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Abstract Complex multimeric recombinant proteins such

as therapeutic antibodies require a eukaryotic expression

system. Transgenic plants may serve as promising alterna-

tives to the currently favored mammalian cell lines or

hybridomas. In contrast to prokaryotic systems, posttrans-

lational modifications of plant and human proteins resemble

each other largely, among those, protein N-glycosylation

of the complex type. However, a few plant-specific sugar

residues may cause immune reactions in humans, repre-

senting an obstacle for the broad use of plant-based systems

as biopharmaceutical production hosts. The moss Physc-

omitrella patens represents a flexible tissue-culture system

for the contained production and secretion of recombinant

biopharmaceuticals in photobioreactors. The recent syn-

thesis of therapeutic proteins as a scFv antibody fragment or

the large and heavily modified complement regulator

factor H demonstrate the versatility of this expression sys-

tem. A uniquely efficient gene targeting mechanism can

be employed to precisely engineer the glycosylation

machinery for recombinant products. In this way, P. patens

lines with non-immunogenic optimized glycan structures

were created. Therapeutic antibodies produced in these

strains exhibited antibody-dependent cellular cytotoxicity

superior to the same molecules synthesized in mammalian

cell lines.
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Introduction

Because of their innate complexity current therapeutic

recombinant proteins (biopharmaceuticals) are produced

mainly in mammalian expression hosts, especially in Chi-

nese hamster ovary (CHO) cells (Beck et al. 2008).

Mammalian cell lines are the workhorse in pharmaceutical

glycoprotein production because of their ability for human-

like posttranslational glycosylation (Durocher and Butler

2009; Walsh and Jefferis 2006). However, plant-based

systems may be considered as alternative production plat-

forms for recombinant glycoproteins with several target

proteins already in clinical phases (Karg and Kallio 2009).

As higher eukaryotes, plants synthesize complex multi-

meric proteins and the machinery extent of posttransla-

tional modifications is rather similar between plants and

mammals. The establishment of in vitro plant cell or tissue

culture offers the possibility for a precise control and

standardization of cultivation conditions that allows pro-

duction under GMP guidelines (Hellwig et al. 2004). On

the other hand, a contamination of plant-based production

systems by human-pathogenic infectious agents is rather

unlikely (Fischer et al. 2004). Meanwhile, several plant-
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made pharmaceuticals (PMP) reached late stages in clin-

ical studies (Faye and Gomord 2010). However, for many

plant-based systems, large-scale production facilities are

difficult to establish and most plant systems cannot be

used unobjectionably for the synthesis of glycosylated

products. Asparagine-linked posttranslational protein

N-glycosylation is a modification found on most human

blood proteins and 70% of the biopharmaceutical candi-

dates in preclinical or clinical development are glyco-

proteins (Durocher and Butler 2009). Glycosylation may

be necessary for structural and functional properties of a

given protein (Walsh and Jefferis 2006), i.e., antibody-

dependent cellular cytotoxicity (ADCC) which means the

effectiveness of antibodies used in cancer treatment can

be influenced by a specific sugar moiety linked to the

N-glycans of the antibody (Shields et al. 2002; Shinkawa

et al. 2003). N-glycosylation on plant proteins resembles

mammalian sugar chains largely. However, plant N-gly-

cans bear specific sugar residues, which were proven to

be immunogenic (Gomord et al. 2005; Mari 2002). This

issue has to be solved before using a plant system as

glycoprotein production host. Therefore, RNAi approa-

ches for down-regulation of plant-specific glycosylation

were undertaken in the hydrophyte Lemna minor as well

as in Nicotiana benthamiana and Medicago sativa (Cox

et al. 2006; Sourrouille et al. 2008; Strasser et al. 2008)

and glycosylation mutants were established for Arabid-

opsis thaliana (Strasser et al. 2004). A few years ago the

moss Physcomitrella patens was introduced as an alter-

native system for biopharmaceutical production that

combines low-cost contained cultivation in photobioreac-

tors with a unique feasibility for precise gene targeting

(Decker and Reski 2007; Decker and Reski 2008). By the

mechanism of homologous recombination in vegetative

cells, plant-specific glycosylation pathways have been

engineered towards human-like glycans thus deleting any

immunogenic potential (Huether et al. 2005; Koprivova

et al. 2004). Therapeutic IgG antibodies produced in

glyco-optimized moss exhibited superior ADCC com-

pared to the conventionally produced antibody (Schuster

et al. 2007).

Here we summarize the progress for use of P. patens

as an expression system for recombinant therapeutic

glycoproteins.

In vitro cultivation

The life cycle of mosses is dominated by the haploid game-

tophytic stage. Therefore, it starts by germination of a haploid

spore rather than with diploid or even polyploid seeds. Under

sufficient light and water supply, the filamentous branched

protonema tissue grows (Fig. 1a) which proliferates via

apical cell divisions and in which every cell is in direct

contact with the humid environment (e.g., liquid medium

in suspension culture; Fig. 1b). The subsequent develop-

ment of buds gives rise to the adult gametophore, con-

sisting of shoot-like, leaf-like, and root-like tissues

(Fig. 1c). After development of gametangia and fertiliza-

tion, the diploid sporophyte grows on top of the gameto-

phore (Reski 1998). In vitro cultivation of all stages of the

Physcomitrella life cycle is routinely performed on agar

plates or synthetic meshes where the moss is fed by liquid

medium. However, for biotechnological applications, solid

medium is mainly chosen for space-saving storage of dif-

ferent transgenic strains, which can be maintained via

biannual sub-cultivation (Frank et al. 2005). Cryo-preser-

vation protocols were established for long-term storage

(Schulte and Reski 2004) and implemented in the Inter-

national Moss Stock Center in Freiburg, Germany (IMSC;

http://www.moss-stock-center.org), which serves as a

Master Cell Bank (MCB).

In addition, scalable vegetative propagation of proto-

nema tissue in suspension cultures has been established

(Fig. 1b). P. patens grows photo-autotrophic in a simple

medium of inorganic salts under relatively low light con-

ditions between 6 and 70 lE. For the cultivation of auxo-

trophic strains, various additives were tested (Schween

et al. 2003). Differentiation into adult tissues can be easily

prevented for several months by regular disruption of the

filaments without affecting proliferation or productivity of

the strains. For higher uniformity and standardization of

cultivation different types of photobioreactors were

developed, i.e., stirred glass tanks for a volume up to 15 L

(Fig. 1d) or modular, glass tubular bioreactors for larger

scale (Hohe et al. 2002; Lucumi and Posten 2006; Lucumi

et al. 2005; Perner-Nochta et al. 2007). Batch cultivation in

a 10 L glass tank bioreactor reached a density of 0.7 g (dry

weight)/L after 9 days of cultivation. The growth rate

corresponded to a doubling within 1.2 days when the cul-

tures were aerated with 2% CO2 (Hohe et al. 2002). In a

30 L tubular pilot reactor (Fig. 1e), parameters for high-

density and uniform moss cultures from 1 to 3 g dw/L were

determined for batch and continuous cultivation (Lucumi

and Posten 2006; Lucumi et al. 2005) with a duration of

more than 6 weeks. The tubular system was further

improved by establishing a modular 100 L GMP-like

photobioreactor unit as well as 300 L wave reactors

(http://www.greenovation.com). In general, Physcomitrella

showed itself as robust, fast, and stably growing in biore-

actors compared to most other plant cell cultures (Hohe

et al. 2002). Because of this robustness, culture conditions

like pH or temperature of the medium may be adjusted to

the needs of the produced recombinant protein.
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The secretory system

Growth as tissue cultures in closed cultivation conditions is

advantageous over field production because of improved

uniformity as well as safety of production (Hellwig et al.

2004). In addition the setup of a secretory system is

enabled which allows easier isolation and purification of

the pharmaceutical product. By the addition of the pro-

tecting agents polyvinyl pyrrolidone (PVP) and human

serum albumin (HSA) to P. patens cultures which syn-

thesized the human vascular endothelial growth factor

(VEGF), product amounts could be enhanced up to

0.9 mg/g dw (Baur et al. 2005). However, higher concen-

trations of these additives may result in foam formation or

interfere with downstream processing by reduced binding

of the product to chromatography columns. Therefore, co-

expression of recombinant HSA with the target protein of

interest was employed to avoid these effects and was

shown to enhance recovery of the target protein up to

twofold (Baur et al. 2005).

With the moss secretory system different recombinant

therapeutic glycoproteins were successfully expressed,

among those human VEGF (Koprivova et al. 2004),

erythropoietin (EPO; Weise et al. 2007) as well as the large

and heavily modified single-chain protein factor H, a

central regulator of the alternative pathway of the human

complement system, displaying an important part of the

innate immune system of mammals (Buttner-Mainik et al.

2011). At least three different moss-produced recombinant

antibodies have been reported so far: two IgG mAb, which

were detected in the medium as fully assembled and bio-

logically active proteins (Gorr and Jost 2005; Schuster

et al. 2007) and an anti-CD20-scFv antibody fragment

(Smidkova et al. 2010).

The genetic toolboxes for improved expression and

extracellular targeting were enriched by more than 300,000

P. patens expressed sequence tags (ESTs) from different

large-scale sequencing projects (Lang et al. 2005; Nishiy-

ama et al. 2003). Based on these data, 50 regulatory

sequences were derived that efficiently drive transgene

Fig. 1 Moss in vitro cultivation

and gene knockout production.

a Filamentous protonema stage;

b cultivation of protonema in

glass flasks; c adult

gametophore stage;

d, e propagation of moss in

glass tank and tubular

photobioreactors, respectively.

f P. patens protoplasts used for

transfection and transient

secretion of protein products

g Gene targeting via

homologous recombination; a

disruption cassette (white bars
for promoter and terminator

sequences, respectively and

black bars for coding sequence)

is flanked by DNA sequences

homologous to the gene of

interest (gray bars). After

transfection, the disruption

construct is integrated in the

homologous genomic locus

[modified after (Frank et al.

2005)]. e Courtesy of Clemens

Posten (KIT, Karlsruhe Institute

of Technology). Scale bars
50 lm (a, f), 500 lm (c)
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expression from plasmid vectors (Horstmann et al. 2004;

Jost et al. 2005; Weise et al. 2006). This profound genetic

percipience and the excellent amenability of the moss for

targeted gene replacements led to the publication of the

P. patens genome as the first non-vascular plant genome in

2008 (Rensing et al. 2008).

Secretion of the recombinant products can be obtained

by the native human signal sequences at the N terminus of

the respective proteins. However, in spite of the principle

functionality of these human signal peptides in moss,

endogenous moss signal sequences turned out to be more

efficient for recombinant products (Schaaf et al. 2005). In

addition, P. patens plastid as well as mitochondria transit

peptides and vacuolar signals were identified and charac-

terized by fusion with fluorescent proteins (Gremillon et al.

2007; Kiessling et al. 2000, 2004; Richter et al. 2002;

Schaaf et al. 2004). The secretory system has been used for

feasibility studies of expression cassettes, transgenic moss

strains as well as for expression and purification purposes

of new therapeutic target proteins (Gitzinger et al. 2009;

Huether et al. 2005; Jost et al. 2005; Koprivova et al. 2004;

Schaaf et al. 2005; Weise et al. 2006). For a single-chain

antiCD-20-scFv fragment, two moss signal sequences

(Schaaf et al. 2005) as well as the rice alpha-amylase and a

murine sequence were tested for their effectiveness in

secretion of the recombinant protein (Smidkova et al.

2010). Successful secretion of the IgG1 and IgG4 anti-

bodies, however, was facilitated by a signal sequence from

another plant species, the Thuja occidentalis H1 protein

(Gorr and Jost 2005; Schuster et al. 2007). The antibody-

producing mosses were created by polyethyleneglycol-

mediated co-transfection of protoplasts with two different

expression constructs, coding for the light and heavy chains

of the immunoglobulins, respectively. With this simple

procedure, correct assembly of the secreted IgG molecules

was achieved (Gorr and Jost 2005; Schuster et al. 2007).

Added value by engineering of glycosylation

For production of complex secreted glycoproteins, a

secretory system is additionally important for navigating

the nascent proteins through the endoplasmic reticulum

(ER) and the Golgi apparatus, which are responsible for

many posttranslational modifications, especially asparagine

(N)-linked protein glycosylation. In contrast to the general

conservation of protein biosynthesis within the eukaryotic

kingdom, N-glycosylation can be species-specific

(Rademacher et al. 1988). Therefore, mammalian cell lines

are currently preferred for the production of glycoproteins

as their glycan patterns are most similar to human sugar

structures. Alternative systems have to be adaptable to

human glycosylation to contain biological activity or

prevent immunogenicity of the recombinant therapeutics.

Aside from some differences within sugar residues, plants

perform protein N-glycosylation of the complex type

which is also common for mammalian glycans (Gomord

et al. 2010). The Physcomitrella protein N-glycosylation

exhibits the same structures as vascular plants (Koprivova

et al. 2003; Vietor et al. 2003). Glycosyltransferase genes

responsible for key steps of complex-type glycosylation

have been identified and isolated from the P. patens gen-

ome (Koprivova et al. 2003; Parsons, Decker and Reski,

unpublished results). The dominant oligosaccharide struc-

tures characterized from moss glycoproteins were com-

plex-type bi-antennary glycans with a Man3GlcNAc2

(mannose, N-acetylglucosamine) core structure and two

terminally attached GlcNAc residues (Fig. 2). This struc-

ture is also common on human bi-antennary complex-type

glycoproteins (Gomord et al. 2010). In addition, plant

glycans may contain two plant-specific residues, a beta1,2-

linked xylose as well as a fucose, which is connected to the

proximal GlcNAc residue of the glycan core structure with

an alpha1,3-linkage (Koprivova et al. 2003; Vietor et al.

2003). These two plant-specific sugar moieties present the

most critical differences to human N-glycans. While xylose

is a sugar not existing in vertebrates, a proximal fucose

residue is also present in human glycans. However, here it

is connected in a different, alpha1,6-linkage to the glycan

core (Lerouge et al. 1998). Both of these sugar residues

were shown to confer immunogenicity to a glycoprotein

(Bardor et al. 2003; Bencurova et al. 2004; Garcia-Casado

et al. 1996; Jin et al. 2008; van Ree et al. 2000). Nearly

one-quarter of allergy sufferer exhibited allergy-associated

IgE class antibodies which specifically recognized xylose

or fucose-containing complex-type glycan structures, even

Fig. 2 Typical structures of antibody N-glycosylation. The sugar

chains are linked to the protein via the proximal GlcNAc residue.

Unmodified moss glycan containing terminal galactose and fucose

residues (left). Typical bisecting human monoclonal antibody glycan

(middle). Glyco-engineered moss N-glycan providing antibodies with

improved ADCC (right). F fucose; X xylose. Sugars or linkages that

may result in immunogenicity or low effector function are marked

in red
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if the clinical relevance of carbohydrate-specific antibodies

is questioned (Altmann 2007; Mari 2002). However, for

therapeutic applications, putatively immunogenic struc-

tures have to be omitted (Durocher and Butler 2009;

Gomord et al. 2010). In a feasibility study, double mutants

deficient of xylose and 1,3 fucose residues at the core

glycans were established for Arabidopsis thaliana (Strasser

et al. 2004) and knockdowns via RNAi were employed to

reduce the concentration of the corresponding plant-spe-

cific glycosyltransferase mRNAs in L. minor, M. sativa and

N. benthamiana (Cox et al. 2006; Sourrouille et al. 2008;

Strasser et al. 2008). In contrast to all other plants,

Physcomitrella offers the unique possibility in that specific

genes can be targeted precisely because of the exception-

ally high frequency of homologous recombination in the

nuclear genomes of vegetative moss cells (e.g., Khraiwesh

et al. 2010; Mosquna et al. 2009; Schaefer and Zryd 1997;

Strepp et al. 1998). Gene targeting is performed by trans-

fection of moss protoplasts (Fig. 1f) with a disruption

cassette flanked by around 500–1,000 bp of moss DNA

homologous to the gene of interest (Fig. 1g). By this

mechanism, undesirable gene functions can be completely

abolished. Moss strains were created which were com-

pletely deficient for the mentioned xylose and fucose

residues by targeted knockout of the respective glycosyl-

transferase genes, beta1,2-xylosyltransferase and alpha1,3-

fucosyltransferase (Koprivova et al. 2004). With the

resulting strains, several products of pharmaceutical value

were synthesized, including human VEGF (Koprivova

et al. 2004), erythropoietin (Weise et al. 2007), two IgG

class antibodies (Gorr and Jost 2005; Schuster et al. 2007)

and the complement regulator factor H (Buttner-Mainik

et al. 2011).

Further differences of plant N-glycans compared to

human glycans comprise terminal galactosylation and

sialylation. While plant N-glycans may contain terminally

beta1,3-linked galactose residues, in mammals a galactose

is attached via beta1,4-linkage. Human-like galactosylation

was partially reached by transformation of tobacco with the

human galactosyltransferase gene (Bakker et al. 2001;

Palacpac et al. 1999). In P. patens, the expression of a

human beta1,4 galactosyltransferase gene was reached by

‘‘knockin’’ of this gene into the xylosyltransferase or

fucosyltransferase locus, respectively (Huether et al. 2005).

Terminal sialic acids, however, common on mammalian

glycoproteins, are generally missing from plant glycans.

The presence of terminal sialic acids on human blood

proteins enhances their half-life in the circulation (Erbay-

raktar et al. 2003). By the introduction of five additional

mammalian genes encoding the enzymes for biosynthesis,

activation, transport and transfer of N-acetylneuraminic

acid (sialic acid), N. benthamiana recently was engineered

to efficient sialylation of glycoproteins (Castilho et al.

2010). Recently, a patent (US 7741539) for the production

of sialylated proteins in plant cells (e.g., moss) was granted

to the company, ‘‘greenovation’’. Therefore, it can be

assumed that moss engineering towards glycoprotein

sialylation would be feasible in a way comparable to

tobacco. However, monoclonal antibodies, comprising the

most interesting and largest group of biotech drugs in use

and clinical development (Scolnik 2009), contain N-gly-

cans, which are only rarely sialylated. Thus, monoclonal

antibodies with appropriate glycan patterns could be suc-

cessfully synthesized in the plant-based protein production

hosts L. minor and P. patens (Cox et al. 2006; Gorr and Jost

2005; Schuster et al. 2007) (Fig. 2).

Glyco-engineering of antibody-producing plant systems

turned out to confer an effect to the plant-produced anti-

bodies, which was superior compared to that produced

by traditional systems. This could be explained by

an increased antibody-dependent cellular cytotoxicity

(ADCC), an important effector function of therapeutic

antibodies. ADCC means the death of a cancer cell medi-

ated by a killer cell, which has recognized antibodies

bound to the surface of the target cell. ADCC is mediated

by receptor (especially FcgammaRIIIa; CD16) binding of

IgG antibodies. The weak ADCC observed for some anti-

cancer antibodies has to be compensated by applying high

concentrations of IgG1 therapeutic antibodies (Preithner

et al. 2006). The IgG-receptor-binding affinity was shown

to be enhanced when the core fucose residue on human IgG

N-glycans was missing (Shields et al. 2002; Shinkawa et al.

2003). Increased ADCC of recombinant antibodies pro-

duced in glyco-engineered plants was demonstrated for

L. minor (Cox et al. 2006) as well as for P. patens

(Nechansky et al. 2007; Schuster et al. 2007). In case of

moss, a recombinant monoclonal IgG1 antibody was ana-

lyzed which is directed against the tumor-associated gly-

cosylation pattern Lewis Y. This carbohydrate antigen is

expressed on the majority of human epithelial carcinomas.

When the antibody was produced in glyco-optimized moss

strains (devoid of the core fucose residue) it resulted in

40-fold increased lysis capacity compared to the parental

antibody which was synthesized in CHO cells (Nechansky

et al. 2007; Schuster et al. 2007). These findings impres-

sively demonstrate the suitability of moss bioreactors to

produce complex biopharmaceuticals with superior product

quality.

Conclusions

The production of therapeutic glycoproteins in the moss

bioreactor system offers a safe and efficient alternative to

currently used systems. Genome engineering is greatly

facilitated by the availability of the Physcomitrella genome
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sequence. Optimisation of culture conditions and genetic

engineering of production lines via precise gene targeting

helped to enhance yields and to improve product charac-

teristics/quality. Facilities for production under GMP-

standards as well as facilities for long-term storage of

Master Cell Banks are in place.
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