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Abstract Jasmonates (JAs) are lipid-derived signals in

plant responses to biotic and abiotic stresses and in

development. The most active JA compound is (?)-7-iso-

JA-Ile, a JA conjugate with isoleucine. Biosynthesis,

metabolism and key components of perception and signal

transduction have been identified and numerous JA-

induced gene expression data collected. For JA-Ile per-

ception, the SCFCOI1–JAZ co-receptor complex has been

identified and crystalized. Activators such as MYC2 and

repressors such as JAZs including their targets were found.

Involvement of JA-Ile in response to herbivores and

pathogens and in root growth inhibition is among the most

studied aspects of JA-Ile signaling. There are an increasing

number of examples, where JA-Ile shows cross-talk with

other plant hormones. Seminal contributions in JA/JA-Ile

research were given by Daoxin Xie’s lab and Chuanyou

Li’s lab, both in Beijing. Here, characterization was done

regarding components of the JA-Ile receptor, such as COI1

(JAI1) and SCF, regarding activators (MYCs, MYBs) and

repressors (JAV1, bHLH IIId’s) of JA-regulated gene

expression, as well as regarding components of auxin

biosynthesis and action, such as the transcription factor

PLETHORA active in the root stem cell niche. This

overview reflects the work of both labs in the light of our

present knowledge on biosynthesis, perception and signal

transduction of JA/JA-Ile and its cross-talk to other

hormones.
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Abbreviations

ABA Abscisic acid

AOS Allene oxide synthase

BR Brassinosteroid

COI1 CORONATINE INSENSITIVE1

ET Ethylene

GA Gibberellic acid

HPL Hydroperoxide lyase

JA Jasmonic acid

JA-Ile JA isoleucine conjugate

JAMe JA methyl ester

JAR1 JA resistant1

JAZ JASMONATE ZIM DOMAIN

a-LeA a-Linolenic acid (18:3)

LOX Lipoxygenase

MYB R2R3-type TFs

MYC bHLHzip-type TFs

OPDA 12-Oxophytodienoic acid

PIN2 PIN-FORMED2

PLT PLETHORA

SA Salicylic acid

TF Transcription factor

SCF Skp1/Cullin/F-box
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Introduction

The methyl ester of jasmonic acid (JA) was isolated and

identified in the odor of flowers of Jasminum grandiflorum

in 1962 (Demole et al. 1962). Two decades later, senes-

cence promotion (Ueda and Kato 1980) and growth inhi-

bition (Dathe et al. 1981) were the first physiological

effects described for JA. The JA biosynthesis pathway was

elucidated by Vick and Zimmerman (1983) in the 80s of

the last century followed in the early 90s by identification

of JA as the key player in herbivore-induced synthesis of

defense proteins such as proteinase inhibitors (PIs) (Farmer

and Ryan 1990) and of many other processes such as

alkaloid synthesis (Gundlach et al. 1992). Meanwhile, JA

and its conjugate with isoleucine (JA-Ile) have been

described as important signals in plant responses to biotic

and abiotic stress as well as in development (cf. review of

Wasternack and Hause 2013). Numerous gene expression

programs induced by JA have been elucidated. Key com-

ponents of JA perception and JA signal transduction were

identified and characterized. Several proteins involved in

synthesis of JA-Ile and in JA-Ile perception have been

crystallized. First insights into the cross-talk of JA to other

hormones building a regulatory network of action have

been obtained.

Two groups in Beijing were heavily involved in several

breakthroughs in JA research during the last 15 years. Da-

oxin Xie’s lab (School of Life Sciences, Tsinghua Univer-

sity, Beijing) identified and characterized the first JA-

specific F-box protein, COI1 of Arabidopsis, and contributed

by identification of essential components of JA-induced gene

expression and proteasomal degradation of repressors.

Chuanyou Li’s lab (Institute of Genetics and Developmental

Biology, Chinese Academy of Sciences, Beijing) identified

essential components of JA biosynthesis and signaling of

tomato, aspects of systemic signaling including defense

responses and the role of auxin and its cross-talk to JA in root

growth of Arabidopsis. The following overview is a sum-

mary on JA perception, JA signal transduction and cross-talk

to other hormones highlighting the contributions of Daoxin

Xie’s lab and Chuanyou Li’s lab.

JA biosynthesis

The biosynthesis of JA has been repeatedly reviewed in

recent years (Wasternack and Kombrink 2010; Kombrink

2012; Wasternack and Hause 2013). To avoid repetitions,

only some recent aspects required for the following para-

graphs are discussed here.

The first half of JA biosynthesis takes place in plastids

(Fig. 1). Substrate is a-linolenic acid (18:3) (a-LeA). An

x-3-fatty acid desaturase is required for its formation from

a-linoleic acid (18:2). The tomato enzyme has been cloned

by Chuanyou Li in G. Howe’s lab (East Lansing, USA)

using the spr2 mutant (suppressor of prosystemin-mediated

response2) (Table 1); (Li et al. 2003). This mutant is JA

deficient. Therefore, the mutant became a strong tool in

analysis of wound-induced JA formation and systemic

signaling (Li et al. 2002). The released a-LeA is oxygen-

ated by plastid-located lipoxygenases (LOXs) at C-13 (13-

LOXs). LOXs occur in gene families with six members in

Arabidopsis and four members in tomato. Four of the six

Arabidopsis LOXs are 13-LOXs and are involved in

wound-induced JA biosynthesis in an organ- and tissue-

specific manner. LOX3 and LOX4 are involved in anther-

specific JA formation (cf. review of Wasternack and Hause

2013). A new 13-LOX of tomato (TomLOXD) has been

recently identified in Chuanyou Li’s lab by characterizing

the spr8 mutant (Table 1); (Yan et al. 2013b). The lack of

JA formation in spr8 mutant plants leads to deficiencies in

immune responses, such as defense protein synthesis and

glandular trichome formation, and to compromised resis-

tance to herbivores or necrotrophic pathogens. In contrast,

Fig. 1 Scheme on synthesis of jasmonic acid isoleucine conjugate

(JA-Ile) in three different compartments illustrated on an electron

microscopic picture of a barley mesophyll cell. a-Linolenic acid (a-

LeA) is released from chloroplast membranes and is converted by a

lipoxygenase (LOX) to 13-hydroperoxy octadecatrieneoic acid (13-

HPOTE). Allene oxide synthase (AOS) and allene oxide cyclase

(AOC) catalyze formation of 12-oxophytodienoic acid (OPDA) which

is transported into the peroxisome, where an OPDA reductase3

(OPR3), an acyl-CoA oxidase1A (ACX1A) and further enzymes of the

fatty acid b-oxidation machinery catalyze formation of jasmonic acid

(JA). In the cytosol, a synthetase (JAR1) catalyzes formation of JA-Ile

which leads to gene expression in the nucleus. A part of the vacuole

can be seen in the lower part of the picture (photograph B. Hause)

[modified after Wasternack (2007) with permission]
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the wound-inducible TomLOXC is involved in HYDRO-

PEROXIDE LYASE (HPL)-independent C-5 and C-6

volatile formation without impact on pathogen resistance

(Shen et al. 2014).

Among the seven different branches of the LOX pathway

(Feussner and Wasternack 2002), one branch via the

ALLENE OXIDE SYNTHASE (AOS) leads to JA, whereas a

concurrent branch via the HPL leads to volatile leaf alcohols

and leaf aldehydes. Chuanyou Li’s lab identified a HPL of rice

affected in the so-called cea62 mutant (Liu et al. 2012). cea62

plants exhibit constitutive expression of OsAOS and JA

overproduction including growth defects. In these plants,

there is a competing activity between the AOS branch and the

HPL branch as observed also in Arabidopsis with the conse-

quences for indirect and direct defense mechanisms (Chehab

et al. 2008). Most attention has been paid to the AOS branch

due to the central role of JA-Ile in stress responses and

development. The AOS and the subsequently active ALLENE

OXIDE CYCLASE (AOC), both of them partially bound to

plastid membranes (Farmaki et al. 2007), catalyze formation

of the cyclopentenone cis-(?)-12-oxophytodienoic acid

(OPDA). In the AOC-catalyzed step, the enantiomeric form of

Table 1 Key components in jasmonate (JA) biosynthesis, perception and signaling of Arabidopsis and tomato (contributions of the Daoxin Xie’s

lab and the Chuanyou Li’s lab are indicated by small letters)

Gene Protein Function Reference

Biosynthesis

SPR2 (tomato) SUPRESSOR OF PROSYSTEMIN

RESPONSE2/fatty acid x-3-desaturase

JA biosynthesis Li et al. (2003)a,b

SPR8 (tomato) SUPRESSOR OF PROSYSTEMIN

RESPONSE8/LIPOXYGENASED

JA biosynthesis Yan et al. (2013b)a

AOC ALLENE OXIDE CYCLASE JA biosynthesis Stenzel et al. (2003)

OPR3 OPDA REDUKTASE3 JA biosynthesis Stintzi and Browse (2000); Sanders

et al. (2000)

JAR1 JASMONATE RESISTANT1/JA amino

acid synthase

JA-Ile biosynthesis Staswick and Tiryaki (2004)

Perception

SCFCOI1 SKP/CUL1/F-box protein (JA) E3 ubiquitin ligase Xu et al. (2002)c

ASK1,2 Arabidopsis SKP-LIKE PROTEIN1,2 SCF components Liu et al. (2004)c

CUL1 CULLIN1 adaptor protein in SCFCOI1

complex

Ren et al. (2005)c

COI1 (Arabidopsis) CORONATINE INSENSITIVE1 F-box protein Xie et al. (1998)c,d; Yan et al.

(2013a, b)c

JAI1 (tomato) JASMONATE INSENSITIVE1 F-box protein Li et al. (2004)a,b

Signaling

COS1 COI1 SUPPRESSOR Riboflavin synthesis Xiao et al. (2004)c

MYC2/JIN1 JASMONATE INSENSITIVE1 TF (activating and repressing) Lorenzo et al. (2004)

MYB21, 24 R2R3 TYPE TF TF (activating) Song et al. (2011)c

PLT1,2 PLETHORA1,2 TF (activating) Chen et al. (2011a)

JAM1, 2, 3 JASMONATE ASSOCIATED MYC2-

LIKE1, 2, 3

TF (repressing) Sasaki-Sakimoto et al. (2013);

Nakata et al. (2013)

JAZ JASMONATE ZIM DOMAIN Repressor of TF Thines et al. (2007); Chini et al.

(2007); Yan et al. (2007)

JAV1 JASMONATE ASSOCIATED VQ

MOTIF

Repressor of TF Hu et al. (2013)c

NINJA TPL NOVEL INTERACTOR OF Co-repressor Pauwels et al. (2010)

JAZ TOPLESS Co-repressor Pauwels et al. (2010)

MED25 MEDIATOR SUBUNIT25 Mediator complex (RNA

polymerase interactor)

Chen et al. (2012)a

TF Transcription factor
a Chuanyou Li’s lab
b Chuanyou Li’s lab in collaboration with Gregg Howe’s lab
c Daoxin Xie’s lab
d Daoxin Xie’s lab in collaboration with John Turner’s lab
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the naturally occurring JA is established (Ziegler et al. 2000).

OPDA is transported into peroxisomes, where an OPDA

reductase3 (OPR3) catalyzes reduction of the cyclopentenone

ring (Fig. 1). opr3 plants are JA deficient but able to form

OPDA (Stintzi and Browse 2000; Stintzi et al. 2001). Sub-

sequent shortening of the carboxylic acid side chain takes

place by the fatty acid b-oxidation machinery and is initiated

by an ACYL-CoA-OXIDASE1 (ACX1). Characterization of

ACX1 of tomato done by Chuanyou Li et al. (2005) in G.

Howe’s lab was among the first proofs for an involvement of

fatty acidb-oxidation in JA biosynthesis. Like the opr3 mutant

of Arabidopsis, acx1 plants of tomato became a tool to dis-

tinguish between OPDA- and JA-Ile-dependent signaling (Li

et al. 2005; Schilmiller et al. 2007; Koo et al. 2009; Goetz et al.

2012). Several enzymes of JA biosynthesis have been crys-

tallized, such as AOS, AOC, OPR3 and ACX1 (cf. review of

Wasternack and Kombrink 2010). JA biosynthesis is regu-

lated by substrate availability, a positive feedback loop and

tissue specificity, and Ca2? signaling and MAPK cascades are

involved (cf. reviews of Wasternack 2007; Balbi and Devoto

2008; Wasternack and Hause 2013). Expression of JA bio-

synthesis genes is regulated in a coordinate manner by tran-

scription factors (TFs) such as MYC2 and repressed by

ANTHER INDEHISCENCE FACTOR, a NAC-like TF (Shih

et al. 2014) as well as by JAZ proteins (cf. below).

There are 12 different metabolic routes of JA. Among

them, conjugation of JA with amino acids such as isoleu-

cine to JA-Ile by a member of the GH3 protein family, the

JA amino acid synthetase (JAR1), is the most important

reaction (Staswick and Tiryaki 2004). A specific enantio-

meric form, (?)-7-iso-JA-Ile, is the most bioactive JA

compound (Fonseca et al. 2009) and is bound by the JA

receptor (Sheard et al. 2010) (cf. below). Therefore, JA/JA-

Ile is used here as a module. JAR1 has been crystallized

(Westfall et al. 2012). Other metabolic routes of JA include

hydroxylation to 12-hydroxy-JA or 12-hydroxy-JA-Ile,

sulfonation of 12-hydroxy-JA, carboxylation and glucosy-

lation of 12-hydroxy-JA-Ile. Many of these metabolites are

biologically inactive. Consequently, their formation rep-

resents a switch-off in JA signaling (Miersch et al. 2008;

Koo et al. 2011; Heitz et al. 2012).

COI1, the SCF complex and repressors such as JAZs,

JAMs and JAV1

In the 90s of the last century, elucidation of biosynthesis of

most plant hormones was completed, but was improved in

case of auxin, strigolactones and brassinosteroids (BR) in the

following decades. The perception of plant hormones, how-

ever, was largely unknown except initial work on ethylene.

Fundamental breakthroughs were published in 1998 for auxin

by identification of TIR1 as an F-box protein, active as auxin

receptor, in M. Estelle’s lab (Ruegger et al. 1998) and for JA

by identification of COI1 as an F-box protein by Xie et al.

(1998), at that time in J. Turner’s lab in Norwich, UK. In a

mutant screen with the bacterial toxin coronatine, which is a

molecular mimic of JA-Ile, the Arabidopsis mutant coi1

(coronatine insensitive1) was initially identified in J. Turner’s

lab (Feys et al. 1994). The subsequent sequencing of COI1 and

identification of the encoded protein as an F-box protein via its

F-box domain strongly suggested a role of COI1, similar to

TIR1 in case of auxin, in an SKP/CULLIN/F-BOX (SCF)-

mediated proteasomal degradation (Xie et al. 1998). This role

of COI1 was shown in Daoxin Xie’s lab by a functional proof

on physical interaction between COI1 and other components

of the SCFCOI1 complex such as AtCUL1, AtRbx1 and one of

the Skp-like proteins ASK1 and ASK2 leading to an active

ubiquitin ligase complex designated as SCFCOI1 (Xu et al.

2002). CULLINs, encoded by a gene family of 11 members in

Arabidopsis thaliana, function as scaffold proteins within the

SCF complexes and occur as evolutionary conserved proteins

in fungi, plants and mammals (cf. review of Stratmann and

Gusmaroli 2012). AtRbx1 is a RING-box domain protein,

which binds to CULLIN and SKP1, thereby attributing to

interaction of CULLIN-RING 3 ubiquitin ligase and the E2

ubiquitin-conjugating enzyme (Lechner et al. 2002). A single

amino acid substitution in COI1E22A in the F-box motif of

COI1 indicated the absolute requirement of intact COI1 for

formation of the SCFCOI1 complex (Xu et al. 2002). The

SCFCOI1 complex is only active in JA signaling, if an intact

AXR1 required for CULLIN1 modification is present.

Mutations in COI1 and AXR1 showed a synergistic genetic

interaction in the double mutant (Xu et al. 2002). This

requirement for a functional SCFCOI1 complex in JA signaling

was supported in a collaborative work with J. Turner’s group

(Norwich) (Devoto et al. 2002). In this stage of work on the

SCFCOI1 complex, its role in flower development suggested by

the male sterile phenotype of coi1 mutants was demonstrated

(Ni et al. 2004). In further studies by Daoxin Xie’s lab, the

essential role of ASK1 and ASK2 in embryogenesis and

seedling growth of Arabidopsis (Liu et al. 2004) and the

essential role of CUL1 in complex assembling were shown by

analysis of the mutants axr6-1, axr6-2, and cul1, all affected in

JA responses (Ren et al. 2005).

The CULLIN1-based SCFCOI1 complex is regulated by

the COP9 signalosome (CSN), a multiprotein complex (cf.

review of Stratmann and Gusmaroli 2012). Daoxin Xie’s

lab along with X. W. Deng’s lab (Beijing) showed that

physical interaction of the COP9 signalosome with the

SCFCOI1 complex and its role in modulation of the JA

response (Feng et al. 2003). JA signaling was further

substantiated by identification of downstream components.

In a mutant screen of Daoxin Xie’s lab for mutants carrying

suppression of JA-dependent defects of coi1 mutant plants,

the COS1 gene was cloned (Xiao et al. 2004). COS1
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encodes a lumazine synthase, a key component of the

riboflavin pathway of bacteria, fungi and plants. The

riboflavin pathway was shown to be active downstream of

COI1 and is required for suppression of COI1-mediated

inhibition of root growth, senescence and plant defense

(Xiao et al. 2004). These data further supported the role of

COS1 in SCFCOI1-mediated JA signaling. The cos1 muta-

tion restored the defect of coi1-2 suggesting that the ribo-

flavin pathway is required for suppression of a putative

negative regulator. Here, Daoxin Xie’s lab showed one of

the first hints that in JA signaling, proteasomal degradation

via the SCFCOI1 complex is required for removal of a

repressor of gene expression similar to animal systems. 5

years later, these negative regulators were occasionally

identified in three different labs by characterization of the

JASMONATE ZIM DOMAIN (JAZ) proteins (Chini et al.

2007; Thines et al. 2007; Yan et al. 2007).

In summary, between 2002 and 2004 Daoxin Xie’s lab

identified and characterized, partially by collaborative work,

the key components of a functional SCFCOI1 complex such as

COI1, ASK1, ASK2, COP9, CULLIN1 and AXR1 of A.

thaliana. Details on JA perception, however, were still

unclear. The above-mentioned similarities between COI1 and

TIR1, the auxin receptor, led to the suggestion that COI1

might be a JA receptor (Woodward and Bartel 2005). A

functional proof by pulldown-experiments, however, was not

successful in several labs. A breakthrough was the identifi-

cation of JAZ genes, a family of 12 members in Arabidopsis

(Chini et al. 2007; Thines et al. 2007; Yan et al. 2007). JAZ

proteins are negative regulators of positively acting TFs in JA-

dependent gene expression. Based on these new data, a basic

scenario on JA-Ile perception could be proposed in 2007

(Fig. 2): In a resting state, the positively acting TF MYC2

binds to a G-box of a JA-responsive gene and is repressed by a

JAZ protein. Upon stress, an endogenous rise of JA-Ile occurs

and is perceived by the SCFCOI1 complex. The perception of

JA-Ile causes release of the repressing JAZ protein from

MYC2 and interaction of JAZ with the SCFCOI1 complex.

JAZ, the target of COI1, is subsequently subjected to prote-

asomal degradation upon ubiquitination (cf. review of

Wasternack and Hause 2013). Based on this scenario and in

order to identify a JA receptor, Daoxin Xie’s lab developed a

photoaffinity probe containing a coronatine moiety and a

photoreactive group which allowed cross-linking to COI1 (Gu

et al. 2010). This probe, called PACOR, was designed upon

molecular modeling of COI1 with coronatine (Yan et al.

Fig. 2 JA/JA-Ile perception by the SCFCOI1–JAZ co-receptor com-

plex leads to JA/JA-Ile-induced gene expression. MYC2 which

bounds to a G-box of a JA/JA-Ile-responsive gene is repressed by

negative regulators such as JAZs, mediated by co-repressors NINJA

and TOPLESS (TPL) which acts via the HISTONDEACETYLASE6

(HDA6) and HDA19. In addition to JAZ proteins, JASMONATE

ASSOCIATED VQ MOTIF GENE 1 (JAV1) acts as a repressor (left

side), whereas JAMs (JASMONATE ASSOCIATED MYC2-LIKE1,

JAM2, JAM3) (right side) are antagonists of MYC2 in its binding to

the G-box. JAZs and JAV1 are ubiquitinylated and subjected to

proteasomal degradation. Therefore, MYC2 can switch on transcrip-

tion of JA/JA-Ile-responsive genes including early genes such as JAZs

and MYC2. MED25, the subunit 25 of the Mediator complex,

mediates transcription. Ub ubiquitin; E2, Rbx, Cullin, ASK1, and the

F-box protein COI1 are components of the SCF complex [modified

after Wasternack and Hause (2013) with permission]
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2009). Free PACOR which specifically interacts with COI1

was biologically active in vivo in a competitive manner to JA-

Ile and could be cross-linked by UV light to COI1 (Yan et al.

2009). Additionally, Surface Plasmon Resonance measure-

ments revealed the interaction of JA-Ile, COI1 and JAZ1.

Finally, molecular modeling supported the idea that (?)-7-

iso-JA-Ile binds similar as coronatine to the surface binding

pocket of COI1 (Yan et al. 2009). Nearly simultaneously, (?)-

7-iso-JA-Ile was identified as the most bioactive JA com-

pound in 2009 (Fonseca et al. 2009). The final proof for a

JA-Ile-receptor was given by crystallization of the

SCFCOI1–JAZ1 co-receptor complex in 2010 (Sheard et al.

2010).

A further breakthrough in understanding JA perception

was the identification of the co-receptor TOPLESS (TPL)

and the adaptor protein ‘‘Novel interactor of JA’’ (NINJA)

by tandem affinity purification using advantage of specific

domains of JAZ proteins (Pauwels et al. 2010). Whereas

the conserved jas domain of JAZ proteins is required for

repression via interaction with the TF, the ZIM (TIFY)

domain mediates homo- and hetero-dimerization as well as

binding of NINJA which interacts with the second co-

repressor TPL. Like JAZ proteins, TPL cannot bind

directly to DNA. Obviously, histone deacetylases (HDAs)

are involved, which attribute to suppression of gene

expression by chromatin modification. HDA6 and HDA19

are genetically linked to TPL and can bind to TPL. In

summary, the repression of JA-responsive gene expression

by JAZ is based on jas domain-mediated binding to TFs

and TPL binding to the chromatin-modifying HDA6 and

HDA19 (Fig. 2). This scenario of repression in JA signal-

ing was recently complemented by identification of an

additional repressor, JAV1, in Daoxin Xie’s lab (Hu et al.

2013). JAV1 was identified in a screen with about 20,000

transgenic plants. These plants contained a rolling circle

amplification-mediated hairpin RNA (RMHR)-based JA-

Ile-inducible hairpin RNA library and were screened on

enhanced resistance against Botrytis cinerea, a strictly

COI1- and JA-Ile-dependent defense response. The iden-

tified gene (At3g22160) with unknown function contains a

VQ motif (Hu et al. 2013). Therefore, the gene was des-

ignated as JA-associated VQ motif gene1 (JAV1). JAV1

integrates as a negative regulator defense reaction against

insects and pathogens without a role in development (Hu

et al. 2013). So far, all identified repressors were active in

JA-dependent defense and development. Expression of

JAV1 and JAZs is inducible by JA-Ile. JAZ proteins are

degraded in a COI1-dependent manner via proteasomal

degradation. JAV1, however, does not interact directly

with COI1 as it takes place with JAZ proteins and COI1

(Hu et al. 2013). Possibly, an unidentified COI1-dependent

E3 ligase may direct JAV1 to proteasomal degradation.

The concerted action of JAV1 in different defense

responses suggests that downstream of JAV1 unidentified

regulators of herbivory and infection might be active.

Involvement of WRKY28 and WRKY51 could be sug-

gested (Hu et al. 2013). The dual activity of JAV1 in

responses to pathogens and herbivores allows agricultural

application already at this stage of research.

JAZ and JAV1 proteins achieve their repressor proper-

ties by binding to the TF and are subjected to proteasomal

degradation, if JA-Ile levels are elevated by environmental

and developmental stimuli. Simultaneously, however, JAZ

and JAV1 gene expression takes place, since they are JA-

Ile inducible. This JA-Ile-dependent balance between

repression and induction is adjusted by additional regula-

tory components. Among them is the subunit 25 of the

eukaryotic Mediator complex (MED25). This component

was first identified in Chuanyou Li’s lab in a screen on

bestatin-resistant (ber) mutants (Zheng et al. 2006). Best-

atin was known not only as an inhibitor of aminopeptidases

but also as a powerful inducer of expression of wound

response genes in tomato, a well-studied JA-Ile-dependent

process (Schaller et al. 1995). These ber mutants could be

classified into (1) bestatin-insensitive mutants with normal

JA responses, (2) JA-insensitive mutants and (3) JA-

hypersensitive mutants. The ber mutants became an

excellent source for identification of novel loci involved in

JA signaling. The strength and success of such a chemical

genetics approach became obvious 6 years later: identifi-

cation and characterization of the ber6 mutant, initially

detected by JA insensitivity in the JA-induced root growth

inhibition assay, showed that a central regulator of JA and

ABA signaling was affected. The affected gene encodes

MED25 (Chen et al. 2012). Physical interaction of MED25

with MYC2 (JA signaling) and with ABI5 (ABA-signal-

ing) highlighted how the MED25 subunit links different

signaling pathways. The MED25 is a further piece of evi-

dence for the complex regulation of hormone activity via

common modules such as SCFCOI1–JAZ co-receptor com-

plex, TFs such as MYC2 and adaptors and additional repres-

sors (Fig. 2) (cf. review of Wasternack and Hause 2013).

Another type of repressors than JAZ and JAV1 was

identified with the JASMONATE ASSOCIATED MYC2-

like TFs, called JAM1, JAM2, and JAM3 (Nakata et al.

2013; Sasaki-Sekimoto et al. 2013). These proteins are

ABA-inducible bHLH-type TFs which compete with

MYC2 on target sequences of MYC2. Consequently, many

JA-Ile-dependent processes can be repressed even JAZ and

JAV1 are already degraded, thereby allowing a fine tuning

of JA-Ile-induced gene expression. Another regulation in

JA-Ile signaling is given by the stability of COI1 which

was addressed recently in Daoxin Xie’s lab (Yan et al.

2013a). In previous studies on the SCFCOI1–JAZ co-

receptor complex, the interaction of the partners was

preferentially analyzed. Now, the stability of COI1 was
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inspected. A strict requirement of ASK1 and stabilization

of COI1 by integrity of the SCFCOI1 complex were found

and suggest a dynamic balance of stabilization and degra-

dation via the 26S proteasome. The Lys residue 297 was

identified as the active ubiquitination site in COI1. Dele-

tion of the F-box motif of COI1 accelerated its degradation.

These and further data suggest that COI1 is not degraded

auto-catalytically as known for other F-box proteins, but is

recruited by another, unidentified E3 ligase for ubiquiti-

nation and proteasomal degradation (Yan et al. 2013a).

Surprisingly, the Arabidopsis F-box protein COI1 and

its orthologue JAI1 of tomato are involved in different

processes. COI1 is required for male fertility (Xie et al.

1998), whereas JAI1 is required for female fertility (Li

et al. 2004). Furthermore, jai1 mutant plants showed the

absolute requirement of JA for trichome development and

herbivore resistance (Li et al. 2004). In the last decade, this

dual role of JA in defense and development has been

described for many plant species.

Identification of JAZ targets and of new TFs involved

in JA responses

An important issue in JA signaling is the type and the

specificity of TFs which are under control of repressors

such as JAZs, JAV1 or JAMs. So far, several interaction

screens were performed to find targets of JAZ proteins.

Solano’s lab (Madrid) already identified MYC2 as a TF of

JA-Ile-induced gene expression (Lorenzo et al. 2004) and

showed the interaction of MYC2 with JAZ1 (Chini et al.

2007). MYC2 was described as a ‘‘master regulator’’ in JA-

Ile signaling (cf. review of Kazan and Manners 2013).

Nevertheless, Daoxin Xie’s group was looking for other

TFs in JA-Ile-regulated gene expression and their action as

targets of JAZ proteins. First, JA-Ile-induced steps in

anthocyanin biosynthesis and TFs involved in their regu-

lation were characterized (Shan et al. 2009). Subsequently,

TFs of the bHLH-MYC type (TT8, GLABRA3, EGL3) and

of the R2R3 MYB type (MYB75 and GLABRA1) were

shown in vitro and in planta to interact with JAZ proteins

leading to suppression of anthocyanin formation and tri-

chome initiation. Correspondingly, over-expression of

MYB75, GLABRA3 and EGL3 in the coi1-mutant back-

ground led to restoration of both processes (Qi et al. 2011).

Similar approaches revealed interaction of MYB21 and

MYB24 with JAZ1, JAZ8 and JAZ11 and its specific

involvement in pollen maturation, anther dehiscence and

filament elongation (Song et al. 2011), which all are

affected in the coi1 mutant (Xie et al. 1998). Over-

expression of MYB21 in coi1 mutant rescued fertility par-

tially, but did not recover JA/JA-Ile-induced root growth

inhibition and plant defense (Song et al. 2011). This was an

important proof that specificity among the various JA-Ile-

dependent processes, such as root growth inhibition, plant

defense, anthocyanin formation, trichome initiation and

anther development, is generated by interaction of JAZ

proteins with different types of TFs. These aspects of

MYB-type TFs in development, particularly in stamen

development, and a more general view on phytohormone

signaling via SCFCOI1 and other SCF modules and JAZ

proteins have been reviewed by Daoxin Xie’s group (Shan

et al. 2012; Song et al. 2013b). Additionally to the above-

described TFs, MYC3 was identified as a TF in JA/JA-Ile-

induced root growth inhibition with partial redundancy to

MYC2 (Cheng et al. 2011). These data correspond to the

results of R. Solano’s lab (Madrid), where MYC3 and

MYC4 were characterized (Fernández-Calvo et al. 2011).

Recently, TFs of the bHLH subgroup IIId (bHLH3,

bHLH13, bHLH14 and bHLH17) were identified as JAZ

targets by Daoxin Xie’s group (Song et al. 2013a). These

TFs act redundantly as transcriptional repressors. They

antagonize to positively acting TFs such as MYC2 and

WD-repeat/bHLH/MYB complexes by binding to corre-

sponding DNA target sequence (Song et al. 2013a). These

data highlight a new level of regulation: downstream of the

SCFCOI1 complex and JAZ proteins, a balance of a subset

of positively activating TFs (e.g. MYC2) and repressing

TFs (e.g. bHLH3) may sustain fine tuning of gene

expression and may regulate the ratios between the various

JA/JA-Ile-dependent processes such as anthocyanin for-

mation, plant defense and trichome development (Song

et al. 2013a).

In MYC2-mediated signaling, the phosphorylation-

coupled proteolysis of MYC2 was recently identified as a

completely new regulatory level (Zhai et al. 2013).

Whereas transcriptional regulation of JA/JA-Ile-induced

gene expression by MYC2 is relatively well understood,

nothing was known on its turnover. Now, a turnover of

MYC2 could be correlated with expression of wound-

induced genes (positive action by MYC2 accumulation)

and de-repression of PR gene expression (negative action

of MYC2 accumulation). This turnover is activated by

phosphorylation of amino acid Thr 328, which is important

for transcriptional activity of MYC2 (Zhai et al. 2013).

Whereas MYC2 is relatively well studied to be a master

regulator of JA signaling, acting downstream of the

SCFCOI1–JAZ co-receptor complex, downstream compo-

nents of MYC2 were unknown until recently. Such com-

ponents were found among the NAC proteins known as

TFs involved in stress responses and some aspects of

development. Chuanyou Li’s group could identify

ANAC009 and ANAC055, two NACs of Arabidopsis. Both

of them function downstream of COI1 and MYC2 in JA-

dependent signaling of responses to necrotrophic pathogens

(Bu et al. 2008), and also in ABA-signaling (Bu et al.
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2009). ANAC019 and ANAC055 interact with the RING-

H2 protein RHA2a which is involved in ABA signaling.

RHA2a is a functional E3 ligase which positively regulates

responses to salt and osmotic stress during seed germina-

tion and early seedling development (Bu et al. 2009). Its

homolog RHA2b is also an E3 ligase, and both of them act

downstream of the protein phosphatase 2 (ABI2), pre-

sumably in a redundant manner (Li et al. 2011). The

positive regulation by RHA2a and RHA2b is in line with

the action of a bHLH-type TF, AtAIB, which positively

regulates ABA responses (Li et al. 2007).

Cross-talk of JA with SA, GA, BR, and ET

Cross-talk among plant hormones is a common phenome-

non which attributes to plasticity in plant stress responses

and fine tuning of regulation of gene expression. A well-

studied example is the cross-talk between JA and salicylic

acid (SA) preferentially shown for Arabidopsis. Here, this

cross-talk links the signal transduction pathways of

wounding or attack by necrotrophic pathogens with that of

biotrophic pathogens (Pieterse et al. 2012). A similar cross-

talk, however, occurs in tomato. In a collaborative work,

Chuanyou Li’s lab attributed to the elucidation of the cross-

talk among SA, JA and ET in tomato plants infected by

Alternaria alternaria f. sp. lycopersici (Jia et al. 2013;

Zhang et al. 2011). JA and ET promote cell death induced

by an Alternaria toxin in a way that JA signaling is

upstream of ET formation. Another example is the pre-

conditioning by whiteflies and its effect on leaf nutrients

and SA-mediated defense responses. Data with different JA

biosynthesis mutants of tomato showed after precondi-

tioning an increased SA-based defense (Cui et al. 2012).

Daoxin Xie’s lab has published several works on the cross-

talk between gibberellic acid (GA) and JA and on the cross-

talk between brassinosteroid (BR) and JA. The GA–JA cross-

talk was preferentially analyzed in stamen development.

These aspects have been recently reviewed by Xie’s group

together with data on the JA–auxin cross-talk during stamen

development (Song et al. 2013b). The requirement of JA, GA

and auxin for stamen development was known since the

identification and characterization of mutants being affected

in biosynthesis and signaling of these hormones and showing

alterations specifically in stamen development (Song et al.

2013b; Browse 2009a, b). The cross-talk, however, became

evident only upon identification of the negative regulators

JAZs and their targets such as MYB21, MYB24, and MYB54,

which all are specifically active in stamen development (Song

et al. 2011, 2013b). Plants, deficient in JA or GA, are male

sterile. GA acts through JA leading to up-regulation of

DEFECTIVE IN ANTHER DEHISCENCE (DAD1) and

LOX1, JA formation and JA-induced expression of MYB21,

MYB24, and MYB 57 (Cheng et al. 2009). The repressors of

GA signaling, the DELLA proteins, are degraded upon GA

formation similar to the JAZ proteins upon JA/JA-Ile forma-

tion (Cheng et al. 2009; Song et al. 2011). A modified cross-

talk between GA and JA exists in the balance of growth and

defense. In the presence of GA, growth is supported by GA-

mediated degradation of DELLAs. DELLAs, however,

compete with JAZ proteins for the binding sites of MYC2.

Consequently, growth and defense are permanently sustained

by a balance in JA and GA signaling (Kazan and Manners

2013; Wasternack and Hause 2013).

The cross-talk between BR and JA was initially

observed in anthocyanin formation. Here, mutants of BR

biosynthesis exhibit reduced JA-induced anthocyanin for-

mation, whereas BR treatment leads to anthocyanin for-

mation (Peng et al. 2011). In this respect, Daoxin Xie’s lab

identified the mutant psc1, which exhibits a partial sup-

pression of the male sterile phenotype of coi1 plants. The

mutation of psc1 was localized in the DWF4 gene which

encodes a key enzyme in BR biosynthesis indicating that

BR may affect JA signaling (Ren et al. 2009). Further

analysis showed a negative role of BR in JA-induced root

growth inhibition and down-regulation of DWF4 expres-

sion by JA downstream of COI1.

Cross-talk between JA and auxin

Auxin distribution by PIN-FORMED (PIN) proteins and

stem cell niche activity are important players in root devel-

opment of A. thaliana. Work by Chuanyou Li’s lab indicated

a cross-talk between auxin and JA in auxin biosynthesis and

auxin distribution during root development: (1) analysis of

mutants defective in JA-induced lateral root formation led to

identification of ANTHRANILATE SYNTHASE a1

(ASA1) which catalyzes the first step in auxin biosynthesis,

and ASA1 is JA/JA-Ile inducible (Sun et al. 2009). (2) JA

modulates endocytosis and plasma membrane accumulation

of AtPIN2 (Sun et al. 2011). PIN proteins are required for

polar auxin transport. PIN2 endocytosis was inhibited at

lower JA concentration and PIN2 accumulation in the

plasma membrane was reduced. This cross-talk between JA

and auxin in auxin biosynthesis and transport takes place as a

type of positive interaction in defense against necrotrophic

pathogens such as Alternaria brassicicola (Qi et al. 2012).

Another cross-talk between auxin and JA was studied on

Chuanyou Li’s lab, partially in collaboration with K.

Palme’s group (Freiburg, Germany), on role of the TFs

PLETHORA1 (PLT1) and PLT2 in root stem cell niche of

A. thaliana. The four mitotically inactive cells of the qui-

escent center (QC) and the surrounding mitotically active

cells of the stem cell niche are regulated by JA (Chen et al.

2011b). This regulation takes place by binding of MYC2 to

714 Plant Cell Rep (2014) 33:707–718

123



the promoters of PLT1 and PLT2 which leads to repression

of their expression. PLT1 and PLT2, however, are required

for root stem cell niche pattering and expression of PIN

genes (Fig. 3). These data show how JA signaling is inte-

grated in auxin signaling and represent a mechanistic

explanation for root growth inhibition by JA, a process

which is known for more than three decades.

Another aspect of the auxin/PLT pathway was found by

Tyr-sulfation of some peptides known as meristem growth

factors. A tyrosylprotein sulfotransferase is required for

maintenance of root stem cell niche via regulation of basal-

and auxin-induced expression of PLT1 and PLT2 (Zhou

et al. 2010). In QC cells, a ROC/ROP GTPase activator

(RopGEF7) is expressed and is required for QC cell main-

tenance (Chen et al. 2011a). RopGEF7 regulates expression

of PLT genes and its gene is auxin inducible. RopGEF7 is

required for expression of the gene encoding the auxin

efflux protein PIN1 (Fig. 3); (Chen et al. 2011a). These data

complement the complex regulatory network in stem cell

niche maintenance including auxin gradients, PIN1 accu-

mulation, and expression of PLT1, PLT2 and RopGEF7.

Recently, redox-signaling by a plastid-localized glutathione

reductase2 (GR2) was identified as another player in root

apical meristem maintenance by characterization of the

mutant miao (Yu et al. 2013). This mutant showed defects

in maintenance of root apical meristem which was caused

by glutathione oxidation. The intact auxin/PLT pathway,

however, requires reduced glutathione (Yu et al. 2013).

Conclusions

In the last decade, fundamental breakthroughs in biosyn-

thesis, perception, signaling and cross-talk of jasmonates

were achieved. Among them were functional character-

ization of the SCFCOI1–JAZ co-receptor complex, of

repressors such as JAZs, JAV1 and JAMs, of numerous

TFs active in JA-Ile signaling and of cross-talk of JA/JA-

Ile with other hormones such as auxin, SA, ET, BR, GA

and ABA. Many of these were discovered in Daoxin Xie’s

lab and in Chuanyou Li’s lab. In both labs ongoing activ-

ities occur in elucidation of regulatory principles and fur-

ther components in JA-Ile signaling and mode of action.

Open questions being addressed in the near future world-

wide are (1) assembly and half-life of components of the

SCFCOI1–JAZ co-receptor complex, (2) translational and

post-translational control mechanisms in JA-Ile signaling,

(3) new components of JA-Ile signaling identified by

chemical and genetic screens, and (4) epigenetic control

mechanisms in JA-Ile signaling.

The outcome of such studies will improve our knowl-

edge on action of jasmonates in plant stress responses and

development and will include applied aspects (Wasternack

2014).
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