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Abstract A novel automated image collection and

analysis system was used to compare two new soybean

(Glycine max (L.) Merr.) promoters with the cauliflower

mosaic virus 35S (CaMV35S) promoter, which was used

as an expression standard. For expression comparisons,

various permutations of a soybean polyubiquitin (Gmubi)

promoter, a soybean heat shock protein 90-like

(GmHSP90L) promoter and the CaMV35S promoter were

placed upstream of a green fluorescent protein (gfp) gene.

DNA constructs were introduced via particle bombard-

ment into excised cotyledons of germinating lima bean

(Phaseolus lunatus L.) seeds, which were arranged in

Petri dishes for automated image capture and image

analysis. The automated system allowed monitoring and

quantification of gfp gene expression in the same piece of

tissue over time. The Gmubi promoter, with its intronic

region intact, showed the highest expression that was over

five times stronger than the CaMV35S promoter. When an

intronic region was removed from the Gmubi promoter,

GFP expression was reduced, but was still over two times

greater than with the CaMV35S promoter. The full-length

soybean GmHSP90L promoter was four times stronger

than the CaMV35S promoter. Truncation of the

GmHSP90L promoter resulted in stepwise decreases in

promoter strength, which appear to correspond to removal

of regulatory elements. Automated image capture and

analysis allowed the rapid and efficient evaluation of

these new promoters.
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Gmubi Glycine max ubiquitin

GmHSP90L Glycine max Heat shock protein 90-like

Introduction

Promoter analysis in plants can provide information on

both the strength of the promoter and its regulation in

different tissues. Promoter analysis studies have been per-

formed with either stably transformed tissues or using

transient expression analyses. For stable transformation,

the time required for generation of a transgenic plant can

be as short as 6 weeks (An et al. 1986), but can often

extend beyond 5 months when transformation and plant

recovery is slow (Santarém and Finer 1999). Production of

stably transformed plants is necessary for a detailed

examination of promoter expression; however, quantifica-

tion of promoter strength and comparative analyses in

stably transformed plants can still be difficult due to vari-

ation in transgene expression among transgenic clones

(Finnegan and McElroy 1994).

Rapid, quantifiable, and reproducible promoter analyses

are simplified using transient expression, where gene

expression can be observed in as little as 1.5 h post intro-

duction (Ponappa et al. 1999) and gene expression will not

be influenced by copy number or site of integration.

Transient expression analysis can be performed via direct

DNA introduction into protoplasts using electroporation

(Christensen et al. 1992) or PEG (Hartmann et al. 1998), or

particle bombardment-mediated transformation into intact

plant tissues (Rolfe and Tobin 1991). Agroinfiltration of

tobacco (Bendahmane et al. 1999; Vaucheret 1994) is also

commonly used for rapid analysis of transgene effects.

Reporter genes such as luciferase (Ow et al. 1986),

b-glucuronidase (Samac et al. 2004; Vain et al. 1996) and

chloramphenicol acetyl transferase (Kang et al. 2003) are

most commonly utilized for quantification of promoter

activity. Unfortunately, visualization of luciferase and

b-glucuronidase activity requires the addition of an artifi-

cial substrate and quantification of promoter activity using

all of these reporter genes requires the extraction of protein

from the sample, destroying the sample and eliminating the

ability to follow gene expression in the same piece of tissue

over time.

The green fluorescent protein (gfp) gene offers tre-

mendous opportunities for promoter analysis in plants since

its expression can be followed in the same piece of tissue

over extended periods of time (Piston et al. 1999). Al-

though GFP expression has been used in studies to char-

acterize promoter activity (Abebe et al. 2006), reports on

the quantification of GFP expression using image analysis

(Nagatani et al. 1997), spectofluorometry (Richards et al.

2003) or fluorescence spectroscopy (Stewart et al. 2005)

are minimal. Standard methods are needed for the evalu-

ation of promoter strength based on GFP detection. Re-

cently, an automated robotics system was developed for

monitoring GFP expression over time in multiple pieces of

tissue (Buenrostro-Nava et al. 2005). The robotics system

consisted of a two-dimensional robotics platform, a cooled

CCD camera, and a dissecting fluorescence microscope, all

under computer control. Although the monitoring system

was initially used for automated image collection of GFP

expression in stably transformed somatic embryos

(Buenrostro-Nava et al. 2006) and Agrobacterium

(Buenrostro-Nava et al. 2003), it also has utility for rapid

quantification of promoter strength using transient expres-

sion analyses.

Soybean (Glycine max (L.) Merr.), a valuable agronomic

crop world-wide, has the highest transgenic acreage of any

crop. As efforts move forward to produce new and im-

proved transgenic soybean, the need for different types of

native soybean promoters will continue to increase. Some

soybean promoters have already been identified but these

promoters direct expression in a tissue-specific (Chen et al.

1986) or inducible manner (Czarnecka et al. 1989; Liu

et al. 1994). A strong, constitutive, native soybean pro-

moter, which could replace the constitutive Cauliflower

Mosaic Virus 35S (CaMV35S) was sought. Of the strong

constitutive plant promoters that have been used exten-

sively for directing transgene expression, the polyubiquitin

promoters have received the most widespread attention

(Christensen and Quail 1996). A common feature of

polyubiquitin promoters is the presence of a leading intron,

which is considered part of the promoter, and can influence

transgene expression (Christensen and Quail 1996).

Removal of the intron from the promoter region either

reduces the strength of the promoter (Plesse et al. 2001) or

results in complete loss of promoter activity (Wang and

Oard 2003). In addition to a strong constitutive promoter, a

developmentally regulated promoter would be useful for

comparative studies. Although soybean promoters active

during late stages of seed development are available (Chen

et al. 1986), EST data from induced soybean somatic em-

bryos (Thibaud-Nissen et al. 2003) now permits the iden-

tification of useful early embryo-specific promoters.

In this study, a constitutive G. max polyubiquitin

(Gmubi) promoter and an early embryo-specific G. max

heat shock protein 90-like (GmHSP90L) promoter were

isolated, fused to the gfp coding region, and introduced into

cotyledonary tissue of lima bean for rapid evaluation of

promoter activity using automated image collection and

analysis. The activities of the soybean promoters were

compared to that of the constitutive CaMV35S promoter

(Odell et al. 1985).
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Materials and methods

Plasmid constructs

Eight different promoter constructs were generated for this

study (Fig. 1). All promoters were placed upstream of a

modified gfp gene (sGFP(S65T); Chiu et al. 1996). Two

different forms of a soybean (G. max) polyubiquitin pro-

moter were evaluated, along with five different forms of a

soybean heat shock protein 90-like (GmHSP90L) pro-

moter. The CaMV35S promoter was used as a standard.

The soybean (G. max) polyubiquitin promoter (Gmubi)

was identified from GenBank submission D28123 (G. max

SUBI-3). Based on similar motifs in this gene’s 5¢ region

and those found in the maize polyubiquitin 1 promoter

(Christensen et al. 1992; Ling et al. 1995), primers were

designed to clone the entire 5¢ UTR region of the D28123

sequence, adding a 5¢ SphI site and a 3¢ BamHI site to allow

insertion of the promoter in front of the gfp gene. The

entire 5¢ Gmubi fragment was amplified from soybean

genomic DNA using the FailSafeTM PCR system (Epi-

centre Biotechnologies, Madison, WI, USA). An intron-

less version of the Gmubi promoter (Gmupri; G. max pre-

intronic) was recovered by amplifying the 328 bp segment

of Gmubi preceding the intron, adding a 5¢ SphI site and a

3¢ BamHI site as before. This fragment was amplified di-

rectly from the Gmubi promoter fragment and was also

inserted in front of the gfp gene.

The GmHSP90L promoter was selected based on early

embryogenesis expression data from EST-based micro-

arrays (Thibaud-Nissen et al. 2003). A GenomeWalkerTM

(Clontech, Palo Alto, CA, USA) library was constructed

from soybean genomic DNA according to the manufac-

turer’s instructions. Nested reverse primers were con-

structed against the GmHSP90-like EST (AW278784) at

the junction between the 5¢ UTR and the start of the open

reading frame. The first-round primer was complementary

to a segment just inside the open reading frame. The sec-

ondary primer was designed to be complementary to the 3¢
end of the upstream 5¢ UTR and the junction of the 5¢ UTR

with the start codon, but with modifications of the se-

quences overlapping the start codon to create an NcoI site

encompassing the ATG. This allowed transcriptional fu-

sion of the promoter directly to the gfp open reading frame.

All the primers used in cloning the promoter regions are

available in the supplemental material (S1).

Plant material

All eight promoter constructs were assayed using a newly

developed bean cotyledon transient assay system. Cotyle-

donary tissue from germinating lima bean (Phaseolus

lunatus L. cv. ‘‘Henderson-Bush’’) seeds was targeted for

DNA introduction. Lima bean seed source plants were

grown in the greenhouse (16/8 h light:dark, 28�C) with

supplemental lighting from high pressure sodium lamps.

Mature seeds, used in these experiments, were harvested

and stored at room temperature for up to 4 weeks prior to

use.

For germination, seeds were sterilized with a 10%

bleach solution for 20 min and rinsed five times with sterile

deionized water. Sterilized seeds were placed in Magenta

GA7 containers between layers of a folded white paper

towel that was saturated with 25 ml of sterile water. After

4 days (40 lEm–2 s–1; 16/8 h light:dark, 25�C,), the light-

green cotyledons were excised from the germinating

seedlings and placed in Petri dishes containing OMS

medium (pH 5.7), which consisted of MS salts (Murashige

Fig. 1 Maps of promoter constructs used for particle bombardment-

mediated DNA introduction into lima bean cotyledons. All the

promoters were positioned 5¢ to the GFP open reading frame. Gmubi:

full length Glycine max ubiquitin promoter with an intronic sequence

Gmupri: G. max ubiquitin pre-intronic promoter contained only the

nucleotides before the putative intronic sequence. GmHSP90L:

G. max heat shock protein 90-like, with promoter truncations leading

to promoter sizes of 177, 231, 443, 628, and 830 nucleotides.

CaMV35S: the full-length Cauliflower Mosaic Virus 35S promoter.

All numbers are in relation to the translational start of the gfp coding

sequence
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and Skoog 1962), B5 vitamins (Gamborg et al. 1968), 3%

sucrose and 0.2% GelriteTM (Aceto Corporation; Lake

Success, NY, USA).

DNA introduction

Cotyledons were placed, adaxial surface up, on top of an

inverted modified baffle, which was comprised of a

500 lm nylon screen melted to the bottom of a 400 ml

polypropylene beaker (Finer et al. 1992) with triangular

slots cut in the bottom to allow expelled helium gas to flow

around the sample and minimize tissue displacement. Each

DNA construct was precipitated onto tungsten particles and

introduced into the target tissue using the Particle Inflow

Gun as described previously (Finer et al. 1992). Following

the introduction of each DNA construct, cotyledons were

immediately placed adaxial side up in Petri dishes con-

taining OMS medium. Gmubi, Gmupri, and CaMV35S

promoter constructs were bombarded in two independent

experiments of three replicates each. The GmHSP90L

constructs were bombarded in three independent experi-

ments of three replicates each.

Image collection and analysis

Once GFP expression was detected (1–3 h), the Petri

dishes were placed on the robotics platform of the auto-

mated image collection system (Buenrostro-Nava et al.

2006) which consisted of a MZFLIII dissecting micro-

scope (Leica, Heerbrugg, Switzerland) equipped with a

GFP2 filter set (Ex. 480 ± 40 nm; Em. 510 nm LP), a

Spot-RT CCD digital camera (Diagnostic Instruments

Inc., Sterling Heights, MI, USA), and a two-dimensional

robotics platform (Arrick Robotics Inc., Hurst, TX, USA),

all under computer control. Images (1,600 · 1,200 pixels;

256 gray levels for each of the three channels) of each

cotyledon were collected every hour for at least 95 h.

Following image collection, GFP expression was quanti-

fied using the software package ImageJ (Rasband 1997–

2006). Each series of images was opened, resized to

800 · 600 pixels, and aligned using the TurboReg plugin

(Thévenaz et al. 1998). After alignment, an area com-

prising 400 · 300 pixels containing the highest number of

expressing cells was cropped from the series of images

and used for quantification of GFP.

Each series of images was separated into red, green, and

blue channels. Due to background autofluorescence, the

contribution of the background to the overall GFP intensity

was first subtracted from the entire image. A 20 · 20 pixel

area was selected in the background of the red and green

channels (from an area not containing GFP-expressing

cells) for determination of background gray value

(typically 30–40). The background gray value of the red

and green channels was subtracted from every pixel in the

respective channel to yield background-corrected images

which were used for all expression determinations.

Mean grayscale values in the red and green channels

were determined by first segmenting the expressing pixels

from the background by adjusting the threshold levels. The

mean grayscale values were calculated using only the

segmented (expressing) pixels. The ‘‘Total Expression’’

value was calculated by multiplying a mean grayscale

value per pixel from the red and green channels by the total

number of GFP-expressing pixels in the respective channel

and then adding these two values. The green channel was

automatically segmented using an entropy threshold algo-

rithm (Sahoo et al. 1988) and the number of GFP-

expressing foci was counted.

Results

Target tissue

Lima bean cotyledonary tissues showed even and consis-

tent distribution of GFP-expressing foci over much of the

adaxial surface of the cotyledons (Fig. 2). Expression was

localized to single targeted cells although very high levels

of expression resulted in a low level of reflected fluores-

cence through adjacent cells. Occasionally, discrete areas

of the cotyledon did not show GFP expression, although

they were clearly targeted. These patches were either slow

to turn green (observed under brightfield conditions) or did

not turn green over the course of the experiment, sug-

gesting patches of non-viable or low viability tissues.

Similar areas were observed in non-bombarded cotyledons.

Analysis of Gmubi, Gmupri, and CaMV35S promoters

Although major differences in promoter strengths were

easily visualized (Fig. 2), quantification of the level of GFP

expression provided additional information that was not

easily evaluated by the eye alone. Total Expression values

were fivefold greater with the Gmubi promoter compared

to the CaMV35S promoter, whereas the Focus Number was

only 40% greater. Although the expression levels of GFP

driven by the Gmupri promoter appeared to be similar to

the expression levels of CaMV35S-regulated GFP based on

visual analysis, a twofold greater Total Expression value

for Gmupri was measured using image analysis. The Focus

Numbers obtained for the Gmupri and CaMV35S pro-

moters were not significantly different.

With semi-continuous tracking of GFP expression, it

was possible to determine precisely the peak expression
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times for all of the different promoter constructs. The times

for maximum expression of the CaMV35S, Gmubi and

Gmupri promoters occurred at hours 22, 27 and 29,

respectively (Fig. 3). At those peak expression points, the

Gmubi and the intron-less Gmupri promoters had fivefold

(1.58 · 106 ± 0.35 · 106; P = 0.01) and over twofold

(0.76 · 106 ± 0.09 · 106; P = 0.002) greater Total

Expression compared to the CaMV35S (0.30 · 106 ± 0.04

· 106) promoter. Gmubi and Gmupri promoters had an

average of 105 ± 21 (P = 0.1) and 92 ± 24 (P = 0.3) foci

expressing during their peak expression levels, respec-

tively; whereas the CaMV35S promoter averaged 61 ± 7

foci during its peak expression (Fig. 3). Although Total

Expression values for Gmubi continually increased to the

peak expression at 27 h (Fig. 3), the Focus Number for

Gmubi reached a plateau at hour 15 and did not increase

with increasing expression levels. An increase in expres-

sion paralleled the increase in focus number for all of the

other constructs.

Analysis of GmHSP90L promoters

Analysis of the five different lengths of the GmHSP90L

promoter showed that the largest promoter (GmHSP90L-

830) displayed both the highest Total Expression value

(1.15 · 106 ± 0.27 · 106) and Focus Number (141 ± 29;

Fig. 4). Truncation of the GmHSP90L promoter region

to either 628 or 443 nucleotides resulted in roughly 50%

reductions in both the Total Expression value and Focus

Number. These two truncated promoters appeared to act

similarly with regard to intensity and timing of GFP

expression. A further reduction of the GmHSP90L pro-

moter to either 231 or 177 nucleotides resulted in a

further decline in Total Expression and the Focus

Number (Fig. 4).

Fig. 2 Examples of images

collected 24 h post-

bombardment with Gmubi,

Gmupri, and CaMV35S

promoter constructs. The

computed values for these

single images are shown in the

accompanying table

Fig. 3 Expression profiles of Gmubi, Gmupri, and CaMV35S

promoters were calculated from replicated (n = 6) series of images

for each promoter. The Total Expression calculation is described in

the ‘‘Materials and methods’’. Focus Number was the number of foci

expressing GFP in the same area used for Total Expression

determinations
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Discussion

Lima bean cotyledonary transient assay

Lima bean cotyledons, which were used as the target tissue

in this study, have physiological and morphological char-

acteristics that make them ideal for monitoring transient

expression of GFP using the automated image collection

system. The adaxial surface of the lima bean cotyledon is

flat, which minimizes the variation in focal planes, allow-

ing the collection of sharp, focused images. In addition, the

tissue contains relatively large cells which yield distinct,

GFP-expressing foci following successful DNA introduc-

tion. Lastly, this tissue contains minimal amounts of

chlorophyll which may interfere with GFP fluorescence

(Billinton and Knight 2001). Evaluation of embryogenic

cultures of soybeans (Finer 1988) and soybean seedling

cotyledons (prepared similarly to the lima bean cotyledons)

did not give consistent or useful results (data not shown).

The small unresponsive areas in the lima bean cotyledons

that were occasionally observed did not result from bom-

bardment damage, as they were also observed (as light

areas) in cotyledons that were never bombarded. These

areas were avoided in image analysis and may represent

parts of the cotyledon that were late to resume active

metabolism following seed imbibition. Lima bean cotyle-

dons provide the most robust and consistent transient GFP

expression results of any system that we have evaluated. To

our knowledge, this is the first report of the use of lima

bean cotyledonary tissue for evaluating plant promoters or

transient GFP expression.

Automated image capture

The ability to collect and analyze images from the same

pieces of tissue over time adds another dimension to pro-

moter characterization. This system allows tracking of GFP

expression dynamics in single pieces of tissue, which is

impossible with other reporter genes. Data was generated

on both promoter strength and the timing of maximum GFP

expression. As a recommendation for general observation

of transient GFP expression, 24 h post-introduction pro-

vided relatively consistent results with this target tissue.

In general, the promoters which generated high Focus

Numbers also yielded the highest Total Expression values.

Focus Number, or ‘‘spot count’’, has been the classical

method for reporting successful DNA introduction via

particle bombardment (Klein et al. 1987). As DNA intro-

duction via particle bombardment is a physical process, the

same number of cells should be penetrated by the particles

for each bombardment. The Focus Numbers reported here

suggest that there is a threshold for the detection of GFP

expression. At the lower levels of GFP expression, a

threshold appears to be required before a GFP focus can be

visualized. Using our detection methods, many of the cells

that were penetrated by particles carrying the CaMV35S-

controlled gfp construct obviously did not express GFP at

detectable levels. For the Gmubi and Gmupri comparisons,

the same maximum numbers of cells were visualized using

each promoter, with the increase in expression levels

resulting from higher expression levels per cell.

Gmubi and Gmupri promoters

Although ubiquitin promoters have been isolated and

characterized from maize (Christensen et al. 1992), tobacco

(Plesse et al. 2001), Arabidopsis (Callis et al. 1987), potato

(Garbarino et al. 1995), tomato (Rollfinke et al. 1998) and

rice (Wang and Oard 2003), this is the first report

describing a ubiquitin promoter from soybean. All of these

ubiquitin promoters show similar characteristics, including

the presence of a leading intron which can contribute to

increased promoter strength. Removal of the intron from

the rice promoter resulted in a complete loss of promoter

activity (Wang and Oard 2003) while removal of the intron

from the tobacco promoter resulted in a reduction in pro-

moter strength and an alteration in tissue-specific expres-

sion (Plesse et al. 2001). The maize ubiquitin promoter

with its intron has been used extensively over the years to

obtain high levels of transgene expression in cereals (Callis

et al. 1987; Fennell and Hauptman 1992; Christensen and

Fig. 4 Expression profiles of GmHSP90L promoter constructs: 177,

231, 443, 628, and 830. Quantification as described in Fig. 3 (n = 9)
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Quail 1996). In the present report, expression of the gfp

gene controlled by the intron-containing Gmubi promoter

was much higher than with the pre-intronic Gmupri and the

standard CaMV35S promoters (Figs. 2, 3). However, even

without the intronic region, the Gmupri promoter was still

substantially stronger than the CaMV35S promoter. Al-

though many different forms of the CaMV35S promoter

are available for plant transformation research, the version

used here (Chiu et al. 1996) was the 423 nucleotide version

and did not contain additional enhancer elements or regions

of promoter duplication. Use of an even smaller CaMV35S

promoter (–343 from the transcriptional start; Odell et al.

1985) did not give reduced transcript levels compared to

the full-length promoter, showing that the 423 nucleotide

CaMV35S promoter used in the present report is compa-

rable to the full-length promoter. Given the high levels of

GFP expression obtained with the Gmubi and Gmupri

promoters used here, the addition of enhancer elements or

duplication of promoter regions could potentially lead to

even higher levels of gene expression.

In addition to the ubiquitin intron, other introns from

maize (act3, adh1-S, bz-1, sh1; Callis et al. 1987; Lu-

ehrsen and Walbot 1991; Vasil et al. 1989), rice (act1;

McElroy et al. 1990) and oat (phyA3; Bruce and Quail

1990) have been used to enhance transgene expression in

cereals. In dicot species, the effects of including an in-

tronic region on promoter activity have been less defin-

itive, resulting in no or minimal gene expression

enhancements (Paszkowski et al. 1992; Plessse et al.

2001; Tanaka et al. 1990; Vancanneyt et al. 1990).

Recently, however, a five- to sixfold enhancement of

constitutive expression using a prolifin intron was re-

ported in Arabidopsis (Jeong et al. 2006). Similarly,

Chung et al. (2006) obtained a twofold increase in

transient expression using the Arabidopsis EF1a leading

intron in Agroinfiltrated Nicotiana benthalmiana leaves.

Internal truncations of this 5¢UTR intron suggested that

the absolute size of the intron along with at least three

internal elements contributed to this twofold enhance-

ment. Introns may enhance transgene expression through

increased mRNA translational activity acquired from

intron splicing and processing (Bourdon et al. 2001;

Matsumoto et al. 1998). A large enhancement of GFP

expression was observed in the present study when the

intronic region from Gmubi was included in the pro-

moter. The soybean intronic region may also contain one

or more enhancer elements, as has been reported in the

ubiquitin promoter regions of rice (Wang and Oard

2003), maize (Christensen and Quail 1996) and tobacco

(Genschik et al. 1994). Clearly, further work will be

required to untangle the specifics of the soybean ubiqu-

itin intron-enhancement of transgene expression reported

here, as well as general intron enhancement effects.

GmHSP90L promoters

Based on the Total Expression values and Focus Numbers,

the GmHSP90L promoter constructs segregated into three

distinct groups; the high expressing 830, the more moder-

ately expressing 628 and 443 and the low expressing 231

and 177 (Fig. 4). Apparently, the regions that were elimi-

nated between the groups contained important regulatory

regions that contributed to promoter activity. This promoter

complexity was not unexpected, since regulation of plant

Hsp90 genes can be intricate. For example, two maize

Hsp90 genes exhibited distinct patterns of expression and

heat shock induction in various tissues (Marrs et al. 1993),

as did a pair of Arabidopsis cytosolic Hsp90 genes studied

during embryo development (Prasinos et al. 2005).

The Total Expression value calculated for the

GmHSP90L-830 construct (Fig. 4) was comparable to the

value obtained with the Gmubi promoter (Fig. 3). The

largest soybean promoters, therefore, showed the highest

activities in this study. The Gmupri and the GmHSP90L-

628 and GmHSP90L-443 promoters presented similar

expression profiles while the smallest GmHSP90L pro-

moters 177 and 231 showed expression levels that were

comparable to the CaMV35S promoter, which had the

lowest activity of all the promoters. Although evaluation of

these promoter constructs gave fairly consistent results,

transient gene expression may be influenced by the nature

of the target tissue and the means of DNA introduction. For

example, exposure of plants to a variety of stresses,

including wounding, caused changes in transcript levels for

both Hsp90 in tobacco (Rizhsky et al. 2002) and for hsf

genes that regulate all hsp genes in Arabidopsis (Miller and

Mittler 2006). In addition, stress-induction of the Ubi.U4

gene has been reported in tobacco (Plesse et al. 2001).

Particle bombardment may contribute to stress induction,

resulting in an increase in gene expression. Bombardment

of tissues, stably transformed with GmHSP90L-gfp and

Gmubi-gfp constructs with ‘‘blank’’ particles, should

help to address questions of wound induction of these

promoters.

Although peak GFP expression times were somewhat

different for the various constructs, all of the GFP

expression curves generated in this study showed very

similar profiles (Figs. 3, 4). An initial rapid increase in

expression was followed by a slow decline. Although the

early fate of the introduced DNA may be of paramount

importance for the recovery of transgenics, very little is

known about the early events following DNA introduc-

tion. The decline in transient expression could result from

degradation of unincorporated DNAs or silencing of ei-

ther unincorporated or integrated DNAs through RNAi

(Baulcombe 2004). The decline could also result from cell

death, as the expressing cells have walls that have been
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compromised from particle introduction. Lastly, a small

number of foci did not fade but suddenly stopped

expressing between one time point to the next (1 h).

Disappearing foci were easily visualized through genera-

tion of time-lapse animations of the assembled image

series (S2).

The combination of digital imaging and image analysis,

along with the use of GFP for gene expression tracking

constitutes a powerful tool to evaluate promoters and the

dynamics of gene expression. The automated image anal-

ysis system permits the continual monitoring and rapid

quantification of gene expression over time while bom-

bardment of lima bean cotyledons provides a standard

transient expression assay system with reduced variation

for use in comparative expression studies. Although a

transient assay may not precisely reflect expression in

stably transformed tissues, this transient assay system

quantitatively evaluates a large number of independent

events. Use of the automated system can quickly provide

valuable information on the characteristics of different

promoters and factors which can influence gene expression,

prior to the generation of stably transformed plants.
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