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Abstract Since its first development some 40 years ago,

the application of the somatic hybridization technique has

generated a body of hybrid plant material involving a wide

combination of parental species. Until the late 1990s, the

technique was ineffective in wheat, as regeneration from

protoplasts was proving difficult to achieve. Since this

time, however, a successful somatic hybridization protocol

for wheat has been established and used to generate a

substantial number of both symmetric and asymmetric

somatic hybrids and derived materials, especially involving

the parental combination bread wheat and tall wheatgrass

(Thinopyrum ponticum). This review describes the current

state of the art for somatic hybridization in wheat and

focuses on its potential application for wheat improvement.

Keywords Asymmetric somatic hybridization � Wheat

germplasm � Genomic variation � Alien introgression �
Protoplast fusion

Introduction

Achieving a sustainable supply of food in the light of the

inexorable rise in the global population is a major challenge

for plant breeders. Crop improvement through breeding is

only possible where genetic variation is present in the

breeder’s germplasm, but decades of intensive selection in

the major crops has inevitably narrowed their genetic base.

There is therefore an urgent need to generate and/or intro-

duce novel genetic variation, using either transgenesis,

mutagenesis or wide hybridization. With respect to the

latter, while conventionally viewed as involving sexual

crosses (Sears 1993; Jauhar and Chibbar 1999), an alter-

native route is provided by somatic hybridization (Glime-

lius et al. 1991; Waara and Glimelius 1995; Li et al. 1999;

Zhou et al. 2001a; Xia 2009). As well as not being restricted

by the lack of crossability often encountered in attempts to

hybridize phylogenetically distant species, somatic

hybridization also offers the possibility of combining non-

nuclear genomes (Bijoya et al. 1999; Zhou et al. 2001b;

Cheng et al. 2004a, b; Cai et al. 2007). Following the first

successful recovery of somatic hybrids in the 1970s (Carl-

son et al. 1972), the technique has since been applied to a

range of both arable crops, including potato, tomato,

tobacco, carrot, various Brassica spp., rice, millet, Festuca

spp., (Melchers and Labib 1974; Melchers et al. 1978;

Dudits et al. 1980; Shepard et al. 1983; Handley et al. 1986;

Ozias-Akins et al. 1986; Terada et al. 1987; Sjodin and

Glimelius 1989; Bauer-Weston et al. 1993; Spangenberg

et al. 1995; Kisaka et al. 1998; Wang et al. 2003), and tree

species, for example Citrus spp. and Populus spp. (Oh-

gawara et al. 1985; Park et al. 1992; Guo et al. 2000a).

Bread wheat (Triticum aestivum) has been under strong

selection for at least 150 years. Because it was created in

nature only about 10,000 years ago (Feldman et al. 1995),

this selection has been applied on an already rather narrow

genetic base. The species is crossable with a number of its

non-cultivated and cultivated relatives, some of which have

evolved attractive levels of disease resistance, stress tol-

erance and even end-use quality traits (Dong and Zheng

2000). A number of these traits have been successfully

transferred to wheat via the sexual hybridization route
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(Zhong et al. 2002; Jauhar 2006). The process is restricted

by the need to overcome both the difficulty in making a

viable sexual wide hybrid and the high levels of sterility,

resulting from chromosomal imbalance, which often afflict

the subsequent backcross generations (Xia 2009). Fur-

thermore, for more distant donors, the presence of the

chromosome pairing inhibitor gene Ph1 prevents recom-

bination between the donor and the recipient wheat chro-

mosomes (Riley and Chapman 1958). Somatic hybrids

involving wheat have in the past not been achieved, mainly

because of problems maintaining the regenerability of

embryogenic calli or cells held in suspension. Optimization

of the in vitro conditions (Xia et al. 1995) finally opened

the way to establishing somatic hybridization in wheat (Xia

and Chen 1996; Xia et al. 1996; Zhou et al. 1996), and

since this time a growing number of somatic hybrids and

derivatives have been obtained (Zhou et al. 2001a, b; Xia

et al. 2003; Xiang et al. 2003a, b, 2004; Xu et al. 2003;

Cheng et al. 2004a, b; Cheng and Xia 2004; Li et al. 2004;

Zhou and Xia 2005; Cai et al. 2007; Cui et al. 2009). Some

of these have proven to exhibit features useful in the

context of wheat improvement, particularly those derived

from the parental combination bread wheat with tall

wheatgrass (Thinopyrum ponticum). The range of cytoge-

netic and genomic alterations induced in some of these

lines has been described (Wang et al. 2004a; Peng et al.

2009; Liu et al. 2012) and the presence of donor genes

established (Liu et al. 2007, 2009; Shan et al. 2008; Li et al.

2010a, b). In this review, the future of somatic hybridiza-

tion in wheat and its application for wheat improvement are

discussed.

Somatic hybridization between bread wheat and its

related species

Somatic hybridization in the grasses was first achieved in

the combination of sugarcane (Saccharum officinarum) and

pearl millet (Pennisetum americanum) (Tabaeigadeh et al.

1986) and shortly thereafter in that of rice (Oryza sativa)

with barnyard grass (Echinochloa oryzicola) (Terada et al.

1987), and einkorn wheat (T. monococcum) with pearl

millet (Vasil et al. 1988). The first fertile somatic hybrids

produced were obtained by fusing protoplasts of tall fescue

(Festuca arundinacea) with those of Italian ryegrass (Lo-

lium multiflorum) (Spangenberg et al. 1995). Fertile rice

somatic hybrids were generated by Kisaka et al. (1998) and

Liu et al. (1999). The earliest reported somatic hybrid calli

involving bread wheat were recovered following electro-

fusion between its protoplasts and those of Italian ryegrass

(Chen et al. 1992). Treating wheat protoplasts with io-

doacetate facilitated the generation of a hybrid involving c-

ray irradiated naked oat (Avena nuda) protoplasts (Liu and

Liu 1995). The following year, hybrid plants were created

following asymmetric hybridization between bread wheat

and its four close relatives, tall wheatgrass, Psathyrosta-

chys juncea (Xia et al. 1996), Haynaldia villosa (Zhou

et al. 1996) and Leymus chinensis (Xia and Chen 1996).

These hybrids produced a range of fertile derivatives, some

of which were later used to determine the pattern of

inheritance of key introgressed traits. In each of the four

combinations, the fusion products grew more rapidly than

the non-fused control protoplasts, so that the majority of

the earliest formed cell clones were hybrid. In addition,

unlike hybrid cells, parental protoplasts exhibited a poor

level of differentiation and regeneration, perhaps reflecting

a level of complementation between the two parents. The

success of these combinations showed that vigorous growth

and complementary effect could be used for creating

somatic hybrid plants of wheat efficiently (Xia et al. 1996;

Zhou et al. 1996).

Such vigorous growth and complementary effect was

then used for the generation of somatic hybrids between

wheat and other phylogenetically distant species. Albino

plants were regenerable from the combinations bread

wheat with Bromus inermis (Xiang et al. 1999), with Ael-

europus littorulis (Yue et al. 2001) and with oat (A. sativa)

(Xiang et al. 2003a, b), and green ones from the combi-

nations involving maize (Zea mays) (Xu et al. 2003),

Italian ryegrass (Cheng and Xia 2004), foxtail millet

(Setaria italica) (Cheng et al. 2004b; Xiang et al. 2004),

Bupleurum scorzonerifolium (Zhou et al. 2006), tall fescue

(Cai et al. 2007) and Arabidopsis thaliana (Deng et al.

2007). Some of these regenerants were able to flower

(Zhou et al. 2002; Xu et al. 2003; Xiang et al. 2003b;

Cheng and Xia 2004) and even set viable seed (Zhou et al.

2001a; Xia et al. 2003; Cheng et al. 2004b; Cui et al. 2009).

The regeneration of plants from hybrid calli derived from

wide combinations typically have proven to be difficult to

achieve, and plants which are regenerated are generally

sterile and morphologically abnormal (Bauer-Weston et al.

1993; Louzada et al. 1993; Spangenberg et al. 1994;

Begum et al. 1995). A technique to mitigate the severity of

these problems is to form asymmetric hybrids, where the

donor protoplasts are irradiated with UV prior to fusion;

this treatment succeeds in fractionating the donor genome

and has been shown to improve the chances of introgres-

sion (Sun et al. personal communication). Most of the re-

generants in the examples given above used this approach.

Traits transferred via asymmetric somatic

hybridization

A great deal of research effort has been devoted to using

cytogenetic or genetic assays to demonstrate the hybrid
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nature of regenerated somatic hybrids, but much less

attention has been paid to tracking the traits transferred to

or the expression of donor genes in the hybrid plants.

Somatic hybrids produced from the combination potato and

its nematode resistant relative Solanum bulbocastanum

were shown to express the donor’s nematode resistance

(Austin et al. 1988). Similarly, resistance to infection with

bacterial pathogen Xanthomonas campestris was success-

fully transferred from a Brassica napus line to a somatic

hybrid involving B. oleracea as the other parent (Hansen

and Earle 1995); and the root rot resistance of the trifoliate

orange (Poncirus trifoliata) was transferred to hybrid

plants formed by fusing its protoplasts with those of the

Page tangelo (C. reticulata 9 C. paradisi) (Guo et al.

2000b). Silique length, pod density, seed number per pod

and seed color were all inherited from Sinapis alba in its

hybrid with B. napus (Li et al. 2009). When wheat pro-

toplasts were fused with UV-irradiated protoplasts of the

salinity-tolerant species Aeleuropus littoralis, the resulting

hybrids showed a superior level of salinity tolerance than

the parental wheat line, indicating the successful transfer of

gene(s) encoding tolerance (Yue et al. 2001). Two deriv-

atives of the somatic hybrid between the bread wheat

cultivar Jinan 177 and tall wheatgrass were found to

express an enhanced level of salinity tolerance, and a fur-

ther six produced grain of better end-use quality than those

of cv. Jinan 177 (Chen et al. 2004a; Feng et al. 2004, Liu

et al. 2007, 2009). The two tall wheatgrass genes, H11-3-3

and H11-4-3, which encode high molecular weight glutenin

subunits (HMW-GS), were both incorporated in some of

the hybrid’s derivatives (Liu et al. 2007).

Somatic hybrids inherit not only the nuclear genome of

both parents, but also their plastid and mitochrondial

genomes. Rice somatic hybrids involving a cytoplasmic

male-sterile and a male-fertile line expressed male sterility,

and a DNA assay was able to show that mitochondrial

DNA from the cytoplasmic male-sterile line was present in

the hybrid (Bijoya et al. 1999). In most somatic hybrids

described to date, the mitochondrial genomes of both

parents co-exist in the hybrid or become recombined

(Wolters et al. 1995; Yamagishi et al. 2002; Leino et al.

2003; Guo et al. 2007). However, the chloroplast comple-

ment tends to be inherited from just one parent in most

cases, with just a few examples of recombination (Derks

et al. 1991; Mohapatra et al. 1998; Liu and Deng 2000;

Cardi et al. 1999). Donor mitochondrial genomic fragments

have been identified in some wheat somatic hybrids (Zhou

et al. 2001b; Xu et al. 2003; Cheng et al. 2004b; Cheng and

Xia 2004; Li et al. 2004; Xiang et al. 2004; Cai et al. 2007),

while the chloroplast complement has tended to be inher-

ited from the wheat parent, with some evidence for co-

existence and recombination (Zhou et al. 2001b; Chen et al.

2004b; Li et al. 2004; Xiang et al. 2004; Cai et al. 2007).

Cytogenetic analysis of asymmetric somatic wheat

hybrids

Genomic in situ hybridization (GISH) (Parokonny et al.

1992) is a highly informative method of identifying and

characterizing donor chromosomes or chromosome frag-

ments present in somatic hybrids (Zhou et al. 2001b; Wang

et al. 2005). GISH analysis of somatic hybrid regenerants

formed from the combinations of bread wheat with either

H. villosa (Xia et al. 1998; Zhou et al. 2001a, b), oat (Xiang

et al. 2003a) or S. italica (Xiang et al. 2004) identified only

few donor chromosomes and chromosome fragments,

while no complete donor chromosomes were seen in the

derivatives of combinations made between bread wheat

and tall wheatgrass (Xia et al. 2003; Chen et al. 2004a;

Wang et al. 2005), maize (Xu et al. 2003), P. juncea (Li

et al. 2004), Italian ryegrass (Cheng and Xia 2004), B.

scorzonerifolium (Zhou et al. 2006) or tall fescue (Cai et al.

2007). Varying the pre-fusion irradiation dosage given to

the donor protoplasts proved effective for controlling the

amount of donor genome transferred (Xiang et al. 2003b;

Cheng et al. 2004b, Zhou and Xia 2005; Cui et al. 2009).

A GISH analysis of five derivatives of a wheat/tall

wheatgrass hybrid identified the presence of donor chro-

mosome fragments scattered over between four and eight

of the hybrid’s chromosomes (Chen et al. 2004b; Wang

et al. 2004a). The mitotic chromosome number, as mea-

sured in root tip cells, was very stable over seven genera-

tions of self-fertilization, and there was an indication of

minor variation in arm ratio and the length of some chro-

mosomes compared to the standard bread wheat karyotype.

At meiosis, the lines behaved indistinguishably from the

parental bread wheat cultivar, producing [90 % ring biv-

alents and only few univalents (Wang et al. 2004a;

unpublished data). The implication is that the introgressed

tall wheatgrass chromosomal segments were too small to

have any appreciable effect on chromosome pairing.

Analyses based on DNA profiling indicated that the donor

DNA was stably inherited through meiosis. Stability at the

cytogenetic and DNA level was mirrored in the observed

phenotypic stability of the various asymmetric somatic

hybrid derivatives (Xia et al. 2003; Chen et al. 2004a;

Wang et al. 2004a; Xia 2009).

The inheritance of traits of breeding value

The derivatives of asymmetric somatic hybrids formed

between bread wheat cv. JN177 and tall wheatgrass have

displayed a wide range of phenotypic variation, including

height, tiller number, spike length, awn length, grain size,

grain number per spike, stress tolerance, disease resistance,

grain protein content and flour quality. Some have
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performed better than the parental cultivar with respect to

grain yield, salinity tolerance, drought tolerance, disease

rust resistance, dwarfism, grain size and end-use quality

(Xia et al. 2003; Feng et al. 2004; Zhang et al. 2005; Liu

et al. 2007; Xia 2009). Selected lines have been used as

parental material in a conventional breeding program,

which has led to the release of the cultivar SR3, adapted to

cultivation in salinity-affected soils. Five phenotypic clas-

ses of derivative were recognized. Type I lines feature a

large square spike which sets [50 grains (the parental

cultivar spike sets about 40 grains). In trials carried out

over 3 years in Shandong Province, the yield of line SR1

reached 10.3 t ha-1, allowing this selection to be registered

in China as a high yielding cultivar. Type II lines expressed

an enhanced tolerance to drought and salinity; when grown

under drought-affected conditions, the yield of one selec-

tion was nearly 7 t ha-1 or [11 % more than that of the

control cv. Lumai 23. cv. SR3, a second selection in this

group, was noticeably more salinity tolerant than cv.

JN177. Its yield reached 6.3 t ha-1 (*12 % more than the

control cultivar Dekang 961) in 0.4 % saline soils. The

germinability of cv. SR3 was 77 % when imbibed in 2 %

w/v NaCl, while in cv. Dekang 961 the level was only

35 %. As a result, cv. SR3 has recently been registered for

commercial cultivation in Shandong Province and has been

grown over some 433 kca since its registration. Another

selection from the same somatic hybridization has (SR14)

shown notable levels of resistance to both soil salinity and

alkalinity and is currently being trialed in the field. The

third phenotypic group was characterized by a small,

awnless spike and was of interest because of the expression

of immunity to both yellow rust and powdery mildew.

Type IV lines were shorter and tillered more profusely than

cv. JN177 and their flour had an SDS sedimentation value

predictive of superior rheological quality (Liu et al. 2006,

2009). Their grain protein content was about 20 % and

frequently contained unusual HMW-GS combinations (Liu

et al. 2007, 2009). Finally, type V lines produced long

spikes and large grains. Their awns were also longer and

their leaves longer and broader than those of cv. JN177.

Genetic and epigenetic variation induced by somatic

hybridization

It is widely understood that the fusing of genomes within a

single nucleus can trigger genomic shock, as seen in de

novo polyploids involving Arabidopsis spp. (Comai 2000;

Madlung et al. 2002; Wang et al. 2004b), Brassica spp.

(Song et al. 1995), Spartina spp. (Salmon et al. 2005),

Tragopogon spp. (Tate et al. 2006) and certain Triticeae

spp. (Ozkan et al. 2001; Shaked et al. 2001; Han et al.

2003; He et al. 2003; Ma et al. 2004; Feldman and Levy

2005). Evidence that genetic and epigenetic variation was

induced by somatic hybridization suggests that one or the

other (or both together) largely explains the phenotypic

diversity of the somatic hybrid derivatives. Comparison of

the microsatellite profiles of six hybrid introgression lines

produced from the wheat/tall wheatgrass somatic hybrid

showed that novel alleles (mostly involving a change in the

number of microsatellite repeats) were present at about one

in three loci. Two DNA profiling assays based on trans-

posons (IRAP and REMAP, Kalendar et al. 1999) indicated

that about 6.5 % of the fragments amplified differed in

length between cv. JN177 and the somatic hybrid deriva-

tives, suggesting a burst of transposition during the somatic

hybridization; at least one such de novo transposition event

occurred in the vicinity of a gene encoding an endosperm

storage protein (Liu et al. 2009). AFLP (amplified fragment

length polymorphism) fingerprinting has demonstrated that

although some novel fragments have been generated, most

of the alterations induced in the two somatic hybrid pro-

ducts have involved fragment loss (Cui et al. 2009), the

same as is the case in newly made sexual allopolyploids

(Ozkan et al. 2001). It has been suggested that sequence

elimination during allopolyploidization provides a physical

basis for the diploid-like meiotic behavior of newly formed

allopolyploids (Ozkan et al. 2001). Thus, the meiotic

pressure might also be responsible for these sequence

losses during somatic hybridization. There was also evi-

dence for the induction of epigenetic variation in the

somatic hybrids. In plants derived from the somatic hybrid

between wheat and tall fescue, the global genomic meth-

ylation level lay in the range 33.5–34.8 %, significantly

higher than what prevailed in either parent (31.9 % in the

recipient and 25.6 % in the donor) (Cai et al. 2007).

Novel allele and gene expression in somatic hybrid lines

A comparison between the HMW-GS gene sequences

present in the II-12 and the relative introgression lines and

those present in the parental lines has shown that in addi-

tion to the two inherited from the donor parent, six derived

from point mutations to cv. JN177 parental genes, ten

probably resulted from unequal crossing over or DNA

replication errors within the wheat HMW-GS sequences,

three appeared to have been activated by transposon

movement and one probably arose via recombination

between two parental genes (Feng et al. 2004; Liu et al.

2007, 2009). A further three novel HMW-GS genes have

been identified in derivatives of a symmetric wheat/tall

wheatgrass somatic hybrid (Gao et al. 2010). Novel alleles

at genes encoding both low molecular weight glutenin

subunits and gliadins were also revealed by Chen et al.

(2008a, b, 2009). The non-parental alleles present appear to
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have arisen from one or more of point mutation, deletion/

duplication of blocks of repeats, gene shuffling and trans-

position (Liu et al. 2007, 2009). Some of these novel

endosperm storage protein genes have since been over-

expressed in wheat, where they appear to have a beneficial

effect on end-use quality (Chen FG, personal

communication).

Given the enhanced salinity tolerance of cv. SR3, efforts

were made to track the transcription and expression of a

number of salinity tolerance-related genes (Shan et al.

2004; Wang et al. 2008; Peng et al. 2009; Li et al. 2010a, b;

Liu et al. 2012). Microarray analysis uncovered that the

R2R3-type MYB gene TaMYB73 was induced by treating

plants with either NaCl or one of several phytohormones,

or by the withholding of water. The peptide sequence of the

product of the cv. SR3 allele differed by several residues

from that of the cv. JN177 product. When heterologously

expressed in A. thaliana it was able to enhance the plant’s

tolerance to NaCl, LiCl or KCl (He et al. 2012). When the

cv. SR3 and cv. JN177 coding sequences of 18 TaWRKY

genes were compared, it was revealed that ten of the

sequences were non-identical, with most of the variation

due to point mutations (15 transitions and six transver-

sions); however only four of the variants implied any

change in the product’s peptide sequence. Nine of the 18

genes were up-regulated by the provision of the phyto-

hormone salicylic acid, while six were up-regulated by

salinity, drought stress or exposure to the phytohormone

abscisic acid (ABA) (Zhu et al. 2013). The constitutive

expression in A. thaliana of TaWRKY71-1 resulted in the

formation of hyponastic leaves (Qin et al. 2013).

Among other genes differentially transcribed in cv. SR3

in response to salinity were RHD3 (root hair defective) and

TaCHP (encoding a cysteine, histidine and proline-rich

zinc finger protein), both of which were down-regulated

(Shan et al. 2005; Li et al. 2010a). In the latter case,

transcript abundance was higher in cv. SR3 than in cv.

JN177, and was also suppressed by both the imposition of

drought stress and exposure to ABA. The constitutive

expression of TaCHP in both bread wheat and A. thaliana

improved the level of salinity tolerance (Li et al. 2010a).

The use of the suppression subtractive hybridization

method led to the detection of WRSI5, a salinity-responsive

gene which encodes a Bowman–Birk domain-type protease

inhibitor (Shan et al. 2008). Its transcript abundance was

increased in the roots of cv. SR3 plants subjected to

salinity, drought or oxidative stress. The gene was shown

to be induced in the endodermal cells of the mature region

of the cv. SR3, but not of the cv. JN177 root tip. When

constitutively expressed in A. thaliana, it improved seed-

ling salinity tolerance (Shan et al. 2008). When the salinity

stress up-regulated gene TaDi19A was heterologously

expressed in A. thaliana, the level of sensitivity to salinity,

ABA and the osmotic stress agent mannitol was increased

(Li et al. 2010b). TaOPR1, a gene encoding a 12-oxo-

phytodienoic acid reductase, was inducible by salinity

stress in cv. SR3 and was transcribed more abundantly in

an ABA-dependent manner in the seedling root of cv. SR3

than in those of cv. JN177. The constitutive expression of

TaOPR1 significantly enhanced the level of salinity toler-

ance, while its heterologous expression in A. thaliana

buffered root growth from damage caused by salinity and

certain oxidants, as well as raising the level of the plant’s

sensitivity to ABA (Dong et al. 2013). Although no

sequence differences were known between the cv. SR3 and

JN177 copies of any these salinity tolerant genes, their

differential transcription may well be epigenetically

regulated.

Concluding remarks

Asymmetric somatic hybridization has been established as

a viable chromosome engineering technique in wheat, with

potentially rewarding applications in wheat improvement.

It has some specific advantages over the more conventional

route of sexual hybridization, namely (1) its use is not

restricted by sexual incompatibility, (2) it tends to intro-

gress multiple short donor chromosome fragments, rather

than whole chromosomes or chromosome arms, (3) it

allows the exploitation of non-nuclear DNA from the

donor, (4) the process is more rapid than sexual hybrid-

ization, as less subsequent crossing is needed to restore

fertility and a normal somatic chromosome complement

and (5) it induces a range of both genetic and epigenetic

variants. Overall, somatic hybridization provides a more

flexible means to introgress genes from related species than

sexual wide crossing and has considerable potential as a

technique for widening the gene pool of crop species such

as wheat.

Although a number of somatic hybrid plants and

derivatives have by now been obtained, the process

remains difficult in wheat. A major technical issue is to

maintain regenerable embryogenic calli or cells in sus-

pension as a source of suitable protoplasts; the suitability

appears to be genotype dependent (Xia et al. 1995). Our

successful optimization of the fusion and culture protocols

(Xia et al. 1995, 1996) has led to the development of a

‘‘three-cell’’ system. Here, the recipient material is a

mixture of protoplasts obtained from a long-term suspen-

sion culture which are able to divide freely, along with

those obtained from de novo produced embryogenic calli

(Xiang et al. 2003a, b, 2004; Xu et al. 2003; Cheng and Xia

2004; Cheng et al. 2004a, b; Li et al. 2004; Cai et al. 2007;

Deng et al. 2007). A description of the genomic and

cytogenetic properties of the three-cell system has been
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given by Xiang et al. (2010). A second technical issue

relates to the poor self-fertility of many of the somatic

hybrids, although the use of an asymmetric hybridization

strategy mitigates the severity of this problem by mini-

mizing the size of the donor fragments (Xia 2009). In

general, as is also the case for sexually produced wide

hybrids, the closer the phylogenetic relationship between

the donor and the recipient, the better is the chance of

recovering self-fertility (Zhou et al. 2001a; Xia et al. 2003;

Cheng et al. 2004b; Cui et al. 2009).

We have observed that the performance of independent

selections made from the same somatic hybrid combination

can differ with respect to a number of agronomic traits.

While superior performance with respect to breeders’ traits

such as end-use quality, drought tolerance or yield provides

the basis for crop improvement, it is also of interest in the

context of unraveling the genetic basis of phenotype. The

productivity, salinity tolerance and drought tolerance of the

somatic hybridization-derived cv. SR3 are all higher than

those of its parental cultivar JN177. The recent demon-

stration that the gene Tasro1 is differentially transcribed in

cv. SR3 has suggested that this gene plays an important

part in the cultivar’s superior salinity tolerance and vigor.

A better understanding of the relative contributions of

genetic and epigenetic variation to the phenotype of

somatic hybrid introgression lines could open up novel

opportunities in the ongoing efforts to improve wheat and

other crops.
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