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Abstract Plant fungal pathogens change their cell wall

components during the infection process to avoid degrada-

tion by host lytic enzymes, and conversion of the cell wall

chitin to chitosan is likely to be one infection strategy of

pathogens. Thus, introduction of chitosan-degradation

activity into plants is expected to improve fungal disease

resistance. Chitosanase has been found in bacteria and fungi,

but not in higher plants. Here, we demonstrate that chito-

sanase, Cho1, from Bacillus circulans MH-K1 has anti-

fungal activity against the rice blast fungus Magnaporthe

oryzae. Introduction of the cho1 gene conferred chitosanase

activity to rice cells. Transgenic rice plants expressing Cho1

designed to be localized in the apoplast showed increased

resistance to M. oryzae accompanied by increased genera-

tion of hydrogen peroxide in the infected epidermal cells.

These results strongly suggest that chitosan exists in the

enzyme-accessible surface of M. oryzae during the infection

process and that the enhancement of disease resistance is

attributable to the antifungal activity of the secreted Cho1

and to increased elicitation of the host defense response.

Keywords Chitosanase � Chitosan � Disease resistance �
Magnaporthe oryzae � Rice � MAMPs

Abbreviations

BSA Bovine serum albumin

GlcN D-Glucosamine

GlcNAc N-Acetyl-D-glucosamine

PCR Polymerase chain reaction

RT-PCR Reverse transcription polymerase chain

reaction

SDS-PAGE SDS-polyacrylamide gel electrophoresis

CBB Coomassie brilliant blue

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

TLC Thin-layer chromatography

Introduction

Chitosan, a deacetylated form of chitin, is considered to be

a component of the fungal cell wall, together with chitin

and b-glucan (Latge 2007; Tan et al. 1996). Chitin oligo-

mers (N-acetylchitooligosaccharides) and b-glucan oligo-

mers elicit plant defense responses (Shibuya and Minami

2001) and are defined as microbe-associated molecular

patterns (MAMPs). In rice, N-acetylchitooligosaccharides

larger than pentaose act as potent elicitors leading to dis-

ease resistance, whereas deacetylated chitosan oligomers

(chitooligosaccharides) do not (Kishimoto et al. 2010;

Kuchitsu et al. 1997; Nishizawa et al. 1999; Tanabe et al.

2006; Yamada et al. 1993). Plants recognize MAMPs
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through cell surface receptors and induce basal resistance

that makes many plants immune to potential pathogens

(Boller and He 2009). However, pathogens have evolved a

variety of infection strategies to overcome the host basal

resistance.

Rice blast, one of the most serious diseases in rice, is

caused by the rice blast fungus (Magnaporthe oryzae).

Infection commences with the attachment of conidia to rice

leaves, followed by formation of a dome-shaped infection

structure called the appressorium. The appressorium con-

sists of a melanin layer, which allows high turgor pressure

to break through the rice cell wall using a penetration peg.

The penetration peg gives rise to primary infection hyphae,

and in a susceptible host, infection hyphae invade into

neighboring cells within 48 h.

Recently, dynamic changes in the cell wall components

of plant pathogens, including M. oryzae, after invasion into

the host cell have been reported. Infection hyphae in the

first-invaded rice cell show little staining with fluorescently

labeled wheat germ agglutinin, a specific probe to detect

chitin (Mochizuki et al. 2011). In germ tubes and appres-

soria, chitin, chitosan, and b-1,3-glucan are detected,

whereas in infection hyphae, a-1,3-glucan and chitosan are

the major detectable cell wall polysaccharides instead of

chitin and b-1,3-glucan (Fujikawa et al. 2009). A change

of cell wall chitin to chitosan during the development of

infectious structures was analyzed using histochemical

immunostaining in rust fungi (El Gueddari et al. 2002).

From these results, one may postulate that fungal patho-

gens avoid attack from the host chitinase through the

conversion of chitin to chitosan because chitosan is a poor

substrate for chitinases (Ride and Barber 1990) and

chitosanase genes have not been isolated from plants.

These facts imply that introducing chitosanase activity into

plants might improve resistance to fungal pathogens.

Chitosanase (EC 3.2.1.132), an enzyme that specifically

hydrolyzes chitosan, has been isolated from several bacteria

and fungi. Some chitosanases have antifungal activity in

vitro: a chitosanase from Bacillus cereus D-11 inhibits the

hyphal growth of Rhizoctonia solani (Gao et al. 2008);

Amycolatopsis sp. CsO-2 produces a 27-kDa chitosanase

CtoA that inhibits hyphal growth of Rhizopus oryzae (Saito

et al. 2009); chitosanase from Streptomyces sp. N174 inhibits

hyphal growth of Rhizopus nigricans, Fusarium oxysporum,

Verticillium albo-atrum, and Pythium ultimum; and trans-

genic tobacco plants expressing the N174 chitosanase and a

chitosanase from Paenibacillus sp. 61427 show chitosan-

degradation activity (El Quakfaoui et al. 1995; Hendrix and

Stewart 2003). However, disease resistance in plants

expressing chitosanase has not been tested.

Chitosanase from Bacillus circulans MH-K1 is a 29-kDa

secretory protein composed of 259 amino acids (Ando et al.

1992) that hydrolyzes both GlcN–GlcN and GlcN–GlcNAc

linkages, but not GlcNAc–GlcNAc linkages (Mitsutomi

et al. 1996; Yabuki et al. 1988). In the present study, we

demonstrated that a chitosanase, designated as Cho1,

shows antifungal activity against M. oryzae in vitro, and

that transgenic rice plants expressing Cho1 in the apoplast

exhibit increased resistance to M. oryzae.

Materials and methods

Antifungal assay for M. oryzae

A conidial suspension of 20 ll (1 9 105 conidia ml-1)

from M. oryzae strain Ina86-137 (race 007.0; MAFF

Genebank stock number MAFF101511) was spotted onto

plastic coverslips (Fisher Scientific, Pittsburgh, PA), and

5 ll of phosphate-buffered saline (PBS; pH 7.4), 2 lg

BSA, or 2 lg recombinant Cho1 in PBS was added, sus-

pended by pipetting, and incubated at 25�C in the dark

at high humidity. After a 24-h incubation, growth of

M. oryzae was observed under an optical microscope.

Growth of M. oryzae per conidium was classified into three

groups: no germination, germ tube elongation, and

appressoria formation. Growth of about 160 conidia was

counted and statistical analysis performed using JMP8

software (SAS Institute, Cary, NC). The recombinant Cho1

was prepared using Brevibacillus choshinensis as host and

purified as described previously (Saito et al. 1999).

Vector construction and rice transformation

A DNA fragment for Cho1 without the signal sequence

region was amplified from the cho1 clone (Ando et al.

1992) with PCR using the following primer set: 50-GAGC

TCCGCTTCTCCTGACGACAATTTC-30 (underline indi-

cates SacI site) and 50-GGTACCCTACTTCATTTCCCAG

TCCGTG-30 (underline indicates KpnI site), and ligated

into SacI and KpnI sites in pBI333-EN4-RC2ss/ChiC to

express Cho1 with the signal sequence of a rice chitinase

CHT2, which localizes the adjacent polypeptide to the

apoplast (Itoh et al. 2003). To express Cho1 in the cyto-

plasm, a DNA fragment for the mature Cho1 was amplified

with PCR and cloned into pBI333-EN4, which was line-

arized by XhoI digestion, using the In-Fusion Advantage

PCR Cloning Kit (Clontech, Mountain View, CA). Primers

used for the PCR were 50-AACTAGTCTCGAGGCCACC

ATGGCTTCTCC-30 and 50-GCTTGTCGACCTCGAGCT

ACTTCATTTCCC-30. Rice transformation was performed

as described previously (Toki et al. 2006) using rice (Oryza

sativa L. japonica cv. Nipponbare BL no. 2 possessing Pii

gene) seeds kindly provided by Dr. H. Satoh of the

National Institute of Crop Science in Tsukuba, Japan.
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RT-PCR

Expression of the introduced cho1 was confirmed in each

transgenic cell line and regenerated plant line using RT-PCR.

Total RNA was extracted from rice callus and leaves using the

RNeasy Plant Mini Kit (Qiagen, Valencia, CA), and cDNA

was synthesized using ReverTra Ace (TOYOBO, Osaka,

Japan). PCR was carried out with the following primer sets:

50-ACTAGTGCCACCATGGCTTCTCCTGACGACAA-30

and 50-GGTACCCTACTTCATTTCCCAGTCCGTG-30 for

the cho1 gene, and 50-CCAGTAAGTCCTCAGCCATGGA-

30 and 50-GGACACAATGATTAGGGATCAC-30 for the

rice ubiquitin gene.

Protein extraction and Western blot analysis

Rice callus was homogenized in PBS (pH 7.4) containing

10% glycerol and 1 mM ascorbic acid. After centrifugation

at 100,0009g for 1 h at 4�C, the supernatant was dissolved

in PBS, and the soluble proteins (10 lg per lane) were

separated with SDS-PAGE. For Western blot analysis, the

proteins were transferred onto a polyvinylidene difluoride

membrane (Immobilon-P; Millipore, Billerica, MA) and

detected using anti-Cho1 antiserum or anti-GAPDH anti-

body. Extraction of extracellular and intracellular proteins

was performed according to a method described previously

(Itoh et al. 2003). Briefly, culms and leaf sheath of rice

plants were cut into about 4-cm-long pieces and centri-

fuged with citrate–phosphate buffer (pH 6.0) to elute

extracellular proteins into the buffer. Cytoplasmic proteins

were extracted from the tissues after the extracellular

proteins were removed.

Chitosanase assay

Soluble proteins were prepared from rice cultured cells that

had been washed in the culture medium. A total of 100 lg

of soluble protein was diluted in PBS and incubated at

40�C overnight with 750 lg of chitohexaose (Seikagaku

Kogyo, Tokyo, Japan). A 2.5-ll aliquot of the reaction

mixture was spotted onto the Silica gel 60 TLC plate

(Merck, Whitehouse Station, NJ) and developed with

n-propanol:aqueous ammonia (2:1) as solvent. Degradation

products of chitohexaose were visualized by spraying with

20% sulfuric acid in ethanol, followed by heating at 120�C

for 7 min.

Disease resistance tests in the leaf blade

Rice seeds from the T1 generation were germinated on

fourfold diluted Murashige and Skoog medium (pH 6.8)

containing 1% (w/v) agar and hygromycin B (25 lg ml-1)

at 28�C under continuous light. After 7 days, hygromycin-

resistant seedlings were transferred to hydroponic culture

at 28�C under a 14/10 h photoperiod. M. oryzae strain

Ina86-137, which is compatible with rice cv. Nipponbare

BL no. 2, was used. Excised rice leaf blades from the sixth

leaf were spotted with 10 ll of inoculum (aqueous sus-

pension at 2.5 9 105 conidia ml-1), incubated at 25�C

overnight in the dark, and then incubated for 5 days at

room temperature on moist filter paper. Mean area of

lesions was measured using Image J software (http://rsb.

info.nih.gov/ij/).

Disease resistance tests and detection of hydrogen

peroxide in the leaf sheath

Leaf sheaths from the sixth leaf were excised, filled with

conidia suspension (1 9 105 conidia ml-1) using a syringe,

and incubated for 24 or 48 h at 25�C in the dark. Evalua-

tion of hyphal growth in epidermal cells was performed as

described previously (Tanabe et al. 2009) using four

independent T1 lines. Hydrogen peroxide (H2O2) accu-

mulation was detected using 3,30-diaminobenzidine-tetra-

hydrochloride (DAB; Sigma, St. Louis, MO) staining using

two independent T1 lines. The inoculated leaf sheaths were

soaked in 1 mg ml-1 of DAB solution for 24 h at 25�C in

the dark, then boiled in 95% (v/v) ethanol for 10 min and

stored in 90% ethanol until microscopic observation.

Results

Antifungal activity of Cho1 to M. oryzae in vitro

To evaluate the antifungal activity of Cho1 to M. oryzae,

the conidial suspension was incubated with recombinant

Cho1 on plastic coverslips. As shown in Fig. 1, conidia

incubated in PBS or PBS including BSA normally germi-

nated and formed appressoria, and septa in conidia clearly

remained. In contrast, conidia incubated with Cho1 failed

to form appressoria even though conidial germination

occurred, and septa in conidia were not clearly observed.

These results indicate that Cho1 has antifungal activity

against M. oryzae.

Chitosanase activity of rice cells expressing Cho1

We produced two types of transgenic rice plant expressing

Cho1 using a modified CaMV 35 S promoter: Cho1 with-

out a signal sequence (–SS), whose deduced molecular

weight is 29 kDa, and Cho1 with the signal sequence of a

rice chitinase CHT2 (?SS), whose deduced molecular

weight is 32.9 kDa (Fig. 2).

Chitosanase activity was analyzed using cultured cells in

which transcriptional expression of cho1 was confirmed by
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RT-PCR (data not shown). Accumulation of Cho1 was

confirmed by Western blot analysis both in –SS and ?SS

cultured cells (Fig. 3a). Cho1 showed slower mobility in

?SS than in –SS, likely due to the additional signal sequence

that was not cleaved inside the cell. Total soluble proteins

from the cultured cells were assayed for chitosanase activity

using TLC. Although Cho1 from ?SS cells is considered to

be an unprocessed form, extracts from both cell lines pre-

sented chitosanase activity, i.e., chitohexaose was degraded

to lower-molecular-weight products (Fig. 3b). Proteins from

vector control rice cells demonstrated no activity.

Localization of Cho1 in transgenic rice plants

To analyze the cellular localization of Cho1, we prepared

soluble proteins from apoplastic and cytoplasmic fractions

of –SS and ?SS plants in which expression of cho1 was

confirmed by RT-PCR (data not shown) and Western blot

analysis (Fig. 4). In the ?SS plant, Cho1 was mostly

detected in the apoplastic fraction, while in the –SS plant,

Cho1 was observed in both the apoplastic and cytoplasmic

fractions. The level of Cho1 accumulation was higher in

the ?SS line than in the –SS line.

Disease resistance against M. oryzae

in transgenic rice plants

Expression of cho1 in the regenerated leaf blade was

confirmed by RT-PCR (data not shown), and their T1 lines

were examined for blast resistance (Fig. 5). The sixth leaf

blades of six sibling plants from each of four independent

transgenic lines were inoculated with a conidial suspension

of a compatible isolate of M. oryzae, and the areas of

lesions at 6 days postinoculation (dpi) were measured.

P
er

ce
nt

ag
e 

of
 c

on
id

ia
 (

%
)

No 
germination

Germ tube
elongation

Appressoria
formation

100

40

20

0

60

80

*

*

– Cho1

+ Cho1

+ BSA

b

a

–Cho1
+Cho1
+BSA

Fig. 1 Antifungal activity of Cho1 to M. oryzae in vitro. a Conidial
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lower left. b The levels of conidial growth are presented as
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About 160 conidia per microscopic field were counted. Error bars
represent standard deviations (n = 4 fields). Asterisks above the bars
indicate significant differences compared to –Cho1 at P \ 0.05
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Fig. 2 Structure of T-DNA regions in the binary vectors. RB and LB

indicates the right-border and left-border sequences of the T-DNA

regions, respectively. 35S cauliflower mosaic virus (CaMV) 35S

promoter, EN4 enhanced CaMV 35S promoter, NOS30 terminator of

nopaline synthase gene, CaMV30, terminator of CaMV 35S, HPT
hygromycin phosphotransferase gene, RC2/ss rice chitinase CHT2
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construction. Dashed line indicates the putative cleavage site in the

signal sequence of rice CHT2
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Note that only the ?SS plants exhibited significant resis-

tance to blast.

We further examined disease resistance of the transgenic

rice plants by scoring hyphal growth in the epidermal cells

of leaf sheaths. Figure 6a shows different levels of invasion

and spread of infection hyphae observed 48 h postinocu-

lation (hpi), and we then categorized each appressorium

into one of three infection levels. We tested four inde-

pendent transgenic lines from –SS and ?SS plants; Fig. 6b

shows a representative result. In ?SS plants, the percent-

age of appressoria that did not form primary infection

hyphae was slightly higher than in the vector control and

–SS plants. Although the percentage of ‘one-cell invasion’
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recombinant Cho1 protein as control, VC soluble protein extracted
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did not differ among these lines, the percentage of ‘mul-

ticell invasion’ in ?SS plants was significantly lower than

in the vector control and –SS plants.

Cellular response to M. oryzae in leaf sheaths

of transgenic rice plants

Release of reactive oxygen species (ROS), including H2O2,

is a major host defense response to pathogen infection

(Torres et al. 2006). We examined the accumulation of

H2O2 in epidermal cells of inoculated leaf sheaths using

DAB staining at 24 hpi. Figure 7a shows representative

DAB-staining patterns in epidermal cells. In ?SS plants,

the percentage of appressoria that did not cause H2O2

accumulation was significantly lower than in the vector

control and –SS plants, and the percentage of appressoria

that led to staining of one and more cells was significantly

higher than in the other plants (Fig. 7b).

Discussion

In this study, we demonstrated that the chitosanase Cho1

from B. circulans MH-K1 exhibits antifungal activity

against M. oryzae. Introduction of the cho1 gene conferred

chitosanase activity to rice cells, and transgenic rice plants

accumulating Cho1 in the apoplast showed increased resis-

tance to M. oryzae. This is the first report describing disease

resistance in transgenic plants expressing chitosanase.

Cho1 inhibited appressorial formation of M. oryzae

(Fig. 1), which strongly suggests that chitosan exists in the

enzyme-accessible surface of M. oryzae during develop-

ment of the infection structures because Cho1 specifically

hydrolyzes chitosan and does not have chitinase activity,

i.e., Cho1 does not split GlcNAc–GlcNAc linkages (Ya-

buki et al. 1988). Chitosan is a polymer of D-glucosamine

and is synthesized from chitin by chitin deacetylase. Sev-

eral putative chitin deacetylase genes of M. oryzae have

been reported (Kamakura et al. 2002; Mochizuki et al.

2011) although their enzyme activity has not yet been

tested. Chitin deacetylase activity of the broad bean rust

fungus Uromyces viciae-fabae increases when the fungus

starts infection (Deising and Siegrist 1995), and the con-

version of chitin to chitosan occurs in several rust fungi and

in the causal agent of maize anthracnose, Colletotrichum

graminicola, during infection (El Gueddari et al. 2002).

These results suggest that conversion of chitin to chitosan

is a strategy for successful infection by several fungal

pathogens. Our results imply that M. oryzae also converts

the cell wall chitin to chitosan during the infection process

to avoid lysis by the host chitinase.

In the suspension-cultured cell lines of ?SS, only Cho1

with lower mobility was detected (Fig. 3), probably

because the apoplastic Cho1 protein was released into the

liquid medium. Rice cells introduced with an empty vector

showed no chitosanase activity, which agrees with the

fact that no rice genes are annotated as chitosanase

(http://rapdb.dna.affrc.go.jp/). In contrast, cytoplasmic

proteins from both –SS and ?SS cell lines demonstrated

chitosanase activity, which indicates that Cho1 is
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expressed as an active form in rice cells and that Cho1

fusing with the CHT2 signal sequence also carries chito-

sanase activity.

In the –SS plant, Cho1 was detected both in the apoplast

and cytoplasm, while in the ?SS plant it was exclusively in

the apoplast and at higher levels. ?SS plants, but not –SS

plants, showed significantly increased levels of resistance

against M. oryzae both in leaf blades (Fig. 5) and leaf

sheaths (Fig. 6). These results indicate that production of a

larger amount of Cho1 in the apoplast is necessary to

improve resistance to rice blast.

We consider that two factors are responsible for the

enhanced disease resistance: first, the antifungal activity of

Cho1, whereby Cho1 inhibited appressoria formation of

M. oryzae in vitro. Chitosan has been detected in primary

infection hyphae (Fujikawa et al. 2009) in the apoplastic

space surrounded by the host plasma membrane (Kankan-

ala et al. 2007). Microscopic observations revealed that

fungal penetration through the rice cell walls was inhibited

in ?SS plants (Fig. 6b), which implies that large amounts

of the secreted Cho1 in ?SS plants suppress the formation

of primary infection hyphae and penetration of hyphae

further into the next rice cells. Second, incremental

MAMPs generation, whereby significant decreases in

multicell invasion observed in ?SS plants were correlated

with increased generation of H2O2 in epidermal cells of the

inoculated leaf sheaths (Fig. 7), also leads to enhanced

disease resistance. Generation of ROS is one cellular

defense response to MAMPs (Torres et al. 2006). Although

the chitosan polymer has been reported to induce genera-

tion of ROS (Iriti and Faoro 2009), chitoheptaose does not

cause this response in rice cells (Kishimoto and Nishizawa,

unpublished data). Natural chitosan is not considered fully

deacetylated (Saito et al. 2009), and thus N-acetyl-

chitooligosaccharides could be generated from chitosan

through Cho1. In fact, partially acetylated chitooligosac-

charides, as well as N-acetylchitooligosaccharides, induce

ROS generation (dos Santos et al. 2008). Therefore, in ?SS

plants, apoplastic Cho1 may hydrolyze chitosan in the cell

wall of M. oryzae and result in the increased production of

both N-acetylchitooligosaccharides and partially acetylated

chitooligosaccharides, which induces higher levels of ROS

generation. In addition, degradation of cell wall chitosan

could allow easier access of endogenous rice lytic enzymes

like chitinase and b-1,3-glucanase to the fungal cell wall.

Chitosan is widely distributed in the cell wall of fungi,

particularly zygomycetes (Tan et al. 1996). Some bacterial

chitosanases show antifungal activity to several plant fun-

gal pathogens in vitro (El Quakfaoui et al. 1995; Gao et al.

2008; Hendrix and Stewart 2003; Saito et al. 2009).

Therefore, the use of chitosanase might provide a novel

strategy for crop protection against fungal diseases.
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