in

plant growth and development, particularly flowering,

under water-deficit conditions (Hong et al. 2008). The pldb
1 mutant (At2g42010) showed an increased resistance to

the bacterial infection (Pseudomonas syringae pv.

DC3000), but was more susceptible to fungal infection

(Botrytis cinerea) compared with wild type, suggesting that

PLDb1 and associated lipid changes are involved in the

SA-dependent and JA/ethylene-dependent plant defense

(Zhao et al. 2013). PA produced by PLDd (At4g35792) is

involved in cell wall-based defense signaling in non-host

resistance against powdery mildew fungi via hydrogen

peroxide production (Pinosa et al. 2013). PLDe
(At1g55180) was found to enhance plant growth under high

salinity and water deficiency, suggesting that PLDe and PA

may play a positive role in nutrients such as nitrogen sig-

naling (Hong et al. 2009). PLDn (At3g05630) and PA

enhance vesicle trafficking and positively regulate auxin

responses by regulating the activities of RCN1 (a protein

phosphatase 2A regulatory subunit) and PID1 (a Ser/Thr

protein kinase), which are a potential target protein of PA

and a regulator of polar auxin transporter, respectively (Li

and Xue 2007).

PA phosphatase (PAP) catalyzes the dephosphorylation

of PA to diacylglycerol (DAG). Arabidopsis contains four

genes encoding membrane-bound PAP (also called lipid

phosphate phosphatase, LPP), two genes encoding soluble

and cytosolic PAP (also called PA phosphohydrolase1 and

2), and three genes encoding plastidic PAP. Among 4

LPPs, disruption of LPP2 (At1g15080) caused hypersen-

sitivity to ABA and significant PA accumulation during

seed germination, suggesting that PA is involved in ABA
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signaling (Katagiri et al. 2005). The pah1pha2-1 mutant

exhibited a significant increase in phospholipid content, up-

regulation of genes encoding enzymes involved in

phospholipid synthesis, and alteration in ER morphology,

suggesting that PAH/2 may play a role in repressing

phospholipid synthesis at the ER or may modulate

phospholipid synthesis through changes in the level of PA

or DAG (Eastmond et al. 2010). Based on sequence

homology searches of LPP genes from Cyanobacterium

synechosystis sp. PCC6803, 3 putative plastidic Arabi-

dopsis LPP genes {LPPc (At5g03080), LPPe1
(At3g50920), and LPPe2 (At5g66450)} were identified.

The lppe1 lppe2 mutant showed no significant changes in

lipid composition, whereas loss of LPPc may cause a lethal

effect on plant viability (Nakamura et al. 2007).

TAG hydrolysis is required for the mobilization of

storage reserves during seed and pollen germination, and

may be involved in membrane lipid remodeling during leaf

senescence, and in plant defense against bacterial pathogen

or insect attack. Arabidopsis PAD4 (At3g52430) and MLP1

(At5g14180), which display sequence similarity to TAG

lipase, have been identified to be involved in plant defense

(Jirage et al. 1999; Louis et al. 2010). Overexpression of

SAG101 (At5g14930), a leaf senescence-associated gene

causes premature leaf senescence, whereas its antisense

lines showed delayed leaf senescence. The SAG101 fusion

proteins showed an acyl hydrolase activity for triolein (He

and Gan 2002). AtLip1 (At2g15230) with the best homol-

ogy to human gastric lipase and SDP1 (Sugar-dependent 1,

At5g04040) encoding a patatin-domain TAG lipase were

reported to be involved in storage oil breakdown during

seed germination (Karim et al. 2005; Eastmond 2006). In

addition, monoacylglycerol lipase (MAGL) catalyzes the

hydrolysis of MAG to fatty acid and glycerol, the last step

of TAG breakdown. Among 16 Arabidopsis genes anno-

tated as MAGL, only 1 gene, lysoPL2/AtMGAT (Arabi-

dopsis monoacylglycerol acyltransferase, At1g52760) has

been characterized by mutant analysis. lysoPL2 promotes

the degradation of lysoPC in response to cadmium-induced

oxidative stress (Gao et al. 2010) and AtMGAT was

reported to have both monoacylglycerol acyltransferase

and acyl hydrolase activities (Vijayaraj et al. 2012).

Expression patterns, subcellular localizations, and enzyme

activities of 16 Arabidopsis MAGLs have been recently

characterized (Kim et al. 2012).

GDSL lipase containing a GDSL motif is a [100

member gene superfamily of possible lipolytic enzymes

that collectively appear to display very broad substrate

specificity. GDSL lipase 1 (GLIP1), GLIP2, Tomato Cutin

Deficient1 (CD1), and Arabidopsis cutin synthase1 (At-

CUS1) genes belong to this very large family. In the ana-

lysis of Arabidopsis secretome in response to salicylic acid,

GLIP1 (At5g40990) was reported to be involved in plant

immunity against fungal and necrotropic pathogens, sug-

gesting that GLIP1 may play a role in ethylene-associated

systemic immunity (Oh et al. 2005; Kim et al. 2014).

GLIP2 (At1g53940) was also involved in resistance to

necrotropic bacteria, Erwinia carotovora via negative

regulation of auxin signaling (Lee et al. 2009). After a

tomato GDSL lipase, Cutin Deficient 1 (CD1) was identi-

fied to be an acyltransferase in cutin synthesis (Yeats et al.

2012), putative Arabidopsis homologues (also called cutin

synthase, CUS) of CD1/SlCUS1 (Solanum lycopersicum

cutin synthase 1) were searched and AtCUS1/LTL1 dem-

onstrated cutin synthase activity in vitro (Yeats et al. 2014).

Other lipases that contain a a/b-hydrolase motif include

EDS1, BDG, CGI-58, and PES1 and 2. Enhanced disease

susceptibility1 (EDS1, At3g48090) is involved in a disease-

resistance process conditioned by TIR-NB-LRR type R

gene that encodes a leucine-rich repeat protein (Falk et al.

1999). Bodyguard (BDG, At1g64670) is associated with

cuticle development and morphogenesis (Jakobson et al.

2014; Kurdyukov et al. 2006). A mutant defective in the

Arabidopsis CGI-58 homologue (also called ABHD5, or a/

b-hydrolase-5, At4g24160) caused accumulation of lipid

droplet in leaves, suggesting that CGI-58 may play a role in

neutral lipid homeostasis in plants (James et al. 2010).

Phytyl Ester Synthase1 and 2 (PES 1 and 2, At1g54570 and

At3g26840) containing both a/b-hydrolase and acyltrans-

ferase motifs function in the formation of phytyl esters in

chloroplasts (Lippold et al. 2012).

Several of the examples presented above make it clear

that the original annotations of genes as ‘‘lipase’’, PLA, etc.

need to be revised/updated as new information on their

actual in vivo enzymatic activity becomes available.

Mutants of transcription factors and other regulators

of acyl lipid metabolism

Over the past several decades, considerable information

has become available on regulation of lipid metabolism by

transcription factors (TFs) and other regulators, and is well

summarized in recent reviews (Lee and Suh 2013; Li-

Beisson et al. 2013; Marchive et al. 2014; Borisjuk et al.

2014). However, considering there are over 1800 total TFs

in Arabidopsis, it is perhaps surprising that such a small

number have been shown to regulate acyl lipid metabolism.

Some regulators have been identified in other plants but not

in Arabidopsis, such as SHOOTMERISTEMLESS

(STM), TT16, bZIP123 (Deng et al. 2012; Song et al.

2013). Possible reasons for the low number are that the

functions of regulators may be redundant, such that the

phenotypes in single mutants are masked by complemen-

tation by other genes, such as two negative regulators of

oil, the High-level expression of Sugar-Inducible gene 2

(HSI2, At2g30470) and HSI2-Like1 (HSL1, At4g32010)
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(Tsukagoshi et al. 2007), or that mutations in regulation of

critical primary metabolic pathways are lethal.

With more than 35 % oil in its seeds, Arabidopsis pro-

vides one of the best model plants for seed oil biosynthesis.

Several transcription regulators involved in TAG accu-

mulation have been identified. Forward genetic methods

were used in early studies to find mutants with altered oil

contents. Focks and Benning (1998) reported the isolation

of a mutant named wrinkled1 (At3g54320), which has

80 % reduction in oil content and in flux of carbon through

glycolysis and fatty acid synthesis. The identification of the

WRI1 gene represents a landmark advance in studies of

plant lipid metabolism (Cernac and Benning 2004) and its

role is now by far the best understood of any TF in acyl

lipid metabolism (Marchive et al. 2014). WRI1 binds to an

upstream AW-box region of genes involved in fatty acid

synthesis, such as pyruvate kinase (Pl-PKb1) and acetyl-

CoA carboxylase (BCCP2) (Maeo et al. 2009). It is now

known that WRI1 directly binds to a large number of target

genes in the glycolytic and fatty acid biosynthesis path-

ways (Marchive et al. 2014). WRI3 (At1g16060) and

WRI4 (At1g79700), two other WRI1-like proteins can

complement the wri1 mutant, are expressed in flower and

stem, and may regulate cutin synthesis indirectly through

control of fatty acid synthesis (To et al. 2012).

LEC1 (At1g21970), LEC2 (At1g28300), FUSCA3

(FUS3,At3g26790) and ABI3 (At3g24650) are master

regulators in embryo development and deficiencies of oil

were found in their mutants (Finkelstein and Somerville

1990; Keith et al. 1994; Lotan et al. 1998; Stone et al.

2001). PKL (At2g25170), a chromatin-remodeling factor,

represses LEC1 expression in vegetative tissues and oil

accumulates in the primary roots of pkl mutant (Ogas et al.

1997, 1999). ABI4 (At2g40220), another member of A-

PETALA2 TFs, plays a role in the degradation of storage

oil and the expression of DGAT1 is down-regulated in its

mutant (Penfield et al. 2006; Yang et al. 2011). GLABRA2

(GL2, At1g79840), a homeodomain (HD) TF, acts as a

negative regulator of seed oil (Shen et al. 2006). Several

other negative regulators of TAG accumulation have been

recognized by reverse genetic strategies in recent studies.

TT2 and TT8, regulators of proanthocyanidin and flavo-

noid synthesis in testa, also affect oil contents and fatty

acid compositions in seeds. FUS3, CAC2 (At5g35360),

KASII (At1g74960), FAD2 (At3g12120) and FAE1

(At4g34520) are up-regulated in tt2 (At5g35550) and tt8

(At4g09820) mutants (Chen et al. 2012, 2014). ASIL

(At1g54060) belongs to the trihelix family of DNA-binding

TFs and depresses the expressions of genes related to

embryo-specific lipids as well as embryo development

(Gao et al. 2011). Additionally, several TFs have been

identified as regulators of fatty acid compositions of seed

oil. The bZIP67 (At3g44460) targets to FAD3 (At2g29980)

and 18:3 levels are reduced in seed oil of bzip67 mutant

(Mendes et al. 2013), while total fatty acid compositions

are changed differentially in the seeds of crc (At1g69180)

and ap1 (At1g69120) mutants (Han et al. 2012). PII

(GLB1, At4g01900), directly controlled by WRI1, finely

adjusts fatty acid composition in seeds (Baud et al. 2010).

The plant cuticle is the protective layer coating the aerial

surface of higher plants, which mainly consists of cutin and

cuticular wax. Several transcription factors have been con-

firmed to control the synthesis of cuticular lipids. SHINE1/

WAX INDUCER1 (SHN1/WIN1, At1g15360), an AP2-

domain protein, was first identified to regulate cutin syn-

thesis by coordinate induction or by direct interaction with

genes known to be involved in cutin deposition, such as long

chain acyl-CoA synthetase2 (LACS2, At1g49430) (Aharoni

et al. 2004; Broun et al. 2004; Kannangara et al. 2007).

SHN2 (At5g11190) and SHN3 (At5g25390), two other

members of the SHINE clade of AP2 TFs, also regulate

cutin- and suberin-associated genes, such as CYP86A cyto-

chrome P450 s and fatty acyl-CoA reductases (Shi et al.

2011). Additional AP2 TFs affecting cuticle deposition

include GLABRA1 and GLABRA3 (Xia et al. 2010). TTG1,

a WD40 repeat protein also has been shown to affect cuticle

deposition (Xia et al. 2010). The Curly Flag Leaf1 (CFL1,

At2g33510), a WW domain TF, negatively regulates cuticle

development by modulating the function of HDG1

(At3g61150) (Wu et al. 2011). As noted above, WRI3 and

WRI4, two other WRI1-like proteins expressed in non-seed

tissues, are likely indirect regulators of cutin synthesis

through fatty acid synthesis (To et al. 2012). DEWAX

(At5g61590), an AP2/ERF-type TF, negatively regulates the

expressions of genes related to surface lipid synthesis. More

wax accumulates on the surface of stems and leaves of de-

wax mutant (Go et al. 2014). After MYB30 (At3g28910)

and MYB41 (At4g28110) were identified as regulators of

surface lipids (Cominelli et al. 2008; Raffaele et al. 2008;

Kosma et al. 2014), more members of MYB family have

been confirmed in recent studies. MYB106 (At3g01140) and

MYB16 (At5g15310), cooperate with SHN1 to regulate

epicuticular wax crystals and cutin nanoridges (Oshima et al.

2013). MYB96 (At5g62470) activates a group of wax bio-

synthesis genes, such as very long chain fatty acid-con-

densing enzymes (Seo et al. 2011). MYB41 positively

regulates the steps necessary for aliphatic suberin synthesis

and deposition of cell wall-associated suberin-like lamellae

(Kosma et al. 2014). Cer7 (At3g60500) is a core subunit of

the RNA processing/degrading exosome and influences wax

biosynthesis by controlling the expression of CER3/WAX2/

YRE (Hooker et al. 2007). A screen for suppressors of the

cer7 mutant revealed regulatory roles for RNA-DEPEN-

DENT RNA POLYMERASE1 (RDR1) and SUPPRESSOR

OF GENE SILENCING3 (SGS3) in CER7-mediatied RNA

silencing of CER3 (Lam et al. 2012). Similarly,
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SERRATE (At2g27100) encodes a protein of RNA–pro-

cessing multi-protein complexes thought to mediate ‘‘RNA

signaling in the cuticle integrity pathway’’ (Voisin et al.

2009). HUB1 (At2g44950) and HUB2 (At1g55250) encode

two orthologous RING E3 ligases and wax and cutin com-

positions are altered in hub mutants (Menard et al. 2014).

Similarly, CER9 (At4g34100) ‘‘encodes an E3 ubiquitin

ligase homologous to yeast Doa10 (previously shown to

target endoplasmic reticulum proteins for proteasomal deg-

radation)’’ thought to serve as a negative regulator of cuticle

synthesis and stress responses (Lu et al. 2012). More general

regulators of embryo epidermal differentiation have been

implicated in regulating cuticle development including

ZHOUPI (At1g49770), ALE1 (At1g62340), GASSHO1

(At4g20140), GASSHO2 (At5g44700) and ACR4

(At3g59420). (Tsuwamoto et al. 2008; Tanaka et al. 2002;

Watanabe et al. 2004; Cao et al. 2005; Xing et al. 2013).

Although a few regulators have been described to

impact membrane lipids, many of these may do so indi-

rectly. Bax inhibitor-1 (At5g47120), an endoplasmic

reticulum protein, regulates sphingolipid synthesis by

interacting with four related enzymes (Nagano et al. 2014).

GOLDEN2-LIKE1 (GLK1, At2g20570) and GLK2

(At5g44190), regulators of chlorophyll synthesis, also

regulate the expressions of galactolipid-synthesis genes,

particularly DGD1 under continuous light (Kobayashi et al.

2014). ARF7 (At5g20730) and ARF19 (At1g19220) are

auxin-response TFs and the accumulation of DGDG and

SQDG is suppressed in arf7arf19 mutant during phosphate

starvation (Narise et al. 2010).

In addition to WRI1 and bZIP67 mentioned above, a

small number of studies have identified direct targets of

TFs by DNA binding assays. LEC2 directly binds with RY

motifs in the 50 flanking regions of some LEC2 induced

genes (Braybrook et al. 2006). ChIP-tiling array results

demonstrate that FUS3 directly targets to many embryo-

genesis related TFs and microRNAs (Wang and Perry

2013). ChIP assay suggests that TT8 binds to the promoter

regions of LEC1, LEC2, FUS3 and Cytidinediphophate

diacylglycerol synthase2 (CDS2) (Chen et al. 2014).

MYB96 (At5g62470), confirmed by both in vivo and

in vitro assays, binds to the promoters of 3-ketoacyl-CoA

synthase 1 (KCS1, At1g01120), KCS2 (At1g04220), KCS6

(At1g68530), KCR1 (At1g67730), and lipid transfer pro-

tein3 (LTP3, At5g59320) and positively adjusts their

expression (Seo et al. 2011; Guo et al. 2013). ABI4 binds

the coupling element1 (CE1) element [CACC (G)] in the

promoter of its target genes in maize and Arabidopsis (Niu

et al. 2002; Yang et al. 2011). LACS2 was reported as a

direct target of WIN1 by immunoprecipitation assay

(Kannangara et al. 2007). Clearly, much more is needed to

clarify the mechanism of the other regulators mentioned

above.

Summary/conclusions

A few comments and observations derived from

ARALIPmutantDB.

1. There are some large gene families where a surpris-

ingly small number of mutants have been identified.

The lipid transfer protein (LTP) gene family is one

intriguing example. There are 73 genes in this family,

but fewer than 10 % of these genes have characterized

mutants. The GDSL lipase family, with over 100

members has only 2 genes in ARALIPmutantDB. Of

course, it is important to remember that many genes

annotated as lipases may not in fact act on lipids or

catalyze hydrolase reactions.

2. Desaturases were some of the first enzymes where

mutants were characterized and now all major desat-

urase genes in central pathways of plant glycerolipid

desaturation likely have been identified and character-

ized with mutants. However, several genes in the

‘ADS’ or FAD5-like class have uncertain functions

and may be attractive candidates for further focus.

3. Although WRI1, WRI3 and WRI4 are clearly the

master regulators of fatty acid synthesis in seed and

non-seed tissues, there are a number of remaining

questions. Triple wri1 wri3 wri4 mutants still accu-

mulate oil at 20 % of WT levels, raising the question

of whether there are other transcription factors in play

for oil synthesis of developing seeds. These three

transcription factors are expressed at low levels in

tissues such as leaves; although young, rapidly

expanding leaves synthesize fatty acids at rates

approaching those of seeds. Thus, a related question

is: what controls production of fatty acids/lipids in

leaves, where WRI is not highly expressed?

4. Although WRI1 clearly regulates the expression of a

number of genes in glycolysis and fatty acid synthesis

and this determines oil content of seeds, very little is

known about control of expression of genes later in the

TAG assembly pathway. DGAT1, PDAT1 and other

acyltransferases have patterns of expression during

seed development that are strikingly different than

those of the fatty acid biosynthesis pathway (e.g.,

Troncoso-Ponce et al. 2011). What TF or other factors

are responsible for controlling their expression?

5. How close are we to having identified most genes that

have a lipid phenotype in single mutants? The number

of publications on new mutants in Arabidopsis acyl

lipid metabolism may have peaked (Fig. 1). This might

reflect the fact that most genes with readily detectable

mutant phenotypes have been characterized or that

gene redundancies ‘conceal’ the gene function in

mutants.
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