GENETICS AND GENOMICS

A. Levi · A. Davis · A. Hernandez · P. Wechter · J. Thimmapuram · T. Trebitsh · Y. Tadmor · N. Katzir · V. Portnoy · S. King

Genes expressed during the development and ripening of watermelon fruit

Received: 27 December 2005 / Revised: 1 March 2006 / Accepted: 25 March 2006 / Published online: 27 June 2006 © Springer-Verlag 2006

Abstract A normalized cDNA library was constructed using watermelon flesh mRNA from three distinct developmental time-points and was subtracted by hybridization with leaf cDNA. Random cDNA clones of the watermelon flesh subtraction library were sequenced from the 5' end in order to identify potentially informative genes associated with fruit setting, development, and ripening. One-thousand and forty-six 5'-end sequences (expressed sequence tags; ESTs) were assembled into 832 non-redundant sequences, designated as "EST-unigenes". Of these 832 "EST-unigenes", 254 (\sim 30%) have no significant homology to sequences published so far for other plant species. Additionally, 168 "EST-unigenes" ($\sim 20\%$) correspond to genes with unknown function, whereas 410 "EST-unigenes" ($\sim 50\%$) correspond to genes with known function in other plant species. These "EST-unigenes" are

Communicated by P. Puigdoménech

A. Levi (⊠) · P. Wechter
USDA, ARS, U.S. Vegetable Laboratory,
2700 Savannah Highway, Charleston, SC 29414, USA
e-mail: alevi@saa.ars.usda.gov

A. Davis USDA, ARS, P.O. Box 159, Lane, OK 74555, USA

A. Hernandez · J. Thimmapuram University of Illinois at Urbana-Champaign, Roy J. Carver Biotechnology Center, W.M. Keck Center for Comparative and Functional Genomics, 1201 W. Gregory Drive, Urbana, IL 61801, USA

T. Trebitsh Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Y. Tadmor · N. Katzir · V. Portnoy Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel

S. King

Department of Horticulture, Texas A&M University, College Station, TX 77845, USA mainly associated with metabolism, membrane transport, cytoskeleton synthesis and structure, cell wall formation and cell division, signal transduction, nucleic acid binding and transcription factors, defense and stress response, and secondary metabolism. This study provides the scientific community with novel genetic information for watermelon as well as an expanded pool of genes associated with fruit development in watermelon. These genes will be useful targets in future genetic and functional genomic studies of watermelon and its development.

Keywords cDNA \cdot *Citrullus* \cdot Expressed sequence tags \cdot Gene expression \cdot Watermelon

Introduction

Watermelon [*Citrullus lanatus* (Thunb.) Matsum. & Nakai var. *lanatus*] accounts for 2% of the world area devoted to vegetable production (FAO 1995). It is grown in 44 states in the United States, with an annual production of 2.1 million tons and a farm value of \$340 million (National Watermelon Promotion Board; www.watermelon.org). In recent years, there has been an increase in consumer demand for seedless watermelons and production of this watermelon type has increased significantly. During 2003, over 60% of the watermelons produced in the United States were seedless (U.S. Department of Agriculture 2004).

Watermelon fruits are diverse in shape and size, in rind and flesh color, and in flesh texture, aroma, flavor, and nutrient composition. Like fruits of most plant species (Seymour et al. 1993), ripening watermelons undergo changes in pigment accumulation, flavor and aromatic volatiles, conversion of starch to sugars, and in increased susceptibility to post-harvest pathogens (Karakurt and Huber 2004). In this respect, there are differences between seeded and seedless watermelon fruits. For example, seeded watermelons may have shorter shelf life than seedless watermelons due to faster degradation of the tissue surrounding the seeds (Maynard 2004). Seedless watermelons may have different sugar and aromatic compound contents than seeded watermelons of similar genetic background. Identifying the genes that control watermelon fruit quality and analyzing their differential expression in seeded versus seedless watermelon will be useful in enhancing fruit quality, nutritional values, and shelf life of seedless watermelons, to make them suitable to consumer needs.

The high-throughput sequencing of cDNA clones (libraries) has produced extensive genomic databases and large numbers of expressed sequence tags (ESTs) for various plant species (Richmond and Somerville 2000; Alba et al. 2004). Extensive EST analyses have been conducted for Arabidopsis (Arabidopsis thaliana L. Heynh.) (The Arabidopsis Genome Initiative 2000), rice (Oryza sativa L.) (Yu et al. 2002), and tomato (Budiman et al. 2000; Fei et al. 2004). Significant knowledge has accumulated in a number of plant species with respect to genes associated with cell wall metabolism, ethylene biosynthesis, and hormones affecting fruit setting, growth, and ripening (Giovannoni 2001). However, there is little information on genes controlling these processes in the watermelon fruit. Identifying, mapping, and characterizing these genes will be useful to research and breeding efforts in this crop.

In this study, we report the development of 832 "ESTunigenes" for watermelon fruit, and their classification based on their putative function in other plant species. In addition, we show that a large number of these "ESTunigenes" have no significant homology to any sequences reported so far in other plant species.

Materials and methods

Plant material

Watermelon fruits at early development stage (white flesh; 12 days post-pollination), ripening stage (light pink flesh; 24 days post-pollination), and ripe fruit (red flesh; 36 days post-pollination) from the heirloom cultivar "Illini Red" were used for RNA isolation. Leaf and stem tissue came from the terminal end of the U.S. Plant Introduction (PI) 525088 grown in the greenhouse under natural light, and 26 and 21°C day and night temperature, respectively. The plants producing watermelon fruits were grown in a field plot located at the South Central Agricultural Research Laboratory at Lane, OK. Upon collection, fruits were rinsed with sterile de-ionized water in the field, followed by flesh-tissue excision and processing as described later.

RNA isolation

Prior to use in the field, all glassware and utensils were treated with RNaseZap (Ambion Inc., Austin, TX, USA) to neutralize any RNAase activity, and rinsed with RNAase-free water before each use. Utensils used in the field were washed with 95% ethanol and were sterilized in the autoclave prior to use.

Upon excision, fruit flesh was immediately chopped, placed in a sterile 50 ml conical polypropylene tube, and then frozen with liquid nitrogen. These frozen sample tubes were partially sealed, and then transported in a liquid nitrogen container to a freeze-dryer (LabConco Co., Kansas City, MO, USA). The frozen samples were freeze-dried under shelf refrigeration at -35° C (as described by Callahan et al. 1989). Once lyophilized, the samples were treated with TRIzol reagent (Invitrogen Life Technologies Inc., Carlsbad, California, USA). RNA was extracted according to the manufacturer's protocols (1 ml TRIzol per 100 mg lyophilized tissue) as described by Chomczynski and Sacchi (1987). Leaf and stem tissues were processed in a similar manner after collection from the greenhouse. RNA quality and quantity were determined using a spectrophotometer and denaturing agarose gel electrophoresis (Levi et al. 1992).

cDNA synthesis, size selection, and cloning

Poly(A) + mRNA was isolated from total RNA using the Oligotex Direct mRNA kit (Qiagen, CA), and converted to double-stranded cDNA using the "Superscript Choice System kit" (Invitrogen, CA). First-strand cDNA synthesis was primed using a modified oligo(dT) primer (5'-AACTGGAAGAAT TCGCGGCCGCACGCA(T)18V-3'; V: A, G, or C) designed to anchor initiation at the 5'-end of the poly(A) + tail and enable directional cloning. cDNA sequences greater than 400 base pairs were selected by agarose gel electrophoresis. EcoRI adaptors (Invitrogene, CA) were ligated to the cDNAs, followed by digestion with NotI, and then directionally cloned into the EcoRI and NotI sites of the pBluescript II SK + vector (Stratagene). Cloned cDNAs were transformed into E. coli DH10B electrocompetent cells (Invitrogen, CA) and amplified as previously described by Soares and Bonaldo (1998).

Normalization of the primary library

The primary cDNA library was normalized as previously described (Bonaldo et al. 1996). Essentially, a singlestranded "tracer" version of the library was created by digestion with Gene II and Exonuclease III enzymes (Invitrogen). Contaminating double-stranded DNA was removed by hydroxyapatite (HAP) chromatography. The purified single-stranded library was used as a template for PCR amplification through the T7 and T3 priming sites that flank the cloned cDNA inserts. The purified PCR products, representing the entire cDNA population cloned, were used as a "driver" for subtractive hybridization. Essentially, $0.5 \mu g$ of PCR-amplified cDNA inserts were denatured and mixed with 50 ng of purified single-stranded tracer-DNA, as well as 10 μ g each of 5' and 3' blocking oligonucleotides. The resulting solution (50% formamide, 0.12 M NaCl, 1% SDS) at a final volume of 20 μ l was overlaid with mineral oil and subtractive hybridization was carried out for 44 h at 30°C. Non-hybridized, single-stranded tracer-DNAs were separated from hybridized DNA duplexes by HAP column chromatography. These purified, non-hybridized ssDNAs were rendered partially double-stranded by M13 reverse primer extension (only a small part of the second strand is synthesized by primer extension to improve transformation efficiency) and were electroporated into *E. coli* DH10B cells to generate the normalized library.

Subtraction of the normalized library

cDNAs generated from leaf tissue were subtracted to enrich the normalized library for genes differentially expressed in the fruit tissue. For this, a primary library was created from leaf mRNA as described earlier. Subtraction was performed essentially as described earlier, except that the driver consisted of PCR products from the primary leaf library. Essentially, 2.5 μ g of PCR-amplified cDNA driver was combined with 75 ng of single-stranded tracer-DNA from the normalized library and 40 μ g each of 5' and 3' blocking oligonucleotides. These were hybridized in a solution consisting of 50% formamide, 0.12 M NaCl, and 1% SDS at a final volume of 20 μ l for 88 h at 30°C.

Sequencing of ESTs

Individual transformed bacteria colonies were robotically picked from agar plates and racked as LB media + 10% glycerol stocks (All clones are grown in LB media + 10% glycerol stocks for long-term storage at -80° C) in 384well plates. After overnight growth, glycerol stocks were inoculated into LB medium amended with 100 µg/ml of carbenicillin in 96-well, deep-culture plates and grown for 16 h. Plasmid DNA was purified with Qiagen 8000 and 9600 BioRobots (Qiagen, CA) and associated chemistries. Sequencing of the 5'-ends was performed using standard T7 primer and ABI BigDye terminator chemistry on ABI 3700 and 3730xl capillary systems (Applied Biosystems, CA). All 384- and 96-well format plates were labeled with a barcode and a laboratory information management system (HTLims) was used to track the sample flow.

Sequencing and data analysis

Sequencing of random EST clones from normalized and subtracted libraries from various tissues of watermelon resulted in 1046 clean sequences. A sequence is considered clean when a minimum of 200 nucleotides remains after trimming vector and low-quality sequences. The average read length of clean sequences was 555 nucleotides with a minimum quality score of 20. The redundancy in the library was 20%. The final "clean" sequences were clustered and assembled using Paracel Transcript Assembler (PTA). Contaminant sequences like *E. coli*, mitochondrial, chloroplast, cloning vector, and RNA were filtered during the cleanup stage. Repeat sequences were masked and annotated. EST sequences were then clustered based on local

similarity scores of pairwise comparison using 88% similarity over 100 nt. Clusters containing only one sequence were grouped as singlets. The EST clusters were assembled into contigs (contiguous sequence) by multiple-sequence alignment, which generates a consensus sequence for each cluster with criteria of 95% identity over 30 nt overlap. Multiple contigs may be generated per cluster, since EST clusters may not share enough similarity over their entire length to be assembled as single contig. Multiple contigs may also be generated when ESTs in a cluster represent an alternative splice form of the gene. The ESTs remaining in a cluster after the formation of contigs, are designated as cluster singlets. The set of non-redundant sequences for the library includes the contigs, cluster-singlets, and singlets and was designated as "EST-unigenes".

These sequences were used to query the GenBank database for homologs using the Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990), using *E*-value of 0.01, to ensure a high level of confidence that each sequence represents a non-redundant gene transcript.

Results and discussion

A large number of the ESTs identified in this study are homologous to genes previously reported to be important in fruit growth and ripening in other plant species. The 1046 random cDNA clones sequenced produced 832 "ESTunigenes". Of these 832 "EST-unigenes", 747 were single ESTs (singletons; non-assembled sequencing reads), and 85 were contigs generated by computer-based assembly of sequence fragments from several clones (contigs). Of the 832 "EST-unigenes", 578 have significant homology to amino acid sequences from the GenBank non-redundant protein database. A large number of these homologous sequences have previously been ascribed to Arabidopsis proteins, and were successfully annotated using gene ontology (GO) analysis. The length of the ESTs ranges from 338 to 699 bases, whereas contigs range from 555 to 2823 bases. The individual sequences of 1046 ESTs have been submitted to NCBI (Accession numbers: DV736965-DV738010, to be released on May 1, 2006).

A functional class was assigned to each "EST-unigene" based on the degree of similarity (E-value) to the closest counterpart sequence found in other plant species (Table 1). Of the 578 "EST-unigenes" that had significant homology to the nucleotide database (nt), 168 are homologous to genes with unknown function, while 410 are homologous to genes with known function (Table 1). These 410 "EST-unigenes", based on GO annotation, were assigned to one of the following functional classes: (1) primary metabolism (74 "EST-unigenes"), (2) amino acid synthesis and processing (57 "EST-unigenes"), (3) membrane and transport (66 "EST-unigenes"), (3) cell division, cell wall and metabolism, cytoskeleton, and cellular organization (41 "EST-unigenes"), (4) DNA/RNA transcription and gene expression (63 "EST-unigenes"), (5) cellular communication/signal transduction (70 "EST-unigenes"), (6) defense- and stress-related proteins (31 "EST-unigenes"),

1236

 Table 1
 ESTs with significant homology to genes with known function in other plant species

EST-unigene	Similar gene in other species	<i>E</i> -value	Plant species
Primary metabolism			
AL_01.86.C1.Contig82	2-Oxoglutarate dehydrogenase	e-140	O. sativa
AL01005A1C06.f1	3-Hydroxyisobutyryl-coenzyme A hydrolase protein	1.00E-85	A. thaliana
AL01005A1C06.f1	3-Hydroxyisobutyryl-coenzyme A hydrolase protein	1.00E-85	A. thaliana
AL01006A1F12.f1	Acyl CoA:diacylglycerol acyltransferase	6.00E-56	Glycine max
AL01005A1D09.f1	Acyl-ACP thioesterase	3.00E-23	Garcinia mangostana
AL_01.62.C1.Contig59	Acyl-CoA-binding protein	1.00E-30	O. sativa
AL01006B2A07.f1	Adenosine monophosphate binding protein	1.00E-57	A. thaliana
AL010002000D04	ADP-glucose pyrophosphorylase large subunit 1	3.00E-23	C. lanatus
AL_01.10.C1.Contig10	AIM1 protein	8.00E-93	A. thaliana
AL01006B1B11.f1	alpha-Hydroxynitrile lyase	2.00E-30	A. thaliana
AL01004X1F01.f1	AP-1 Golgi-related complex component	3.00E-67	Camptotheca acuminata
AL01005A1G02.f1	Chloroplast ribosome recycling factor protein	2.00E-24	Spinacia oleracea
AL01005B2B06.f1	Chloroplast small heat shock protein	3.00E-43	Capsicum frutescens
AL010001000F09	Copine-related	1.00E-43	A. thaliana
AL01004X1B04.f1	Cytochome b5	8.00E-14	Olea europaea
AL010002000E09	Cvtochrome b5	5.00E-16	A. thaliana
AL010002000B04	Cvtochrome b5 reductase isoform II	3.00E-51	Zea mays
AL01006A1A09.f1	Cvtochrome b561	1.00E-22	C. lanatus
AL01005B1D11.f1	Cytochrome c biogenesis protein-like	6.00E-58	O. sativa
AL01006B2C01.f1	Cvtochrome c oxidase subunit 6b	1.00E-38	A. thaliana
AL01005A2D02.f1	Cvtochrome c reductase subunit	4.00E-07	Solanum tuberosum
AL01004X1H09.f1	Cytochrome P450 85 (Dwarf protein)	5.00E-28	Lycopersicon esculentum
AL01005B1E08.f1	Cvtochrome P450 protein	7.00E-27	A. thaliana
AL 01.73.C1.Contig70	Cytochrome P450-like protein	6.00E-77	A. thaliana
AL010001000G11	Dihydrolipoamide succinvltransferase	4.00E-35	A. thaliana
AL010001000G11	Dihydrolipoamide succinyltransferase	4.00E-35	A. thaliana
AL01005B1C08.f1	Dihydropyrimidinase	2.00E-12	A. thaliana
AL01005B1B12.f1	Disulfide bond formation protein	3.00E-37	A thaliana
AL01005B2F05.f1	Enolase protein	5.00E-20	A thaliana
AL010002000C03	ent-Kaurenoic acid oxidase	3.00E-70	Pisum sativum
AL010001000C11	Ferredoxin III. chloroplast precursor	4.00E-40	Z mays
AL 01.41 C1 Contig39	Formate dehydrogenase, mitochondrial precursor	3.00E-76	Hordeum vulgare
AL01005B2F12.f1	Glutamine synthetase	3.00E-67	Vitis vinifera
AL01006A1D05.f1	Glycinamide ribonucleotide transformylase	6.00E-67	Vigna unguiculata
AL01005A1F08.f1	Glycine decarboxylase complex H-protein	6.00E-50	A thaliana
AL01005A1H05.f1	GTP-binding protein	2.00E-61	A thaliana
AL01006B1A05.f1	His-Asp phosphotransfer protein	1.00E-27	P sativum
AL01004X1G06 f1	Hydrolase family protein	3.00E-31	A thaliana
AL 010001000C01	Isopentenyl-diphosphate delta-isoperase	3.00E-85	C acuminata
AL 01 61 C1 Contig58	L inase class 3 family protein	7.00E-44	A thaliana
AL 01006A2G06 f1	Malate debydrogenase	e-103	V vinifera
AL 010001000H04	Malate dehydrogenase glyoxysomal precursor	1 00F-72	V vinifera
AL 01004X1D04 f1	NADH-ubiquinone oxidoreductase-related	1.00E-72	A thaliana
AL 01006B1F07 f1	NADPH:auinone oxidoreductase	2.00E-23	A thaliana
AL 010001000D04	Nodule-enhanced malate dehydrogenase	2.00E-23	P sativum
AL 01006B2E04 f1	Perovidase ATP2a	2.00E-19	A thaliana
AL 01005B2E03 f1	Phosphoenolpyruvate carboxylase	5.00E-18	Cucumis sativus
AL01005A2E12 f1	Phosphoglycerate kinase	4.00E-14	O sativa
AL01005A2E12.11	Phospholingse	4.00E-14 8.00E-43	C lapatus
AI 01005B2E02 f1	Phoenholipase D	2 00E-43	C. minuns Ricinus communis
ALU1003D2E02.11	I nospholipase D delta isoform	2.00E-20	Cossunium hinsutum
ALU100002009.11	Phospholipase D della Isololill Dhospholipase D zeta 1	1.00E-3/	A thaliana
ALU1003A2D03.11 AL 01005 A 2D08 f1	Dhospholipid autidulultransforase	2.00E-32	A. thaliana
ALU1003A2D08.11	nosphoriposyl pyrophosphote synthese isosyme ?	4.00E-44 2.00E 64	A. Inaliana
AL01000A1A03.11	i nosphorioosyi pyrophosphate synthase isozyme 5	5.00E-04	s. oteracea

EST-unigene	Similar gene in other species	E-value	Plant species
AL010001000H12	Phosphoribosylanthranilate transferase-like protein	2.00E-62	A. thaliana
AL01005A2D06.f1	Cytosolic factor	1.00E-85	A. thaliana
AL01004X1B09.f1	NADH-ubiquinone oxidoreductase subunit	1.00E-64	A. thaliana
AL_01.9.C1.Contig9	Pyruvate decarboxylase	e-132	S. tuberosum
AL01006A1G09.f1	Pyruvate dehydrogenase E1 alpha subunit	e-136	Citrus x paradisi
AL01005B2H10.f1	Ribosomal protein L11	9.00E-72	A. thaliana
AL01003X1F01.f1	Serine racemase.	8.00E-13	A. thaliana
AL 01.63.C1 Contig60	Specific tissue protein 2	7.00E-25	Cicer arietinum
AL_01.57.C1.Contig54	Specific tissue protein 2	2.00E-09	C. arietinum
AL01005B2B03.f1	Stem secoisolariciresinol dehydrogenase	3.00E-50	Forsythia x intermedia
AL 01.68 C1 Contig65	Steroid 5alpha-reductase-like protein	4.00E-85	A thaliana
AL01004X1B11 f1	Succinate dehydrogenase iron-protein subunit-like	5.00E-66	A thaliana
AL01005B1H04 f1	Sucrose-phosphatase	2.00E-85	L esculentum
AL01003X1H11 f1	Thioredoxin	9.00E-36	A thaliana
AL 010001000D05	Thioredoxin h	2.00E-38	Cucurbita maxima
AL 01006 A 1H11 f1	Ubiquinol-cytochrome C reductase complex	3.00E-28	A thaliana
AL 01005 A 2H02 f1	UDP-glucose 6-dehydrogenase	9.00E-20	G max
AL01005A2H02.11	UDP glucose starol glucosyltransferase	7 00F 62	0. max A thaliana
AL01000A2100.11	Uricase subunit	7.00E-02	A. thaliana
AL01000A2D05.11	Vanthina dahudraganasa lika protain	2.00E-50	A. thaliana
Amino acid synthesis and processing	Xantinne denydrogenase-nke protein	5.001-57	A. manana
AL 01006P1E06 f1	208 protosomo alpha 6 subunit	0.00E 14	Nigotiana honthamiana
AL01000B1E00.11	205 proteasome arpha o subunit	9.00E-14	A thaliana
AL010001000F11	405 ribosomal protein \$17	2.00E-38	A. Inaliana Dioographica
AL010002000F11	405 fibosofiai protein 52	2.00E-49	Ficed ables
AL_01.00CD2D08_51	405 ribosomai protein S20-like protein	2.00E-55	A. thallana
AL01000B2D08.11	405 ribosomai protein 521	2.00E-35	A. thallana
AL010002000F10	405 ribosomai protein 57 nomolog	5.00E-75	S. tuberosum
AL010002000C04	40S ribosomal S4 protein	5.00E-28	G. max
AL01006A2D10.f1	60S ribosomal protein L24	8.00E-59	C. arietinum
AL01006A2D03.11	60S ribosomal protein L34	3.00E-47	Solanum aemissum
AL01004X1H05.f1	60S ribosomal protein L34	9.00E-38	A. thaliana
AL01004X1A03.f1	60S ribosomal protein L3/a	1.00E-46	G. hirsutum
AL01005B1F01.f1	60S ribosomal protein L39	1.00E-23	O. sativa
AL01004X1F08.f1	Alanine:glyoxylate aminotransferase 2 homolog	3.00E-27	A. thaliana
AL01004X1C11.f1	Amino acid transport protein AAP2	8.00E-09	R. communis
AL01003X1E05.f1	Aminopeptidase C	8.00E-73	O. sativa
AL01004X1G02.f1	Aspartic proteinase	8.00E-20	Theobroma cacao
AL01003X1B01.f1	Chaperonin CPN10	1.00E-37	A. thaliana
AL010002000H04	Cyclophilin	7.00E-58	R. communis
AL01005B2E08.f1	Cysteine protease 1	2.00E-65	Plantago major
AL01006B2H02.f1	Cysteine proteinase	1.00E-46	Petunia x hybrida
AL010001000D09	Dormancy-associated protein	5.00E-35	A. thaliana
AL010002000H02	Elongation factor 1 alpha	2.00E-83	Saccharum
AL010002000B08	Elongation factor 1-alpha	2.00E-42	Manihot esculenta
AL010001000B09	HECT ubiquitin-protein ligase 3	3.00E-88	A. thaliana
AL01005B1F08.f1	Low molecular weight heat-shock protein	1.00E-25	Corylus avellana
AL01005A2G12.f1	OTU-like cysteine protease family protein	2.00E-49	A. thaliana
AL_01.49.C1.Contig46	Papain-like cysteine peptidase XBCP3	2.00E-26	A. thaliana
AL010001000E12	Profilin	5.00E-13	C. lanatus
AL01004X1B05.f1	Prolylcarboxypeptidase-like protein	1.00E-21	A. thaliana
AL01005A2F07.f1	Prolylcarboxypeptidase-like protein	2.00E-75	A. thaliana
AL_01.11.C1.Contig11	Proteinase inhibitor II	2.00E-09	A. thaliana
AL_01.7.C1.Contig7	Proteinase inhibitor II	9.00E-10	G. max
AL01006A2D11.f1	Pyrrolidone carboxyl peptidase-like protein	1.00E-12	O. sativa

EST-unigene	Similar gene in other species	<i>E</i> -value	Plant species
AL01006A2D11.f1	Pyrrolidone carboxyl peptidase-like protein	1.00E-12	O. sativa
AL010001000B04	Ribosomal protein L12 family protein	5.00E-04	A. thaliana
AL01003X1C09.f1	Ribosomal protein L17	6.00E-75	Castanea sativa
AL010002000H03	Ribosomal protein L28-like	3.00E-56	O. sativa
AL01004X1E08.f1	Ribosomal protein L28-like	1.00E-57	O. sativa
AL01006A1C12.f1	Ribosomal protein L29	3.00E-27	Panax ginseng
AL010002000D10	Ribosomal protein L30	7.00E-56	Lupinus luteus
AL010002000B07	Ribosomal protein L31	9.00E-45	A. thaliana
AL010001000H08	Ribosomal protein S26	4.00E-48	A. thaliana
AL_01.75.C1.Contig72	Ribosomal protein S29	3.00E-29	O. sativa
AL_01.51.C1.Contig48	Ribosomal protein S29	3.00E-29	O. sativa
AL010002000E11	S-adenosylmethionine decarboxylase	2.00E-66	x Citrofortunella mitis
AL01005A1H10.f1	Subtilisin	5.00E-06	Narcissus
			pseudonarcissus
AL01005B2E05.f1	Subtilisin-like protease	1.00E-24	G. max
AL01006A1F06.f1	Subtilisin-like protease C1	2.00E-45	G. max
AL_01.74.C1.Contig71	Subtilisin-type protease precursor	e-105	G. max
AL_01.13.C1.Contig13	tRNA pseudouridine synthase family protein	6.00E-37	A. thaliana
AL01006B2A04.f1	Ubiquitin carboxyl-terminal hydrolase	3.00E-16	A. thaliana
AL01005A1A05.f1	Ubiquitin carboxyl-terminal hydrolase family	2.00E-08	A. thaliana
AL01006B1F08.f1	Ubiquitin carboxyl-terminal hydrolase family protein	4.00E-32	A. thaliana
AL01004X1G01.f1	Ubiquitin ligase SINAT5	6.00E-61	O. sativa
AL01006A1G08.f1	Ubiquitin (UBA)/TS-N domain-containing protein	4.00E-12	A. thaliana
AL010002000D06	Ubiquitin-conjugating enzyme 8	2.00E-82	Capsicum annuum
AL01005A1B08.f1	X-Pro dipeptidase-like protein	8.00E-93	A. thaliana
Membrane and transport			
AL01005B2A10.f1	26S proteasome non-ATPase regulatory subunit 3	2.00E-42	Nicotiana tabacum
AL010001000B01	26S proteasome article non-ATPase subunit	8.00E-90	O sativa
AL010002000B06	26S proteasome particle triple-A ATPase subunit	1.00E-36	O sativa
AL01006A1F03.f1	ABC transporter	3.00E-55	A thaliana
AL 01.12.C1 Contig12	ABC transporter protein	e-142	A. thaliana
AL 01.83.C1 Contig79	Annexin	3.00E-17	A. thaliana
AL01006A1H07.f1	arn3	5.00E-35	$O_{\rm sativa}$
AL01005A2H10.f1	Autophagocytosis protein-like	5.00E-78	A thaliana
AL 01.23.C1 Contig23	B12D protein	2.00E-35	Inomoea hatatas
AL01005B2A08.f1	Ca^{2+}/H^+ antiporter [Zea mays]	1.00E-67	Z mays
AL010002000B09	Cation transport protein	2.00E-27	A. thaliana
AL01004X1A07 f1	CD2-binding protein-related	1.00E-61	A. thaliana
AL010002000E06	CEE/transport protein	1.00E-13	A thaliana
AL01006A1G06 f1	Citrate synthese	1.00E-17	N tahacum
AL01005A1C07 f1	CMP-sialic acid transporter	2.00E-74	A thaliana
AL01006B1D09.f1	Coated vesicle membrane protein	1.00E-89	0. sativa
AL01005B2B02 f1	Coatomer alpha subunit-like protein	3.00E-55	Lotus corniculatus
AL01006B1B09 f1	Complex Lintermediate-associated protein	2.00E-55	A thaliana
AL01003X1C05.f1	Conjue-related protein	7.00E-17	A. thaliana
AL01006A2A03.f1	Cyclic nucleotide and calmodulin-regulated ion channel	2.00E-68	A. thaliana
AL01005B1G06.f1	Endomembrane protein	8.00E-13	A. thaliana
AL01005B2C07.f1	ent-Kaurene synthase	3.00E-89	C. sativus
AL010001000A12	Epsilon subunit of mitochondrial F1-ATPase	1.00E-30	A. thaliana
AL 01.50 C1 Contig47	Globulin-like protein	3.00E-27	A thaliana
AL01005B1E10 f1	GONST3 Golgi Nucleotide sugar transporter	2.00E-39	A thaliana
AL01006B1F06 f1	H ⁺ -transporting two-sector ATPase	2.00E-43	L batatas
AL01006A2D04 f1	Low temperature and salt responsive protein	2.00E-21	A thaliana
AL01006A1B03.f1	Indole-3-glycerol phosphate synthase	1.00E-22	A. thaliana

EST-unigene	Similar gene in other species	E-value	Plant species
AL_01.55.C1.Contig52	Integral membrane family protein	2.00E-28	A. thaliana
AL01006A1B12.f1	Integral membrane protein	2.00E-13	A. thaliana
AL01006B2B11.f1	Iron transporter-related	3.00E-29	A. thaliana
AL01006A2D06.f1	Lipid-transfer protein 3 precursor (LTP 3)	3.00E-29	Prunus dulcis
AL01004X1H06.f1	Magnesium transporter CorA-like family protein	2.00E-18	A. thaliana
AL01005A1D04.f1	Membrane protein	3.00E-58	O. sativa
AL010001000D07	Mitochondrial precursor	2.00E-36	A. thaliana
AL01006A1C01.f1	MRP-like ABC transporter	2.00E-47	O. sativa
AL01006A2C09.f1	Nonspecific lipid transfer; auxin induced gene	5.00E-12	Zinnia elegans
AL01006B1D05.f1	Oligopeptide transporter-like protein	6.00E-68	A. thaliana
AL_01.56.C1.Contig53	Oxysterol binding protein	2.00E-84	O. sativa
AL01003X1C12.f1	Permease	6.00E-73	G. hirsutum
AL01006B1G05.f1	Peroxin-3 family protein [Arabidopsis thaliana]	7.00E-19	A. thaliana
AL01003X1C03.f1	Peroxisomal targeting signal type 2 receptor	7.00E-96	A. thaliana
AL01005B2C12.f1	Plasma membrane $H + -ATPase$	7.00E-10	Daucus carota
AL01006B2F09.f1	Plastidic ATP/ADP transporter	8.00E-93	Citrus hybrid cultivar
AL_01.22.C1.Contig22	PM28B protein	8.00E-55	S. oleracea
AL010001000A07	PQ-loop repeat/transmembrane family protein	1.00E-14	A. thaliana
AL01003X1H10.f1	PO-loop repeat/transmembrane family protein	3.00E-19	A. thaliana
AL01006A2G05.f1	Presenilin-like protein	1.00E-44	A. thaliana
AL01004X1H03.f1	RING finger protein	7.00E-30	A. thaliana
AL01003X1A08.f1	Stomatin-like protein	6.00E-13	A. thaliana
AL01006A1B09.f1	Sugar transporter	2.00E-37	A. thaliana
AL01005B2A04.f1	Sugar transporter-like protein	3.00E-26	A. thaliana
AL01006A1C11.f1	Sulphate transporter	9.00E-51	Brassica napus
AL01005B1D10.f1	Sulphate transporter	1.00E-13	B. napus
AL010001000G01	Transmembrane domains	3.00E-40	A. thaliana
AL01006A2F12.f1	Transmembrane MLO family protein	e-127	A. thaliana
AL01006A2B04.f1	Transmembrane protein	2.00E-36	O. sativa
AL01006A1H12.f1	Transport protein	1.00E-25	A. thaliana
AL01003X1B03.f1	Transporter-related	2.00E-65	A. thaliana
AL010002000F03	Type IIB calcium ATPase	2.00E-30	Medicago truncatula
AL01006B2B08.f1	Ubiquitin-transferase	1.00E-57	A. thaliana
AL01006B1F10.f1	Uncoupling protein	2.00E-59	Dracunculus vulgaris
AL01006B2A05.f1	Vacuolar H + - ATPase C subunit	1.00E-58	P. major
AL01005B2H04.f1	Vacuolar sorting/VPS9 domain-containing protein	2.00E-10	A. thaliana
AL010002000D09	Vacuolar V-H + ATPase subunit E	1.00E-73	Citrus limon
AL01006A2D01.f1	Vesicle transport v-SNARE	4.00E-86	A. thaliana
Cell division			
AL01006B1D02.f1	Allergen-like protein BRSn20	3.00E-21	Sambucus nigra
AL01005B2E10.f1	Anaphase promoting complex subunit 11	3.00E-44	A. thaliana
AL_01.1.C1.Contig2	ARD-like protein	5.00E-92	Brassica juncea
AL01005B1G12.f1	Cell cycle switch protein CCS52a	1.00E-85	L. luteus
AL01006B1B10.f1	Cullin	2.00E-28	A. thaliana
AL01006B1B06.f1	Cyclin-dependent kinase CDC2C	2.00E-27	O. sativa
AL01006B2D10.f1	Fasciclin-arabinogalactan precursor (AtAGP8)	5.00E-90	A. thaliana
AL010001000E02	F-box family protein	4.00E-35	A. thaliana
AL01005B2D08.f1	F-box family protein	4.00E-12	A. thaliana
AL01006B1D04.f1	Glycosyltransferase family protein	5.00E-29	A. thaliana
AL01006B1C07.f1	Kinase family protein	3.00E-66	A. thaliana
AL_01.53.C1.Contig50	N-acetylglucosaminyltransferase	6.00E-81	A. thaliana
AL_01.70.C1.Contig67	NAM (no apical meristem)-like protein	1.00E-12	A. thaliana
AL01005A1A01.f1	O-linked N-acetyl glucosamine transferase	4.00E-42	A. thaliana
AL01004X1A02.f1	Phagocytosis and cell motility protein ELMO1-related	5.00E-62	A. thaliana
AL010001000G09	Plastid division protein ftsZ	e-103	Gentiana lutea

EST-unigene	Similar gene in other species	E-value	Plant species
AL01005B1F07.f1	Skp1	2.00E-61	Medicago sativa
Cytoskelaton			
AL01005A2B04.f1	Alpha 1-tubulin	1.00E-18	Z. mays
AL01005A1A07.f1	Glycine-rich protein	7.00E-09	A. thaliana
AL010002000E05	Mo25 family protein	1.00E-30	A. thaliana
AL01005A1D06.f1	Myosin	2.00E-41	A. thaliana
AL_01.77.C1.Contig74	Tubulin folding cofactor E/Pfifferling (PFI)	2.00E-36	A. thaliana
Cell wall and metabolism			
AL01006B1D10.f1	Expansin-like protein	8.00E-32	Quercus robur
AL01004X1D12.f1	Fiber protein Fb19	1.00E-50	Gossypium barbadense
AL01005A1F03.f1	Glycosyl hydrolase family protein	1.00E-28	A. thaliana
AL01006A2E04.f1	Hydroxyproline-rich glycoprotein family protein	2.00E-23	A. thaliana
AL01006B1E09.f1	Hydroxyproline-rich glycoprotein family protein	7.00E-15	A. thaliana
AL01006A1H06.f1	LIM domain protein PLIM1	1.00E-58	N. tabacum
AL01006A1E07.f1	Microtubule associated protein	6.00E-22	C. arietinum
AL_01.15.C1.Contig15	Microtubule associated protein	7.00E-59	C. arietinum
AL01004X1B06.f1	Microtubule-associated protein	2.00E-48	A. thaliana
AL_01.38.C1.Contig37	Neurofilament protein-related	7.00E-12	A. thaliana
AL01005A2C07.f1	Nitrate-induced NOI protein	1.00E-22	A. thaliana
AL_01.34.C1.Contig33	Omega-6 fatty acid desaturase	9.00E-54	Cucurbita pepo
AL01005B2A05.f1	pEARLI 1/extensin-like protein	1.00E-23	A. thaliana
AL_01.84.C1.Contig80	Pectin methylesterase	3.00E-94	N. tabacum
AL_01.58.C1.Contig55	Phloem filament protein PP1	2.00E-21	C. maxima
AL01005A2E10.f1	Ripening-related protein [Vitis vinifera]	1.00E-45	V. vinifera
AL01005B1D06.f1	Tetratricopeptide repeat (TPR)-containing protein	9.00E-33	A. thaliana
AL01006B2D06.f1	Translocon Tic40-like/hydroxyproline-rich glycoprotein	3.00E-20	A. thaliana
AL_01.48.C1.Contig45	Caffeoyl-CoA O-methyltransferase	1.00E-69	Populus kitakamiensis
DNA, RNA related and gene expression			
AL01006A1E03.f1	AP2/EREBP transcription factor	2.00E-33	A. thaliana
AL01004X1G07.f1	Apoptosis-related/DNA-binding protein	9.00E-35	A. thaliana
AL01006A1E06.f1	bZIP family transcription factor	1.00E-63	A. thaliana
AL01005B2C10.f1	bZIP transcription factor	4.00E-20	N. tabacum
AL01005A2H06.f1	bZIP transcription factor	3.00E-19	Phaseolus vulgaris
AL01006A2E06.f1	CAAT box binding factor/ transcription factor Hap2a	5.00E-08	A. thaliana
AL01005A1E10.f1	CCAAT-box binding factor HAP5 homolog	4.00E-34	D. carota
AL01005B2E09.f1	CCCH-type zinc finger protein	6.00E-12	A. thaliana
AL01006B1D03.f1	Contains similarity to human PCF11p homolog	4.00E-43	A. thaliana
AL01006B1G09.f1	DNA-binding protein	2.00E-14	A. thaliana
AL01006A2B10.f1	DNA-binding protein; bZIP type	1.00E-10	Petroselinum crispum
AL01003X1E06.f1	Dof zinc finger protein	2.00E-38	N. tabacum
AL01006A2F05.f1	EIN3-like protein	6.00E-58	Cucumis melo
AL01006B2H09.f1	ERF-like protein	2.00E-65	C. melo
AL01006B1A09.f1	Exonuclease family protein	2.00E-43	A. thaliana
AL01005B2D03.f1	HB2 homeodomain protein	7.00E-68	Populus tremula
AL01005B2F02.f1	Homeobox HAT22/leucine zipper protein	5.00E-23	A. thaliana
AL01006B1A11.f1	Homeobox-leucine zipper transcription factor protein	7.00E-27	A. thaliana
AL01006B1C11.f1	Human RAN binding protein 16-like	1.00E-61	A. thaliana
AL01005B1D07.f1	Iron-deficiency protein Ids3	2.00E-20	O. sativa
AL01005B1G11.f1	KOW domain-containing transcription factor	5.00E-83	A. thaliana
AL01005B1C10.f1	Leucine-rich repeat family protein	7.00E-67	A. thaliana
AL01005A2B07.f1	mads-box transcription factor	3.00E-14	Momordica charantia
AL_01.71.C1.Contig68	Mei2-like protein	1.00E-06	H. vulgare
AL010002000H07	Minichromosome maintenance (MCM) protein	6.00E-31	A. thaliana
AL01004X1A12.f1	Mitotic control/ribonuclease II family protein	3.00E-49	A. thaliana

1240

EST-unigene	Similar gene in other species	<i>E</i> -value	Plant species
AL01006B1A07.f1	myb-related protein	6.00E-22	A. thaliana
AL01004X1E11.f1	nam-like protein 14	1.00E-37	Petunia x hybrida
AL01006A1E08.f1	Nuclear movement family protein	1.00E-38	A. thaliana
AL01006B1F09.f1	orf265a	4.00E-19	Beta vulgaris
AL01004X1D10.f1	Phage-type RNA polymerase	3.00E-10	N. tabacum
AL01005A1D03.f1	pRGR1	3.00E-18	O. sativa
AL01005B1H11.f1	Probable CCCH-type zinc finger protein	8.00E-19	A. thaliana
AL01006A2E10.f1	Probable CCR4-associated factor	1.00E-57	A. thaliana
AL01003X1D01.f1	Proline-rich protein	2.00E-12	G. max
AL01006A1G05.f1	Retroelement	4.00E-11	O. sativa
AL01005A1G09.f1	Retrotransposon/reverse transcriptase protein	5.00E-39	A. thaliana
AL010002000C11	Ribonucleoprotein 29 kD	2.00E-68	Nicotiana sylvestris
AL01005A1A03.f1	RNA helicase	1.00E-48	A. thaliana
AL01006A1A06.f1	RNA recognition motif (RRM)-containing protein	3.00E-19	A. thaliana
AL01005B1C01.f1	RNA-binding protein	3.00E-41	A. thaliana
AL_01.29.C1.Contig28	Sd-RNase	2.00E-23	Prunus salicina
AL01006A2B01.f1	Similar to RIKEN cDNA 2010107D16 gene	e-100	Mus musculus
AL01005B1C09.f1	Small nuclear ribonucleoprotein	4.00E-23	A. thaliana
AL010002000G12	snRNP core Sm protein Sm-X5-like protein	4.00E-35	A. thaliana
AL01006B2B04.f1	Synovial sarcoma. X breakpoint 2 interacting protein	6.00E-60	O. sativa
AL010001000A04	THUMP domain-containing protein	2.00E-71	A. thaliana
AL010001000C06	tonneau 2	9.00E-85	O. sativa
AL010002000H11	Transcriptional activation factor	2.00E-41	A. thaliana
AL010002000G06	Tubby protein	6.00E-62	O. sativa
AL01005A2E09.f1	Uclease	e-100	N. tabacum
AL01006A2A05.f1	Regulator of chromosome condensation (RCC1)	3.00E-51	A thaliana
AL01003X1D05 f1	WRKY transcription factor	2.00E-23	G hirsutum
AL01005A2B12.f1	XAP-5 protein	9.00E-86	A thaliana
AL01004X1B07.f1	Zinc finger (C2H2-type) family protein	3.00E-21	A thaliana
AL01006B1C08.f1	Zinc finger (C3HC4-type RING finger) family protein	2.00E-37	A thaliana
AL01003X1G11 f1	Zinc finger (GATA type) protein ZIM (ZIM)	6.00E-42	A thaliana
AL01005A2H08.f1	Zinc finger homeobox family protein	2.00E-07	A thaliana
AL01005B1E06.f1	Zinc finger protein	1.00E-20	A thaliana
AL01005B2B12.f1	Zinc finger protein	1.00E-75	A thaliana
AL010002000B03	Zinc finger protein	5.00E-20	S. demissum
AL01005B2C03.f1	Zinc finger protein	5.00E-14	A thaliana
AL 01006A2F08 f1	Zinc finger protein-related	3.00E-19	A thaliana
Signal transduction	Zine miger protein related	5.002 17	11. manuna
AL.010001000C07	Abscisic acid induced protein	8 00E-40	A thaliana
AL 01 37 C1 Contig36	Abscisic acid response protein	1.00E-12	C melo
AL 01003X1F04 f1	Ankyrin protein kinase	2.00E-11	A thaliana
AL01006B2D01 f1	ATMPK9	2.00E-08	A thaliana
AL 01006A2C04 f1	AtRah GTP-hinding protein	3.00E-80	A thaliana
AL 01 65 C1 Contig62	Auxin efflux carrier family protein	3.00E-80	A thaliana
AL 01005A2D01 f1	Avr9/Cf-9 rapidly elicited protein	6.00E-52	N tahacum
AL 01 59 C1 Contig56	Avr9/Cf-9 rapidly elicited protein 146	6.00E-14	N tabacum
AL 01003X1E07 f1	Brassinosteroid LRR recentor kinase protein	2.00E-22	O sativa
AL 01 30 C1 Contig29	BUBP domain containing protein	2.00E-22 3.00E-54	A thaliana
AL 0100542E04 f1	C3HC4 zinc finger protein	1.00E-15	A thaliana
AL 01 26 C1 Contig26	Calcineurin B-like protein 1	1.00E-13	Imported
AL 01005 A 1D12 f1	Calcineurin like phosphoesterase family protein	2 00E-47	A thaliana
AL 01005B2G02 f1	Calcineurin like phosphoesterase family protein	6.00E-00	A thaliana
AL01003D2002.11 AL 01006R2E04 fl	Calcium dependent protein kingen	4 00E 24	A. thaliana
AL01000D2104,11	Calcium-binding EE-hand family protein	7.00E-24	A. mununu O sativa
AL01003A1C07.11 AL 010002000D02	Calmodulin	2.00E-31 7.00E-25	D. carota
AL010002000D03	Cannouunn	1.00E-23	D. curota

1242

EST-unigene	Similar gene in other species	<i>E</i> -value	Plant species
AL01005A1H04.f1	Calmodulin-binding protein	7.00E-47	A. thaliana
AL01006A1F11.f1	Calmodulin-binding protein	1.00E-75	A. thaliana
AL01006B2D03.f1	Caltractin (Centrin)	8.00E-25	A. thaliana
AL01003X1A01.f1	Caltractin / centrin	4.00E-72	A. thaliana
AL010001000G04	CDC2	1.00E-95	P. tremula
AL010001000B12	cis-Zeatin O-glucosyltransferase	8.00E-09	Sorghum bicolor
AL_01.17.C1.Contig17	Copper chaperone	2.00E-25	Populus alba
AL01005B1A12.f1	Deoxyuridine triphosphatase	1.00E-41	O. sativa
AL01006A1H04.f1	Elicitor-inducible protein EIG-J7	5.00E-56	C. annuum
AL01006A2H11.f1	Ethylene receptor; Cm-ETR1	2.00E-95	C. melo
AL_01.20.C1.Contig20	Eukaryotic translation initiation factor 5A isoform II	8.00E-87	Hevea brasiliensis
AL01006B1A12.f1	F-box / SKP1 interacting protein	3.00E-66	A. thaliana
AL01003X1B07.f1	FCA protein	1.00E-15	Triticum aestivum
AL_01.25.C1.Contig25	Flowering locus T like protein	2.00E-15	Populus nigra
AL01005B1H05.f1	GRAM domain-/ABA-responsive protein	1.00E-47	A. thaliana
AL01003X1C10.f1	GSK-3-like protein MsK4	5.00E-41	M. sativa
AL010001000A01	GTPase activating-like protein	5.00E-28	A. thaliana
AL01005B2E11.f1	GTP-binding protein	2.00E-53	A. thaliana
AL01003X1G02.f1	GTP-binding protein	1.00E-52	P. sativum
AL01004X1E03.f1	Histidine acid phosphatase family protein	1.00E-45	A. thaliana
AL010002000F08	Immunophilin	9.00E-53	Vicia faba
AL01004X1F07.f1	Kinase family protein	1.00E-22	A. thaliana
AL01006B1E12.f1	Leucine-rich receptor-like protein kinase	3.00E-59	A. thaliana
AL01005B1A10.f1	Leucine-rich repeat receptor-like kinase	1.00E-34	A. thaliana
AL010001000D11	Microtubule-associated protein	6.00E-41	A. thaliana
AL01005B1E01.f1	Mitogen-activated protein kinase	6.00E-20	M. sativa
AL01005A2E08.f1	Mitogen-activated protein kinase MAPK	1.00E-39	Prunus armeniaca
AL01006B1H11.f1	PERK1-like protein kinase	1.00E-82	N. tabacum
AL01005A1E12.f1	Phosphatidylinositol 4-kinase PI4K	1.00E-50	A. thaliana
AL01006A2D02.f1	Phototropic-responsive NPH3 family protein	2.00E-37	A. thaliana
AL01004X1H04.f1	Phytoalexin-deficient 4 protein (PAD4)	2.00E-43	A. thaliana
AL_01.46.C1.Contig44	Pi starvation-induced protein	3.00E-34	C. arietinum
AL01006A2C08.f1	Protein kinase	7.00E-83	C. sativus
AL01005A1C11.f1	Protein kinase-like protein	e-105	A. thaliana
AL01005A2A06.f1	Protein kinases	7.00E-56	A. thaliana
AL010002000C07	Ras-related GTP-binding protein	2.00E-64	C. sativus
AL01005A2C01.f1	Receptor protein kinase	e-103	A. thaliana
AL_01.39.C1.Contig38	Receptor-like protein kinase	e-128	A. thaliana
AL01006B1E11.f1	S3 self-incompatibility locus-linked pollen protein	5.00E-12	Petunia integrifolia
AL01006B2E03.f1	Serine threonine kinase	8.00E-38	Sandersonia aurantiaca
AL01005B1F10.f1	Serine/threonine protein kinase	3.00E-52	O. sativa
AL01005A1D08.f1	Serine/threonine protein phosphatase	5.00E-11	A. thaliana
AL01005A1C03.f1	Similar to serine/threonine kinases	3.00E-31	A. thaliana
AL01005B1H04.f1	Sucrose-phosphatase	2.00E-85	L. esculentum
AL01005B1A05.f1	Tousled-like protein kinase	2.00E-27	Nicotiana glutinosa
AL01005A1H06.f1	Transducin family protein/WD-40 repeat protein	2.00E-34	A. thaliana
AL010001000C12	Translation factor	1.00E-54	Pinus pinaster
AL_01.5.C1.Contig6	Translationally controlled tumor protein	2.00E-71	C. melo
AL01005B2G01.f1	VP1/ABI3 family regulatory protein	7.00E-10	O. sativa
AL01005A2A11.f1	WD-40 repeat/transducin family protein	1.00E-63	A. thaliana
AL01006B1H12.f1	Enzyme-forming ethylene (ACC oxidase)	3.00E-55	C. melo
AL01005A1B06.f1	Ethylene insensitive (EIN3/EIL)-transcription regulator	4.00E-29	Fagus sylvatica
AL01003X1D12.f1	Diacylglycerol kinase	1.00E-23	O. sativa

EST-unigene	Similar gene in other species	<i>E</i> -value	Plant species
Defense- and stress-related proteins			
AL_01.8.C1.Contig8	Al-induced protein	e-108	G. hirsutum
AL_01.44.C1.Contig42	Dessication-related protein	e-109	A. thaliana
AL01005B1A06.f1	DnaJ protein	3.00E-16	Malus x domestica
AL01005B1D09.f1	DnaJ protein	3.00E-25	Malus x domestica
AL_01.0.C1.Contig1	Early nodulin	3.00E-27	G. max
AL010002000F09	EXS/ERD1/XPR1/SYG1 family protein	2.00E-22	A. thaliana
AL01005B2G11.f1	GEKO1	1.00E-34	O. sativa
AL01003X1A07.f1	Geraniol-responsible factor 15	3.00E-09	Matricaria chamomilla
AL01006A1D11.f1	Harpin-induced family protein	2.00E-51	A. thaliana
AL01006B1D07.f1	Integral membrane family protein	5.00E-50	A. thaliana
AL_01.21.C1.Contig21	Jasmonic acid 2	4.00E-34	L. esculentum
AL_01.82.C1.Contig78	Jasmonic acid regulatory protein	7.00E-14	A. thaliana
AL_01.69.C1.Contig66	Nodulin-like protein	7.00E-42	O. sativa
AL01006B1E05.f1	NOI protein	5.00E-17	O. sativa
AL01005B1D04.f1	Pathogenesis related homeodomain protein	2.00E-43	A. thaliana
AL_01.33.C1.Contig32	Pathogenesis-related protein	2.00E-55	C. sativus
AL01005A1G08.f1	Pentatricopeptide (PPR) repeat-containing protein	9.00E-26	A. thaliana
AL010002000A08	Plasma intrinsic protein	9.00E-79	Juglans regia
AL_01.4.C1.Contig5	PVR3-like protein	1.00E-12	Ananas comosus
AL010001000F05	Seed maturation protein PM39	2.00E-15	G. max
AL01005A1F10.f1	Silverleaf whitefly-induced protein	2.00E-41	C. pepo
AL010002000A03	snakin-1	3.00E-17	S. tuberosum
AL010002000B01	Superoxide dismutase	5.00E-17	F. sylvatica
AL_01.14.C1.Contig14	Type-2 metallothionein	5.00E-26	C. lanatus
AL01006A1C09.f1	Universal stress/early nodulin family protein	4.00E-58	A. thaliana
AL01006A2D05.f1	Universal stress/early nodulin family protein	3.00E-23	A. thaliana
AL01006B2E09.f1	Wound-induced protein-like	7.00E-08	V. vinifera
AL010002000C10	Wound-inducible basic protein	8.00E-13	P. vulgaris
AL010001000E10	Wound-inducible carboxypeptidase	5.00E-81	L. esculentum
AL010001000C04	Chain X, Ascobate Peroxidase	2.00E-22	G. max
AL01006B1B03.f1	WWE domain-containing protein / ceo protein	1.00E-15	A. thaliana
Secondary metabolism			
AL010002000H08	Glutathione S-transferase	7.00E-96	C. maxima
AL01004X1C05.f1	Glutathione S-transferase	2.00E-60	G. max
AL01005B2G03.f1	Glutathione S-transferase	1.00E-18	C. maxima
AL01005A2B03.f1	Glutathione S-transferase	3.00E-13	P. sativum
AL01006B1H02.f1	Phytoene synthase, chloroplast precursor (MEL5)	4.00E-61	C. melo
AL01005A2F12.f1	Phytoene desaturase	7.00E-58	M. charantia
AL01004X1H07.f1	relA/spoT homologous protein RSH2	8.00E-18	O. sativa
AL01006A1G03.f1	beta-Amilase	5.00E-18	C. arietinum

(7) secondary metabolism (8 "EST-unigenes"). These "EST-unigenes" may take part in fruit development (involving rapid cell division and differentiation, as well as rapid nutrient and carbohydrate translocation, synthesis, and accumulation), and fruit ripening (cell wall softening, and break down of carbohydrates and storage proteins) (Table 1; Fig. 1) (Giovannoni 2001).

A large number of the watermelon fruit "EST-unigenes" are associated with basic cell function (Table 1, Fig. 1) including respiration, photosynthesis, electron transfer (cytochrome, mitochondrial, and chloroplast proteins), or carbohydrate synthesis (as shown for ADP-glucose pyrophosphorylase in watermelon fruit; In-Jung et al. 1998). Others are associated with amino acid and protein synthesis and trafficking (ribosomal proteins, hydrolase, phospholipase, malate dehydrogenase, and ubiquitin proteins; Table 1). During fruit development, a considerable amount of energy is invested in the chemical reactions leading to synthesis of amino acids, and synthesis of functional and storage proteins. Later, during fruit ripening, the transient storage proteins serve as reservoirs for the amino acids used for the synthesis of "ripening-associated" proteins (Peumans et al. 2002). A few of the watermelon fruit "EST-unigenes" are homologous to proteases or peptidases (Table 1) that might be associated with the release of amino acids from these storage proteins.

The developing fruit is a nutrient sink, which derives nutrients reallocated from other parts of the plant in support of its continued development. Indeed, a large number of the "EST-unigenes" are homologous to genes involved in membrane transport and cytosolic trafficking (Table 1). Upon reaching full size, the fruit enters the ripening phase through production of internal ethylene, followed by softening of cell walls, production of secondary compounds, as well as changes in sugar content, flavor, and aroma. This process involves a sequence of events that lead to the activation of transcription factors and signal transduction proteins associated with ripening (Giovannoni 2001). The ethylene biosynthesis genes (including the S-adenosylmethionine decarboxylase and ACC oxidase) and ethylene signal transduction genes (the ethylene receptor "Cm-ETR1", or the transcription regulator "EIN3/EIL"; Table 1) take part in the ripening processes (Arif et al. 1994; Giles et al. 2001; Giovannoni 2001; Naoki et al. 2003). The abscisic acidand auxin-induced proteins, DNA- and RNA-binding proteins, and a variety of protein kinases (Table 1) are also taking part in the signal transduction processes leading to fruit ripening.

Fruit softening is a result of enzymatic activity that impairs cell wall properties and dissolves chemical bonds between cell walls, leading to their separation (Rose and Bennett 1999). A few of the "EST-unigenes" are cell wall enzymes (the pectin-modifying protein expensin, the cell wall P8 protein, and the fasciclin-like arabinogalactan protein 8 precursor; AtAGP8; Table 1) required for cell surface adhesion and expansion (Brummell and Harpster 2001; Shi et al. 2003; Trainotti et al. 2003).

Transcription factors were also identified in this study (Table 1). These include the basic leucine-zipper transcription factor (bZIP family), a regulatory element for an abscission-specific cellulose enzyme involved in cell wall softening (Tucker et al. 2002), the CCAAT-binding transcription factor (CBF-B/NF-YA) protein, which binds to the CCAAT-box motif present in certain promoters of genes expressed in vegetative and reproductive plant tissues (Guerineau et al. 2003), and a CCCH-type zinc finger motif that plays a key regulatory role in flower and fruit development (Li et al. 2001).

The ability of a fruit to resist pathogen attack or environmental stress decreases with tissue softening (Brummell and Harpster 2001). Thus, cell defense and stress response genes might be programmed to be expressed in the fruit tissue to slow pathogen invasion and fruit tissue decline prior to full seed development and maturation. Among these, are the DNAJ heat shock chaperone proteins (Table 1), which protect the intracellular milieu proteins from irreversible aggregation during cellular stress. Other important stress and defense proteins include the exonuclease protein required for post-transcriptional silencing in Arabidopsis (Glazov et al. 2003), the hemoglobin (HB2) produced in plants growing under stress conditions (as shown for rice; Lira-Ruan et al. 2001), the zinc finger proteins that enhance disease resistance and drought tolerance in plants (Kim

Fig. 1 Distribution of watermelon flesh ESTs according to their function

et al. 2004) and in the *A. thaliana* fruit (Balasubramanian and Schneitz 2002) (Table 1). "EST-unigenes" with a significant homology to ethylene-responsive element binding factor (ERF) proteins also exist in the watermelon fruit (Table 1). The ERF proteins are transcription factors linked to defense and stress response in plants (Oñate-Sánchez and Singh 2002).

Secondary compounds are produced mainly during fruit ripening. Carotenoids (including lycopen) are the main secondary compounds produced in watermelon fruit (Rodriguez-Amaya 1999). A group of "EST-unigenes" homologous to glutathione S-transferase (GST) genes were identified and classified in the category of secondary compounds (Table 1). Glutathione S-transferase proteins may perform a variety of functions in the binding of flavonoids and the deposition of these compounds in the vacuole (Board et al. 2000). GST proteins also take part in the detoxification of reactive electrophilic compounds by catalysing their conjugation to the tripeptide (gammaglutamyl-cysteinyl-glycine) glutathione (Armstrong 1997). Recent studies implicated GSTs as signaling compounds leading to apoptosis (Dixon et al. 2002). The glutathione S-transferase domain is also found in elongation factors 1-gamma and the HSP26 family of stressrelated proteins, which include auxin-regulated proteins in plants.

Of the 832 watermelon "EST-unigenes" analyzed, 254 (~ 30%) had no detectable homologs ($E \ge 0.1$) to any other plant genomes or protein sequences reported so far in GenBank (Fig. 1). Some of these "EST-unigenes" may represent untranslated (UTR) 3' regions (Mignone et al. 2005). However, further studies are needed to determine if they are typical to watermelon and other cucurbit species. The majority of the watermelon fruit "EST-unigenes" reported in this study could be grouped into abundantly expressed gene families. However, a considerable number of the "EST-unigenes" could not be classified (Table 1; Fig. 1). Extensive genome sequencing is still needed for cucurbit species to identify the genes that may be distinct

to this family. Future work will include sequencing and microarray analysis of ESTs representing different fruit tissues and developmental stages.

References

- Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D'Ascenzo M, Gordon JS, Rose JK, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. Nature 408:796–815
- Arif SAM, Taylor MA, George LA, Butler AR, Burch LR, Davies HV, Stark MJR, Kumar A (1994) Characterization of the Sadenosylmethionine decarboxylase (SAMDC) gene of potato. Plant Mol Biol 26:327–338
- Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18
- Balasubramanian S, Schneitz K (2002) NOZZLE links proximal– distal and adaxial–abaxial pattern formation during ovule development in *Arabidopsis thaliana*. Development 129:4291–4300
- Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, Rosner MH, Chrunyk BA, Perregaux DE, Gabel CA, Geoghegan KF, Pandit J (2000) Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem 275:24798–24806
- Bonaldo MF, Lennon G, Soares MB (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 6:791–806
- Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340
- Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10:129– 136
- Callahan A, Morgens P, Walton E (1989) Isolation and in vitro translation of RNAs from developing peach fruit. HortScience 24:356– 358
- Chomczynski P, Sacchi N (1987) Signal-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159
- Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:1–7
- FAO (1995) Production year book for 1994. No. 48. Food and Agricultural Organization of the United Nations, Rome
- Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59
- Giles EDO, Eric ME, Sharon RL (2001) Ethylene inhibits the nod factor signal transduction pathway of *Medicago truncatula*. Plant Cell 13:1835–1849
- Giovannoni J (2001) Molecular regulation of fruit ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749
- Glazov E, Phillips K, Budziszewski GJ, Schob H, Meins F Jr, Levin JZ (2003) A gene encoding an RNase D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis. Plant J 35:342–349
- Guerineau F, Benjdia M, Zhou DX (2003) A jasmonate-responsive element within the A. thaliana vsp1 promoter. J Exp Bot 54:1153– 1162

- Karakurt Y, Huber DJ (2004) Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (*Citrullus lanatus*) fruit. J Plant Physiol 161:381–388
- Kim IJ, Kahng HY, Chung WI (1998) Characterization of cDNAs encoding small and large subunits of ADP-glucose pyrophosphorylases from watermelon (*Citrullus vulgaris* S.). Biosci Biotechnol Biochem 62:550–555
- Kim SH, Hong JK, Lee SC, Sohn KH, Jung HW, Hwang BK (2004) CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in *Capsicum* annuum. Plant Mol Biol 55:883–904
- Levi A, Galau GA, Wetzstein HY (1992) A rapid procedure for the isolation of RNA from high-phenolic-containing tissues of pecan. HortScience 27:1316–1318
- Li J, Jia D, Chen X (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13:2269–2281
- Lira-Ruan V, Sarath G, Klucas RV, Arredondo-Peter R (2001) Synthesis of hemoglobins in rice (*Oryza sativa* var. Jackson) plants growing in normal and stress conditions. Plant Sci 161:279–287
- Maynard DN (2004) University of Florida, Gulf Coast Research and Education Center—Watermelons Website. http://watermelons. ifas.ufl.edu
- Mignone F, Grillo G, Licciulli F, Iacono M, Liuni S, Kersey PJ, Duarte J, Saccone C, Pesole G (2005) UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 33:141–146
- Naoki Y, Sumiko T, Żyohei N, Akitsugu I, Yasutaka K (2003) Characterization of a novel tomato EIN3-like gene (LeEIL4). J Exp Bot 54:2775–2776
- Oñate-Sánchez L, Singh KB (2002) Identification of arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313– 1322
- Peumans WJ, Proost P, Swennen RL, Van Damme EJM (2002) The Abundant Class III Chitinase Homolog in Young Developing Banana Fruits Behaves as a Transient Vegetative Storage Protein and Most Probably Serves as an Important Supply of Amino Acids for the Synthesis of Ripening-Associated Proteins. Plant Physiol 130:1063–1072
- Richmond T, Somerville S (2000) Chasing the dream: plant EST microarrays. Curr Opin Plant Biol 3:108–116
- Rose JK, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176– 183
- Rodriguez-Amaya DB (1999) Latin American food sources of carotenoids. Arch Latinoam Nutr 49:74–84
- Shi H, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32
- Seymour GB, Taylor JE, Tucker GA (1993) Biochemistry of fruit ripening. Chapman & Hall, London, 442 pp
- Soares MB, Bonaldo MF (1998) Constructing and screening normalized cDNA libraries. In: Detecting genes, vol 2. Cold Spring Harbor Press, Cold Spring Harbor, pp 49–157
- Trainotti L, Zanin D, Casadoro G (2003) A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. J Exp Bot 54:1821–1832
- Tucker ML, Whitelaw CA, Lyssenko NN, Nath P (2002) Functional analysis of regulatory elements in the GenePromoter for an abscission-specific cellulase from bean and isolation, expression, and binding affinity of three TGA-type basic leucine zipper transcription factors. Plant Phys 130:1487–1496
- United States Department of Agriculture (2004) Agricultural statistics. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.
- Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X (2002) A draft sequence of the rice genome (*Oryza* sativa L. ssp. indica). Science 296:79–92