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Abstract

Key message Here, we report on copy number varia-

tion of transposable elements and on the genome-spe-

cific proliferation in wheat. In addition, we report on

revolutionary and evolutionary dynamics of

transposons.

Abstract Wheat is a valuable model for understanding the

involvement of transposable elements (TEs) in speciation

as wheat species (Triticum–Aegilops group) have diverged

from a common ancestor, have undergone two events of

speciation through allopolyploidy, and contain a very high

fraction of TEs. However, an unbiased genome-wide

examination of TE variation among these species has not

been conducted. Our research utilized quantitative real

time PCR to assess the relative copy numbers of 16 TE

families in various Triticum and Aegilops species. We

found (1) high variation and genome-specificity of TEs in

wheat species, suggesting they were active throughout the

evolution of wheat, (2) neither Ae. searsii nor Ae. spelto-

ides by themselves can be the only contributors of the B

genome to wheat, and (3) nonadditive changes in TE

quantities in polyploid wheat. This study indicates the

apparent involvement of large TEs in creating genetic

variation in revolutionary and evolutionary scales follow-

ing allopolyploidization events, presumably assisting in the

diploidization of homeologous chromosomes.

Keywords Transposable elements � Genome evolution �
Copy number variation � Speciation � Wheat

Introduction

Transposable elements (TEs) are fragments of DNA that

are able to ‘‘move’’ and proliferate within the host genome.

TEs are commonly divided into two main groups: (1) Class

I or retrotransposons, which replicate through a ‘‘copy and

paste’’ mechanism; first, producing an RNA molecule from

a promoter in a terminal repeat (LTR retrotransposons) or

from an internal promoter (non-LTR retrotransposons),

reverse transcribing the RNA, and integrating it into the

host genomic DNA. (2) Class II or DNA transposons,

which move via a ‘‘cut and paste’’ mechanism, producing

double-strand breaks in the process. TEs are then subdi-

vided into subclasses, orders, superfamilies, and families

depending on their insertion mechanism, structure, and

protein-coding similarities (Wicker et al. 2007).

TEs makeup a large fraction of most genomes. For

example, they compose over 45 % of the human genome

(Alexander et al. 2010), *40 % of the rice genome (Tena-

illon et al. 2010), *80 % of the maize genome (Schnable

et al. 2009), and *90 % of the wheat genome (Charles et al.

2008). Class I non-LTR retrotransposons predominate in

mammalian genomes, with class II making up less than 5 %

of the TE fraction (Deininger and Batzer 2002). For example,

*30 % of the human genome is derived from just two non-

LTR retrotransposon families, termed LINE 1 (L1) and SINE

(Alu) (Hancks et al. 2011; Lander et al. 2001). The yeast
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Saccharomyces cerevisiae has only LTR retrotransposons,

termed Ty elements (Bleykasten-Grosshans et al. 2011).

Flowering plants, including monocots (e.g., grasses) and

dicots (e.g., tomato and Arabidopsis), have a rich collection

of both TE classes, with clear domination of class I LTR

retrotransposons (Kumar and Bennetzen 1999; Tenaillon

et al. 2010). The Drosophila genome also contains TEs from

both classes, but mainly class I elements (Kaminker et al.

2002). In wheat (Triticum–Aegilops superfamily), there were

several reports that showed copy number variation of TEs

using limited number of BAC sequences (Charles et al. 2008;

Sabot et al. 2005), or by analyzing specific TE families in

several wheat accessions (Asakura et al. 2008; Tomita et al.

2008; Yaakov and Kashkush 2012). The variability of TE

proliferation in Triticum and Aegilops revealed their use-

fulness as genetic markers (Queen et al. 2004). The vari-

ability of TE content in wheat might impact wheat evolution

(Charles et al. 2008; Yaakov and Kashkush 2012).

In plants, transposons are usually silenced by epigenetic

means through DNA methylation, chromatin modifications,

and small RNAs (Cantu et al. 2010; Slotkin and Mart-

ienssen 2007). However, TEs may be reactivated in situa-

tions of cell stress, such as wide hybridization and

polyploidization (Grandbastien et al. 2005; Lisch 2009;

Mansour 2007). The activity of transposons may be one

mechanism to create the genetic variability needed for

speciation of reproductively isolated populations (Dub-

covsky and Dvorak 2007; Hosid et al. 2012). The heritable

variability brought about by TEs includes genetic changes

resulting from transpositional activity or homologous

(Xuan et al. 2012), nonhomologous and illegitimate

recombination of TEs (Devos et al. 2002), and epigenetic

changes affecting neighboring genes resulting from pro-

duction of anti-sense RNA (Kashkush and Khasdan 2007;

Puig et al. 2004) and changes in DNA methylation and

chromatin modifications.

Allopolyploidy involves the hybridization of genetically

distinct but related genomes and whole-genome duplica-

tion. Allopolyploidy is a common occurrence in plants,

found in most economically significant crops such as cot-

ton and wheat (Feldman and Levy 2005).

The evolutionary history of wheat involves two separate

allopolyploidization events: the first includes wild wheat T.

urartu (2n = 2x = 14, genome AA) and a species from

section Sitopsis (2n = 2x = 14, genome BB) to produce T.

turgidum ssp. dicoccoides (2n = 4x = 28, genome BBAA)

and the second includes T. turgidum ssp. dicoccoides and

Ae. tauschii (2n = 2x = 14, genome DD) to produce bread

wheat T. aestivum (2n = 6x = 42, genome BBAADD).

For the study of mechanisms underlying the immediate

consequences of polyploidy-induced genomic changes

(revolutionary changes), wheat has been a useful model as

its historical events of allopolyploidization can be

mimicked in the lab, by hybridizing the known ancestors of

wheat polyploids (Adams and Wendel 2005; Kashkush

et al. 2003; Liu et al. 1998; Ma et al. 2004; Ozkan et al.

2001; Shaked et al. 2001; Yaakov and Kashkush 2011a, b).

The impact of transposable elements on the genomic evo-

lution of plants is not completely clear; however, the use of

recently domesticated species, such as wheat, is essential

for the study of rapidly changing genetic elements (Comai

2005). Previous studies have shown that newly formed

polyploids undergo rapid and reproducible genomic and

epigenomic changes (Chen 2007; Comai 2005; Feldman

and Levy 2009). Furthermore, transcriptional activation of

an LTR retrotransposon (WIS2-1A) was observed to occur

as a result of polyploidization in wheat, as well as influ-

enced adjacent gene products (Kashkush et al. 2003).

Polyploidization in wheat also affected the methylation

status (Kraitshtein et al. 2010; Parisod et al. 2009, 2010;

Yaakov and Kashkush 2011a, b; Zhao et al. 2011), of

associated siRNA (Kenan-Eichler et al. 2011) and rear-

rangements (Bento et al. 2008; Kraitshtein et al. 2010; Petit

et al. 2010) of transposable elements.

In this study, we assessed in detail the genomic com-

position of 16 TE families, including LTR and non-LTR

retrotransposons and DNA transposons, in 22 Triticum and

Aegilops accessions, including diploid (AA, BB, and DD),

tetraploid (BBAA), and hexaploid (BBAADD) species. We

used our quantitative PCR protocol (Baruch and Kashkush

2012; Kraitshtein et al. 2010; Yaakov et al. 2013) to assess

the relative copy number of each TE in all species in a

relatively high resolution. The use of species that donated

the AA, BB, and DD genomes to modern wheat, and the

use of newly synthesized wheat allohexaploids, facilitated

the detailed analysis of evolutionary and revolutionary

(genetic and epigenetic changes that occur in the first

generations of the nascent allopolyploid species) dynamics

of TEs. The possible activity of TEs during the evolu-

tionary history of wheat, and reactivation due to genomic

stress resulting from the allopolyploidization process, is

discussed.

Materials and methods

Plant material

In this study, we used 22 wheat accessions (see details in

Supplemental Table 1): five accessions of Aegilops searsii;

nine accessions of Ae. speltoides, Ae. sharonensis, Ae.

longissima; two accessions of Triticum urartu, Aegilops

tauschii, Triticum turgidum ssp. dicoccoides, Triticum

turgidum ssp. durum, and Triticum aestivum. In addition,

four generations (S1–S4) of newly formed wheat allohex-

aploid (genome BBAADD) and its parental lines, Triticum
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turgidum ssp. durum (accession TTR19; genome BBAA)

and Aegilops tauschii (accession TQ27; genome DD) were

used. Note that we refer to all Sitopsis species as containing

the B genome (equivalent to the S genome) to prevent

confusion, because the genomic composition of the poly-

ploid species are considered BBAA and BBAADD. The

newly formed allohexaploid resembles natural hexaploid

wheat (Ozkan et al. 2001). DNA was extracted from young

leaves (4 weeks post germination) using the DNeasy plant

kit (Qiagen).

Quantitative PCR

We used qPCR assay (Baruch and Kashkush 2012; Kra-

itshtein et al. 2010; Yaakov et al. 2012; Yaakov et al. 2013)

to relatively quantify 13 retrotransposons (including 11

LTR and 2 non-LTR families) and three DNA transposons

(see details in Supplemental Table 2) from the Triticeae

Repeat Sequence Database (http://wheat.pw.usda.gov/

ITMI/Repeats/). We compared each reaction to amplifica-

tion of the VRN1 gene, as this gene is found in one copy in

each wheat genome (DCt = CtTarget-CtVRN1) (Kraitshtein

et al. 2010). The normalized quantities were then compared

to the quantity in Ae. tauschii (accession TQ27), such

that the relative quantity (RQ) in this sample was 1

[DDCt = DCtSample-DCtTQ27; see (Kraitshtein et al.

2010)]. The efficiency of the PCR reactions (E), as deter-

mined by a standard curve through serial dilutions of mixed

templates (Supplemental Fig. 1a), as well as the relative

ploidy level of each sample (P; diploids = 1, tetrap-

loids = 2, and hexaploids = 3), were taken into account.

The calculations can be summarized in the equation:

RQ = P 9 (2 9 E)-DDCt (Livak and Schmittgen 2001). As

validation, we ran the products of the PCR reaction using

primers for Fatima (see Supplemental Table 2), in all 9

analyzed species and Triticum monococcum (accession

TMB02, genome AmAm), on agarose gel, and observed

amplification in all cases (Supplemental Fig. 1b). In addi-

tion, we ran all the samples again, using two different

primer sets for Angela-A (Copia retrotransposon) and

Fatima (Gypsy retrotransposon), and observed results very

similar to the ones presented below.

Results and discussion

Copy number variation of TEs in Triticum and Aegilops

species

Complete analysis of the copy number variation (CNV) of

TE content requires the availability of fully sequenced

genomes. In the absence of a complete assembled sequence

for wheat, various strategies have been used to estimate the

copy number of TEs in wheat. For example, Sabot et al.

(2005) and Charles et al. (2008) have analyzed a limited

number of BAC sequences (representing *0.3 % of the

wheat genome) to estimate the copy number of TEs, while

Asakura et al. (2008) have used Southern blot analysis to

estimate the copy number of one Mutator-like TE family in

various wheat species. The availability of whole-genome

shotgun sequencing for hexaploid wheat using 454-py-

rosequencing (Brenchley et al. 2012) allowed the analysis

of the copy number of miniature TEs such as MITEs

(Yaakov et al. 2013). The small size of MITEs in wheat

(55–300 bp in length) facilitated the retrieval of intact

MITE elements from the 454 databases (average sequence

size of *400 bp). However, retrieving long TEs, such as

the ones used in this study from the 454 database is very

challenging because of the huge redundancy of TE

sequences and the inability to properly differentiate

between TE sequences. In a very recent study, Senerchia

et al. (2013) used low coverage 454-sequences of Ae.

cylindrica and Ae. geniculata to analyze the abundance of

several LTR retrotransposon families.

We have previously showed that the data produced by

our qPCR assay is very efficient by analyzing rice TEs and

comparing the relative quantity to the absolute copy

numbers from the fully sequenced rice species (Baruch and

Kashkush 2012). In addition, we have performed a similar

analysis for MITEs in wheat (Yaakov et al. 2013).

In this study, we have assessed the relative quantity of

six Gypsy, four Copia and one Copia-like LTR retro-

transposon, two non-LTR retrotransposons, and three DNA

transposons. It is very important to note that the primer

pairs that were used for each TE family were designed

from conserved sequences specific to each family (based

on the analysis of multiple sequence alignment of several

members of each family retrieved from the NCBI data-

base). In addition, for some cases, we used different primer

combinations to validate the results (see ‘‘Materials and

methods’’).

Relative quantity of Gypsy LTR retrotransposons

The analysis of the relative quantities of six Gypsy families

(Fig. 1a; Supplemental Fig. 2a–e) revealed that Fatima is

very abundant in Ae. searsii and Ae. speltoides, while it is

least abundant in Ae. tauschii and T. urartu. Fatima content

in Ae. searsii is *4,300 times its content in Ae. tauschii

and *93 times its content in T. urartu. Interestingly, the

relative quantity of Fatima in tetraploid and hexaploid

species was dramatically lower (*10 times less) than the

one observed in Ae. searsii. The high abundance of Fatima

in Ae. speltoides was also detected using FISH analysis

(Salina et al. 2011). For each TE, we have calculated the
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coefficient of variation (CV) parameter, a statistical value

that is based on the observed standard deviation in RQ of

all species divided by the average RQ of all species, to

reveal the level of variability of each TE, which in turn

indicates the level of dynamics (activity) for each TE

(Wright and Schoen 2000). In the Gypsy superfamily,

Fatima together with Erika (specifically proliferated in the

A genome, Fig. 1a) showed relatively higher CV values

(1.56 and 1.66, respectively, Supplemental Table 3) in all

species, indicating their relatively higher dynamics in

wheat. In addition, Sabrina and BAGY2 showed relatively

lower CV values in all species (0.41 and 0.72, respec-

tively), indicating their lower dynamics in wheat compared

to other Gypsy TE families. Finally, the Latidu family

showed specific proliferation in Ae. sharonensis: *73

times its content in Ae. tauschii and Ae. speltoides, twice its

content in Ae. longissima, and three times its content in Ae.

searsii (Supplemental Fig. 2c).

Relative quantity of Copia LTR retrotransposons

The analysis of relative quantity of five Copia families

(Supplemental Fig. 2f–j) revealed that Angela, Barbara,

and WIS-A showed similar levels of variability among the

wheat species (CVs of 0.41, 0.35, and 0.36, respectively,

Supplemental Table 3). Interestingly, all three elements

showed relatively higher content in one of the seven Ae.

speltoides accessions, TS01 (Supplemental Fig. 2f–h).

Among the Copia superfamily, BARE1C showed signifi-

cantly higher variability (CV of 1.1, Supplemental Table 3)

compared to the other three elements. Finally, the Veju

element [Copia-like element, (Kraitshtein et al. 2010)],

showed low variability (CV of 0.45) among species. In

addition, Ae. tauschii (genome DD) showed significantly

lower quantities compared to the A and B genomes, similar

to what was estimated by Kraitshtein et al. (2010).

Relative quantity of non-LTR retrotransposons

The analysis of relative quantity of two non-LTR retro-

transposon families (Fig. 1b; Supplemental Fig. 2l)

revealed that both elements showed relatively high vari-

ability among species (CV of 1.32 for Ramona and 1.23 for

Paula, Supplemental Table 3). The two elements also

show greater quantities in the tetraploid T. turgidum ssp.

dicoccoides, but Paula has much less relative quantity in

the hexaploid T. aestivum compared with Ramona.

Relative quantity of DNA transposons

The analysis of relative quantity of three DNA element

families (Fig. 1c, d; Supplemental Fig. 2k) revealed that

Balduin had the lowest CV values, while Rong had the

highest CV values (Supplemental Table 3), except the CV

value for Ae. speltoides which were elevated due to a

specific proliferation of Charon in one accession (TS41)

from Israel (Fig. 1d; Supplemental Table 1). In addition,

Rong had high relative quantities in Ae. sharonensis and a

particular accession of Ae. speltoides (542274, Supple-

mental Table 1) from Adiyaman in Turkey, Balduin had

high relative quantities in T. urartu and T. aestivum, and

Charon had high relative quantities in T. urartu, Ae. lon-

gissima, and T. turgidum ssp. dicoccoides.

Variation across all species

The CV of all the species ranged from 0.354 (Barbara, a

Copia family) to 1.661 (Erika, a Gypsy family), indi-

cating that the former is the least active and the latter is

the most active element during the evolutionary history

of wheat (Supplemental Table 3). Furthermore, the

Gypsy superfamily, except for Sabrina, seemed to have

higher CV values than the Copia superfamily, except for

BARE1C. Our data indicate that TE dynamics are spe-

cific to each TE. For example, while the CV values of

the Erika and Fatima families from the Gypsy super-

family indicate that they are two of the most active

elements, the CV value of the Sabrina family from the

same superfamily showed that it is one of the least

active elements. Thus, in contrast to what was reported

by Sabot et al. (2005), our data indicate that one cannot

draw a general conclusion regarding the comparison of

TE activity among different superfamilies.

Genome-specific proliferation

We examined the genomic uniqueness of each element

to certain genomes and observed that Erika (Gypsy ret-

rotransposon; Fig. 1a) had proliferated in the A genome,

as it appeared to a much greater extent in T. urartu

(genome AuAu), T. turgidum ssp. dicoccoides (genome

BBAA), and T. aestivum (genome BBAADD). Fatima

(Gypsy retrotransposon), Rong (PIF/Harbinger DNA

transposon), and Paula (non-LTR retrotransposon) had

proliferated in the B genome, as they appeared in very

low levels in Ae. tauschii (genome DD) and T. urartu

(genome AuAu).

Fig. 1 Relative quantification (compared to Ae. tauschii, set as 1, see

materials and methods) of four transposable elements in various

wheat species. The elements presented are examples of a genome-

specific proliferation (Erika), b Ae. speltoides as donator of the B

genome (Paula) and nonadditive values in c tetraploid T. turgidum

ssp. dicoccoides (Balduin), and d hexaploid T. aestivum (Charon)

wheat. All relative quantities are normalized to Ae. tauschii. Standard

deviation was calculated based on three technical replicates

b
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Relative quantity among Ae. searsii and Ae. speltoides

accessions: the candidate donors of the B genome to wheat

We studied the relative quantities of TEs in five accessions

of Ae. searsii and nine accessions of Ae. speltoides, as these

are the two candidate species for the contribution of the B

genome to form tetraploid wheat (T. turgidum ssp. dic-

occoides). The results showed elements with proliferation

specific to each species (t test p \ 0.05): Latidu (Gypsy

retrotransposon; Supplemental Fig. 2c), Sabrina (Gypsy

retrotransposon; Supplemental Fig. 2a), BAGY2 (Gypsy

retrotransposon; Supplemental Fig. 2d), and Charon

(Mutator DNA transposon) were specific to Ae. searsii and

Erika (albeit at low levels), Angela-A (Copia retrotrans-

poson; Supplemental Fig. 2f), and Ramona (non-LTR ret-

rotransposon; Supplemental Fig. 2l) were specific to Ae.

speltoides. This data, together with the finding that all the

tested elements are found in the polyploid species, indicate

that we cannot favor either of the two species to be the

donor of the B genome. As previously reported, the true

donor of the B genome might be a common ancestor to the

two species (Salse et al. 2008; Yaakov and Kashkush

2012).

Evolutionary-scale changes in TE quantity

in polyploids

In order to assess TE dynamics following polyploidization

events, we examined the changes from the expected RQ for

the tetraploid and hexaploid species (T. turgidum ssp.

dicoccoides and T. aestivum, respectively), which may be

calculated by combining the RQ for T. urartu (genome

AA) and any accession of Ae. speltoides or Ae. searsii

(genome BB) for the tetraploid (genome BBAA) and T.

turgidum ssp. dicoccoides (genome BBAA) and Ae. tau-

schii (genome DD) for the hexaploid (genome BBAADD).

A deviation from the expected RQs in the tetraploid was

counted only if no combination of accessions could add up

to the observed RQs in the tetraploid. We observed a

deviation from the expected RQs for the tetraploid T. tur-

gidum ssp. dicoccoides, which showed higher than expec-

ted values for Erika (Fig. 1a; p = 0.0002) and lower than

expected values for Balduin (CACTA DNA transposon;

Fig. 1c; p = 0.0001). When comparing the additive values

of the natural tetraploid T. turgidum ssp. dicoccoides

(genome BBAA) and Ae. tauschii (genome DD) with the

values of the natural hexaploid T. aestivum (genome

BBAADD), the hexaploid T. aestivum showed higher than

expected values for Rong (p = 0.0001) and lower than

expected values for Geneva (Gypsy retrotransposon;

p = 0.0001), BARE1C (Copia retrotransposon; Supple-

mental Fig. 2; p = 0.0001), Charon (Fig. 1d; p = 0.0001),

and Paula (p = 0.0001). However, Fatima and Latidu also

had higher than expected values in the hexaploid, but were

just above statistical significance (p = 0.061 and 0.0563,

respectively). Importantly, the only Triticum-specific ele-

ment (Erika) showed a deviation from the expected values

in the allotetraploid, which was also observed for Triticum-

specific Stowaway-like MITEs (Minos and Fortuna)

(Yaakov et al. 2013). Thus, the genome-specific elements

may play a role in the differentiation of sub-genomes fol-

lowing polyploidization, via transcriptional, transposi-

tional, or recombinational events evoked by epigenetic

changes (Mirouze et al. 2012).

TE dynamics in the first generations of newly formed

allohexaploid

Because the examination of relative TE quantity in natural

polyploids results in an assessment of TE activity within

long time scales [*10,000 years for the hexaploid and

*0.5 million years for the tetraploid; see (Feldman and

Levy 2005)], we decided to investigate the immediate

effects of polyploidization on the relative quantity of each

TE by performing the same qPCR analysis on a system of

newly formed allohexaploid wheat (see ‘‘Materials and

methods’’).

The relative copy number values in the newly formed

polyploid offspring (S1–S4 generations) were then com-

pared to the expected additive parental copy number (the

sum of the copy numbers of both parents), as the polyploid

harbors both parental genomes, and each generation of the

polyploid was compared to the successive generation.

Thus, for each transposon, a pattern of increase or decrease

in relative copy number could be observed. For 6 of the 16

elements [Fatima (Fig. 2a; p = 0.0041), Angela-A (Sup-

plemental Fig. 3a; p = 0.0001), BARE1C (Supplemental

Fig. 3b; p = 0.0142), Paula (Supplemental Fig. 3c;

p = 0.0001), Rong (Supplemental Fig. 3d; p = 0.0004),

and WIS-A (Supplemental Fig. 3e; p = 0.0001)], a signif-

icant decrease in relative copy number (between the

additive parental values and the first generation of the

newly formed allohexaploid, S1) was seen. However, the

subsequent generations showed different patterns of change

between these elements, consisting mostly of decrease in

relative copy number in different generations. Another

large group (9 of 16 elements) showed a significant

increase in relative copy number, followed mostly by a

decrease in different times in later generations. These

elements included: Erika (Fig. 2b; p = 0.0001), Balduin

(Supplemental Fig. 3f; p = 0.0001), Ramona (Supple-

mental Fig. 3g; p = 0.0109), Barbara (Supplemental

Fig. 3h; p = 0.0001), Charon (Supplemental Fig. 3i;

p = 0.0005), Veju (Supplemental Fig. 3j; p = 0.0001),

Geneva (Supplemental Fig. 3k; p = 0.0001), BAGY2

(Supplemental Fig. 3l; p = 0.0021), and Latidu (Fig. 2c;
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Fig. 2 Relative quantification (RQ) of two parental species (T.

turgidum ssp. durum and Ae. tauschii) and their newly formed

polyploid offspring (S1–S4) for a Fatima, b Erika, c Latidu, and

d Sabrina. The numbers at the top of each bar indicate the relative

quantity of the element compared to Ae. tauschii. The error bars

represent standard deviations from three technical replicates. The

genome composition of each species is indicated at the bottom

Plant Cell Rep (2013) 32:1615–1624 1621

123



p = 0.0002). Only one element (Sabrina; Fig. 2d) showed

no change in its relative quantities in S1, but did show an

11.4 % increase between generations S2 and S3. These

results indicate that the genomic changes that occur in

transposable element sequences, following polyploidiza-

tion, are unique to each family of transposable element.

This is in agreement with our observation of the level of TE

dynamics that was calculated based on their variability

among the different species (see above), where the

dynamics might dramatically vary from one TE family to

another in the same superfamily.

Another interesting observation, a specific group of

three Gypsy superfamily elements, which include Erika

(Fig. 2b), Geneva (Supplemental Fig. 3k), and BAGY2

(Supplemental Fig. 3l), showed a particular pattern of

increased relative copy number between the expected

additive parental values and the S1 generation, followed by

a decrease between the S1 and S2, an increase between S2

and S3, and a decrease between S3 and S4. This phe-

nomenon might indicate the unique dynamics of the Gypsy

superfamily in wheat.

Finally, we have assessed the timing of TE dynamics

and found that *94 % of the elements showed a signifi-

cant change in their quantity in S1 compared to the additive

value of the parental lines, while *75 % of the elements

showed a significant change between S1 and S2, *68 % of

the elements showed a significant change between S2 and

S3, and 65 % of the elements showed a significant change

between S3 and S4.

Interestingly, we found that the Charon, Rong, Paula,

BARE1C, Fatima, Latidu, and Geneva families showed

significant changes, both in the natural hexaploid species

(compared to its diploid and tetraploid parental species)

and in the newly formed allohexaploid (compared to the

TTR19 and TQ27 parental lines). This data suggests that

these early changes in element copy numbers impact the

subsequent evolution of each element in the genome.

In conclusion, in this study, we have performed a gen-

ome-wide analysis of the relative quantity of 16 large TE

families representing different superfamilies from both TE

classes in a large number of Triticum and Aegilops species,

including accessions from the donors of the AA, BB, and

DD genomes of polyploid wheat. In addition, the use of

natural wheat allopolyploids and newly formed allopolyp-

loids allowed us to assess the TE dynamics both at revo-

lutionary and evolutionary scales. Furthermore, we have

analyzed several accessions of the potential donors of the B

genome (Ae. searsii and Ae. speltoides), which has not

been performed before, allowing us to track the possible

evolutionary trajectory of these wheat species.

Based on our observations, we have reached the fol-

lowing conclusions: (1) there exists copy number variation

of TEs among Triticum and Aegilops species, which might

be the result of different activity levels; (2) long elements

were active in specific genomes during the evolutionary

history of wheat, contributing to the diversification of

diploid wheat species; (3) Ae. speltoides by itself cannot be

the only contributor of the B genome to polyploid wheat;

(4) elements which proliferate in specific genomes are,

apparently, reactivated (or undergo rearrangements) fol-

lowing polyploidization and might play a role in the

genetic differentiation of polyploid homeologous chromo-

somes; (5) the changes that occur following polyploidiza-

tion events are unique to each TE family; and (6) early

changes in TE copy numbers impact the subsequent

genomic evolution of that element.
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