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Abstract A natural shift is taking place in the ap-
proaches being adopted by plant scientists in response to
the accessibility of systems-based technology platforms.
Metabolomics is one such field, which involves a compre-
hensive non-biased analysis of metabolites in a given cell at
a specific time. This review briefly introduces the emerging
field and a range of analytical techniques that are most use-
ful in metabolomics when combined with computational
approaches in data analyses. Using cases from Arabidopsis
and other selected plant systems, this review highlights how
information can be integrated from metabolomics and other
functional genomics platforms to obtain a global picture of
plant cellular responses. We discuss how metabolomics is
enabling large-scale and parallel interrogation of cell states
under different stages of development and defined envi-
ronmental conditions to uncover novel interactions among
various pathways. Finally, we discuss selected applications
of metabolomics.
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Nature produces an astonishing wealth of metabolites with
important biological functions from both primary and
secondary metabolic pathways in plants. Metabolites are
the small molecules produced as intermediates and end-
products of all metabolic processes. It is estimated that
more than 100,000 secondary metabolites are produced by
plants, while the total number is estimated to exceed over
500,000 (Hadacek 2002). To assess this diversity of struc-
turally complex chemical compounds, various approaches
have been initiated in the last decade largely due to the
tremendous advances in the instrumentation and data han-
dling capabilities. Large scale analysis of small molecules
is called metabolomics (See Box 1 for terminologies and
types of metabolomics analyses). In this review, we briefly
describe some of the metabolomics technologies, data han-
dling considerations, metabolomics as a tool for studying
biochemical phenotypes of cells–either singly or in com-
bination with other genomics approaches, its use in under-
standing cellular responses and in uncovering silent pheno-
types, metabolomics of selected pathways and finally other
applications of metabolomics. Along the way, readers are
referred to many excellent reviews on topics not covered in
detail here.

Box 1 “Metabolomics” and Related Terminologies

Most commonly adopted interpretations of terms associ-
ated with this field are presented (Fiehn 2002; Hall et al.
2002; Sumners et al. 2003). Target analysis is restricted
to the substrate and/or the direct product of a specific
metabolic step. This form of metabolite analysis avoids
interfering compounds and utilizes specialized protocols.
A second approach is metabolite (or metabolic) profiling,
where analysis is restricted to the identification and quan-
tification of a selected number of pre-defined metabolites
in a biological sample. Sample preparation and cleanup
are focused on the chemical properties of these com-
pounds. Instead of separating individual metabolites by
physical parameters, focus is on collecting and analyzing
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Fig. 1 Emergence of metabolomics as a functional genomics plat-
form and the anatomy of a robust metabolomics programme. Relative
number of PubMed abstracts (out of 1,340 total) on the three ma-
jor functional genomics platforms (as of April, 2005). Components

of a well planned and systematically performed metabolomics pro-
gramme are listed. Most components are customized based on the
objectives, scope and resources of the programme

data from crude metabolite mixtures to rapidly classify
samples. Lastly, the complete form of metabolite analy-
sis is called metabolomics, where the ultimate goal is of
unbiased identification and quantification of all metabo-
lites present in a sample from an organism grown under
defined conditions. Among all these forms of analyses,
metabolomics is the most promising approach in investigat-
ing metabolic networks and unraveling cellular processes,
as it focuses on quantifying several metabolites individu-
ally hence defining their quantity and quality. Another term,
metabonomics is used frequently in the biomedical (toxi-
cology) literature and for methods involving nuclear mag-
netic resonance spectroscopy. However, “metabolomics” is
a preferred term for unbiased metabolite analyses. A com-
bination of metabolomics analysis with transcriptomics and
proteomics gives the holistic view of the complex interac-
tions between genes and metabolites (Fig. 1). Advances in
sampling, analyzing and computational technologies will
lead to a greater understanding of metabolism than was pos-
sible using other profiling approaches limited to a particular
class of compounds. When combined with theoretical con-
siderations and a modeling-based prediction of outcomes
of changes, metabolomics can provide a pillar for systems
biology. This field holds promise for applications such as
metabolic engineering.

Metabolomics technologies: Sample preparation
and instrumentation

Please refer to items in Box 1 for some of the techniques
available for metabolomics analyses. It is a pre-requisite
for metabolomics analysis that careful consideration be
made of the methods employed for tissue extraction, sam-
ple preparation, data acquisition, and data mining (Fig. 1).

Some practical steps that need to be kept in mind for the
sample preparation include (i) the importance of rapidly
stopping the inherent enzymatic activity of biological sam-
ples, (ii) the state of the tissue at the time of extraction, (iii)
reduction of “averaging effects” due to mixtures of tissues
or cell-types, (iv) the storage conditions of the tissue, al-
though it is believed that under cryopreservation conditions
the metabolic state of the samples can be maintained, but
this may not hold for more labile or volatile compounds, (v)
the choice of extraction buffers has to be compatible with
the final objectives of the analysis, and (vi) development of
robust procedures combined with minimal handling or pre-
processing of samples before chromatography and/or mass
spectrometry analyses.

Recent advances in metabolomics analysis owe primarily
to improvements in the mass spectrometry (MS) technol-
ogy that has resulted in formats that are more user-friendly
and amenable to biologists. Additionally, combination of
mass spectrometry with in-line gas or liquid chromatogra-
phy has increased the efficiency of separation of molecules.
Such multivariate spectrometric detection seems advanta-
geous for quantifying and identifying as many individual
compounds as possible in mixtures of metabolites. Gas
chromatography-MS (GC-MS) and HPLC-MS remain the
popular choice for quantitative and qualitative metabolite
profiling. However, most of the metabolites found in plant
extracts are too nonvolatile to be analyzed directly by GC
methods. The compounds have to be converted to less po-
lar, more volatile derivatives before they are applied to the
GC column. Metabolomics analysis by gas chromatogra-
phy/mass spectrometry (GC/MS) is complementary to ap-
proaches using infrared spectroscopy (Johnson et al. 2000).
An improved chromatographic resolution can be achieved
by using monolithic silica capillary columns. For exam-
ple, C-18 monolithic silica capillary columns in HPLC
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coupled with ion trap mass spectrometry when used for the
detection of metabolome of Arabidopsis showed reduced
ionization suppression by enhanced chromatographic res-
olution (Tolstikov et al. 2003).

Nuclear Magnetic Resonance (NMR) is another poten-
tially very useful technique, since in-principle any chemical
species that contains protons gives rise to signals (Krishnan
et al. 2005). A crude biological extract, however, has many
peaks, leading to overlapped signals and complex profiles
or “fingerprints.” Two-dimensional NMR is often neces-
sary to assign the signals, but one-dimensional 1H-NMR
spectra have been of great value as shown in many medical
applications by Lindon and Nicholson (1997). Also NMR is
used for metabolite fingerprinting method for plants, where
the aim is to look for compositional similarities and explore
the overall natural variability (Fiehn 2002). Some metabo-
lite selection occurs in all methodologies, from initial sol-
vent extraction through chromatography to MS ionization.
Nevertheless, new advances have been made such as the use
of scanning time-of-flight (TOF)-MS coupled with GC sep-
aration and integrated with peak deconvolution software.
This technique can increase the number of metabolites de-
tectable by GC-MS in crude plant extracts from 500 to
1,000. In one example of the use of this technique, the
biochemical mode of action for herbicides and other bioac-
tive compounds was rapidly and simultaneously classified
by automated pattern recognition of the metabolome that
is embodied in the 1H NMR spectrum from crude plant
extracts (Ott et al. 2003). The spectra were classified by
artificial neural network analysis to discriminate herbicide
modes of action. Such combination of NMR metabolite
profiling and neural network classification is expected to
be similarly relevant to other metabolomic applications dis-
cussed here.

A recently introduced technique called Fourier Trans-
form Ion Cyclotron Mass Spectrometry (FTMS) can be
used to study the phenotypic changes associated with
metabolism (Aharoni et al. 2002; Baud-Camus et al. 2001;
see review by Brown et al. 2005). FTMS is capable of non-
targeted metabolic analysis and suitable for rapid screen-
ing of similarities and dissimilarities in large collections
of biological samples, e.g., plant mutant populations and
metabolite compositions in wine (Cooper and Marshall
2001). Separation of the metabolites is achieved solely
by ultra-high mass resolution. Identification of the puta-
tive metabolite or class of metabolites to which it belongs
can then be achieved by determining the elemental com-
position of the metabolite based upon the accurate mass
determination. Relative quantitation is achieved by com-
paring the absolute intensities of each mass using internal
calibration. Integrating the observed metabolic alterations
into hypotheses about changes in biochemical pathways
and gene expression levels are the next goal. In one such
application, tobacco plants expressing a petunia myb reg-
ulator with altered petal color showed metabolite differ-
ences and the FTMS analysis revealed the metabolite to
be cyanidin-3-rhamnoglucoside, a known flower pigment
(Aharoni et al. 2002). In the same study, the authors applied
the FTMS technology to study development stage-specific

accumulation of metabolites in strawberry. This technology
requires specialized skills and equipments not easily acces-
sible to many researchers; however, based on the literature it
seems to be gradually gaining accessibility partly due to the
adoption of the FTMS technology in proteomics analyses.

Computational tools for metabolomics data analysis

Due to the large datasets arising from metabolomics
analyses, a number of tools are available for computa-
tional needs and some others are under development. The
metabolomics spectral formatting, alignment and conver-
sion tool (MSFACTs) is one such example (Duran et al.
2003). This program is used for automated import, refor-
matting, alignment, and export of large chromatographic
data sets to allow more rapid visualization and interroga-
tion of metabolomics data. MSFACTs has been used in
the processing of GC/MS metabolomics data from differ-
ent tissues of the model legume plant, Medicago truncat-
ula, the various tissues such as roots, stems, and leaves
from the same plant could easily be differentiated based
on metabolite profiles. Furthermore, similar types of tis-
sues within the same plant, such as the first to eleventh
internode of stems could also be differentiated based on
metabolite profiles and by using this tool. Another compu-
tational tool, COMSPARI (COMparison of SPectrAl Re-
tention Information) has been developed to facilitate the
identification of minor compounds in complex mixtures
by GC/MS and LC/MS (Katz et al. 2004). The processed
data from metabolomics analyses can then be taken for
statistical analyses. A number of excellent tools are avail-
able, such as—multivariate packages of SAS (SAS Insti-
tute, Cary, NC), Pirouette (Infometrix, Woodinville, WA),
or MATLAB (Mathworks, Inc., Natick, MA). These pack-
ages allow both processing and display of relationships in
the datasets through hierarchical cluster analysis (HCA),
two-dimensional, and three-dimensional (2D/3D) or prin-
cipal component analysis (PCA). Setting-up of the data sets
can, therefore, allow biomarkers to be discovered as well
as allow key differentiating molecules to be identified.

Arising from the need to handle large datasets to-
gether with experimental details, development of ArMet
(www.armet.org) was reported, which is a framework for
the description of plant metabolomics experiments and
their results (Jenkins et al. 2004). This is a data handling
tool for plant metabolomics and allows formal data descrip-
tions, which specify the full experimental context, enable
principled comparison of data sets, allow proper interpreta-
tion of experimental results, permit the repetition of experi-
ments and provide a basis for the design of systems for data
storage and transmission. It is aimed at providing a starting
point for the development of community data standards for
the metabolomics researchers.

Several multivariate methods for classifying and model-
ing analytical data have been used to evaluate metabolite
spectral databases. Among these, simple unsupervised
clustering algorithms and principal components based anal-
yses enable visualization of biological data sets based on
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the inherent similarity/dissimilarity of samples with respect
to their biochemical composition. PCA-based methods
usually constitute the first step in evaluating metabolomics
data. It works extremely well for detecting patterns, trends,
and groups among samples in multivariate data sets as well
as giving an explanation to these sample distributions in
terms of variable influence and efficient means for detect-
ing and explaining deviating samples. Recently, a weighted
PCA (WPCA) model has been put forth to translate spectra
of repeated measurements into weights describing experi-
mental errors thus focusing more on the natural variation in
the data (Jansen et al. 2004). Once a relationship between
the metabolic profile and phenotype has been identified
from the initial analysis, supervised approaches such as par-
tial least squares (PLS) algorithm for data reduction based
on multiple component analysis (SIMCA) and partial least
square—discriminant analysis (PLS-DA) may be imple-
mented with a view to maximizing the separation between
classes and identifying robust markers. Another commonly
used algorithm for understanding metabolite relationships
is “Self Organizing Maps” (SOM) (Kohonen et al. 1997).
SOM analysis can be done to cluster complex data
efficiently, which has proven to be an excellent tool for an-
alyzing global characteristics of genome sequences and for
revealing key combinations of oligonucleotides represent-
ing individual genomes (Abe et al. 2003). SOM analysis is
widely used as a data mining and visualization method for
complex data sets, image processing and speech recogni-
tion, process control, economical analysis, and diagnostics
in pharmaceuticals, medicine and more recently in plant
metabolomics (Kohonen et al. 1997; Markey et al. 2003).

Text-mining for metabolomics researchers
and integration with genomics information

A novel angle presented to the metabolomics researchers is
how to deal with the tremendous increase in the information
generated from the above procedures and link it with the
knowledge available in the existing literature. Till recently,
there were no text mining systems dedicated for plant
biology literature. We have recently developed one such
comprehensive system called the Dragon Plant Biology
Explorer (DPBE) for knowledge extraction form PubMed
documents that integrates information from literature with
the genome and metabolome based information to produce
interactive networks of associations (Bajic et al. 2005)
(http://research.i2r.a-star.edu.sg/DRAGON/ME2/). It can
be used to interrogate various types of cellular and other
plant processes. The tool has been set up such that it can also
help uncover the pharmacological effects of plant natural
products. Users provide the direct output of their PubMed
abstracts arising from their keyword searches. The DPBE
tool can handle tens of thousands of abstracts in routine
analyses. Output is presented both in tabular and interac-
tive networks format.

Co-occurrence of terms in controlled lists of vocabular-
ies is used to develop all the relationships. This tool uses
a combination of lists of gene ontology terms and three

new lists developed for metabolome analyses as part of
its controlled vocabularies. The “Metabolome Explorer”
module contains the lists based on metabolic pathways, en-
zymes and metabolites derived from AraCyc, BRENDA,
KEGG, and other metabolism databases. Metabolomics
researchers have two options for analyses (i) use of the
“Metabolome Explorer” module as described above or (ii)
use of the functional genomics input module. In the latter
case, PubMed abstracts can be collated based on keyword
searches for each of the key metabolite uncovered from
the metabolomics study. Lists can be then selected from
the ones listed above and combined with others on genes,
mutations, gene functions or cellular processes or plant
parts. Hence, a comprehensive picture is obtained linking
metabolites to gene products and other features of plant
form and function. An example of an analysis by DPBE
of PubMed abstracts resulting from keyword searches of
the flavonoids “genistein,” or “rutin” is shown in Fig. 2. A
part of the network is shown to highlight how the network
display allows visualization of multiple aspects of the re-
search field to be linked. Each node can be clicked in the
online version to display the set of corresponding abstracts.
Vocabulary terms found in the abstracts are also appropri-
ately highlighted in color coded forms to allow rapid visual
screening and quickly summarize the relevant information.

Metabolomics as a link between genotype
and biochemical phenotype

Even though the Arabidopsis genome has been completely
sequenced, over 30% of its genes cannot be annotated
by homology to genes in other organisms, and only 9%
have been experimentally characterized (Haas et al. 2005)
(Table 1). Moreover, of the nearly 25% genes believed to
be involved in plant metabolism, most functional charac-
terizations are not based upon rigid biochemical testing.
Genome analysis has allowed uncovering of multiple
forms of enzymes, which are important for generating the
biochemical diversity as discussed earlier. Such a role of

Table 1 Genes encoding enzymes and their regulators in the
Arabidopsis genome: A summary

Categorya Gene ontology
category

Number of
genesb

Percentage of
totalc

Catalytic activity 0003824 6,604 25.2%
Hydrolase 0016787 2,281 8.7%
Kinase 0016301 1,281 4.9%
Transferase 0016740 1,688 6.4%

Others – 1,354 5.2%
Enzyme regulator

activity
0030234 185 0.7%

Adapted from Haas et al. (2005)
aSelected categories of molecular function related to metabolism
bNumber of genes corresponding to the selected categories shown
in column 1
cPercentage values are based on a total of 26,207 protein coding
genes
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Fig. 2 An association network resulting from the analysis of
PubMed abstracts retrieved using keywords for the flavonoids,
“genistein” or “rutin,” by the Dragon Plant Biology Explorer (http:
//research.i2r.a-star.edu.sg/DRAGON/ME2/). The “Metabolome Ex-

plorer” module was chosen and three metabolism-related lists as well
as one for anatomy were used for the analysis. A part of the network
is shown

metabolomics in linking genotype with phenotype has been
reviewed earlier (Fiehn 2002). Together with metabolite
analyses, substrate specificities and catalytic activities
can be studied for the isoforms of various enzymes. Such
overlapping catalytic activities towards different substrates
have been reported for the glucosyltransferase genes in
Arabidopsis (Lim et al. 2000) and O-methyltransferase
genes in Thalictrum tuberosum (Frick and Kutchan 1999).
Overlapping expression pattern of the genes for various
isoforms has been reported for numerous cases, including
the alcohol dehydrogenase gene family members in Vitis
vinifera (Tesniere and Verries 2001). In many cases, gene
duplications give rise to redundant (or partially redundant)
functions, leading to silent phenotypes. Mutational ap-
proaches also may not uncover the function of such genes.
Hence, adoption of metabolomics approaches together
with other functional genomics approaches is highly desir-
able to provide a more comprehensive view of the cellular
processes.

The primary aim of “omics” technologies is the non-
targeted identification of all gene products produced di-
rectly or indirectly (i.e. transcripts, proteins and metabo-

lites) present in a specific biological sample (Fridman and
Pichersky 2005). In one of the early examples of compre-
hensive analyses of plant metabolites, GC-MS analysis was
used to probe the metabolism of Arabidopsis leaves and
close to 326 distinct compounds were distinguished (Fiehn
et al. 2000a). A chemical structure could be assigned to
roughly half of these compounds. Metabolomics approach
was also used in distinguishing the profiles in compounds
of two mutants—one metabolic and one developmental—
in different ecotype backgrounds. The dgd1 mutant that
has reduced digalactosyldiacylglycerol accumulation in
the Col-2 background and the sdd1-1 mutant that has re-
duced stomatal density in the C24 background were pro-
filed (Fiehn et al. 2000b). The Arabidopsis ecotypes were
found to be highly divergent and were distinguishable from
their respective mutants. An interesting finding was that
“metabolic phenotypes” of the two ecotypes were more
divergent, as judged from the principle component analy-
sis, than the mutants were from their respective parental
ecotypes. A detailed statistical evaluation of the data set
showed that there were 41 significant changes in the sdd1-
1 mutant; two of the most significant changes were in
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unknown hydrophilic substances. In the case of the dgd1
mutation, the changes were even more pleiotropic with a
total of 153 significant changes being recorded in compar-
ison to the parental ecotype.

A further example of the ability of metabolic profiling to
reveal unexpected changes associated with genes has come
from efforts to produce a biodegradable plastic, polyhy-
droxybutyrate, in Arabidopsis (Bohmert et al. 2000). One of
the aims of the study was to achieve high levels of polyhy-
droxybutyrate in Arabidopsis leaves. A novel pathway was
introduced for polyhydroxybutyrate synthesis consisting of
three genes from the plant-associated bacterial species, Ral-
stonia eutropha. The approach was successful in generating
the highest levels of polyhydroxybutyrate hitherto recorded
in plants, up to 4% of the leaf fresh weight; however,
routine metabolic profiling of the Arabidopsis leaves re-
vealed rampant pleiotropic changes in organic acids, amino
acids, sugars and sugar alcohols. The origin and full signif-
icance of these changes currently remain a mystery; how-
ever, it is unlikely that they would have been identified if
nor for the broad metabolic profiling strategies available
currently.

Integrated functional genomics approaches in
metabolic pathways studies

Combinations of various functional genomics platforms
have been used to obtain more comprehensive views of
metabolic pathways networks and their regulation by gene
or protein expression. One of the earliest examples was
in the case of the yeast galactose utilization (GAL) path-
way, where a combination of genomics and proteomics
approaches were used to study the effects of metabolic
perturbations using a series of metabolic mutants (Ideker
et al. 2001). Several new control points and interactions
with other pathways were detected. In another example,
the metabolic pathway for the production of the choles-
terol lowering (polyketide-derived secondary metabolite)
drug, lovastatin, was studied in Aspergillus tereus to engi-
neer its pathway (Askenazi et al. 2003). A combination of
microarray and metabolomics methods was used to identify
novel controls of lovastatin biosynthetic pathway, based on
which, genetic tools were designed used for strain improve-
ment.

Integrated approaches have begun to be used in plants
more recently mainly to study the responses to nutritional
or biotic stresses. In one such case, gene-to-metabolite net-
works were described for regulation of sulfur and nitro-
gen nutrition and secondary metabolism in Arabidopsis
(Hirai et al. 2004). In a follow-up paper, the group used
batch-learning SOMs for the purpose of identifying novel
functions (Hirai et al. 2005). Using their approach, novel
desulfoglucosinolate sulfotransferases were identified to be
affected by nutritional stress. Biosynthetic pathways lead-
ing to plant defense response and mechanism towards biotic
stresses have been studied using combined metabolomics
and transcriptomics approaches as discussed below (Kant
et al. 2004).

One of the early and more intensive studies using inte-
grated approaches in ornamental plants was on the reg-
ulation of floral scent production in petunia revealed
by targeted metabolomics (Verdonk et al. 2003). This
study was carried out by applying solid phase micro-
extraction (SPME) techniques coupled to GC-MS analy-
sis. Volatile emission was monitored in vivo using a tar-
geted metabolomics approach. Mature flowers released
predominantly benzenoid compounds of which benzalde-
hyde, phenylacetaldehyde, methylbenzoate, phenylethylal-
cohol, iso-eugenol and benzylbenzoate were most abun-
dant. DNA-microarray analysis revealed that genes of the
pathways leading to the production of volatile benzenoids
were upregulated late during the day, preceding the increase
of volatile emission. RNA-gel blot analyses confirmed that
the levels of phenylalanine ammonia lyase (PAL) and S-
adenosyl methionine (SAM) synthase transcripts increased
towards the evening.

To take integrated approaches one step further, a set of
protocols have been described to handle sequential extrac-
tion of metabolites; proteins and RNA from the same sam-
ples, allowing the data to become suitable for multivariate
data analysis. A detection of 652 metabolites, 297 pro-
teins and clear RNA bands in a single Arabidopsis thaliana
leaf sample was validated by the authors (Weckwerth et al.
2004a). Development of such standardized protocols is go-
ing to help researchers integrate multiple functional ge-
nomics platforms.

Use of metabolomics in studying plant stress
responses

Metabolomics is being increasingly used for understand-
ing the cellular phenotypes in response to various types of
stresses- biotic or abiotic. In addition to the examples dis-
cussed in the above Section on integrated approaches, some
others are discussed here. In one recent study of sulfur defi-
ciency response, general metabolic readjustment was found
(Nikiforova et al. 2005). Mutual influences were found be-
tween sulfur assimilation, nitrogen imbalance, lipid break-
down, purine metabolism, and enhanced photorespiration.
A general reduction of metabolic activity was seen under
conditions of depleted sulfur supply. These observations
together with those of Hirai et al. (2005) discussed in the
previous Section are likely to advance the field of nutri-
tional stress response further. Metabolomics has also been
applied to the case of cold stress response especially in
the pathway involving the central regulator CBF (Cook
et al. 2004). A total of 325 metabolites were upregulated
in cold-treated Arabidopsis ecotype Ws-2 plants. Of these,
256 (79%) also increased in non-acclimated Ws-2 plants
in response to overexpression of C-repeat/dehydration re-
sponsive element-binding factor (CBF)3. As in the case of
sulfur deprivation response, in the cold response also, ex-
tensive reconfiguration was seen. In the case of biotic stress,
biosynthetic pathways involved in plant defense response
and mechanism have been studied using a combination of
metabolomics and transcriptomics approaches (Kant et al.
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2004). Study of induced direct and indirect defense re-
sponses in tomato plants to spider mite infestation were
done using these approaches and were able to detect differ-
ential timing of the two responses at very early stages.

Uncovering silent phenotypes of mutations

Metabolome data can be used to reveal the phenotype
of silent mutations. Plant genome contains thousands of
genes, of which many produce silent phenotypes upon mu-
tation. Intercellular concentrations of metabolites can re-
veal phenotypes of proteins active in metabolic regulation.
Quantification of several metabolite concentrations relative
to the concentration of one selected metabolite can reveal
the site of action in the metabolic network of a silent gene.
Similarly comprehensive analysis of metabolite concen-
trations in mutants, providing “metabolic snapshots” can
reveal functions when snapshots from strains deleted for
unstudied genes are compared to those deleted for known
genes. This strategy has been successfully applied in yeast
by Raamsdonk et al. (2001) and they have named it as
“FANCY”-Functional analysis by co-response in yeast. In
plants, connections of metabolic networks were analyzed
for a silent potato plant line suppressed in expression of
sucrose synthase isoform II (Weckwerth et al. 2004b). De-
spite the silent phenotype, metabolic perturbations were
identified in carbohydrate and amino acid metabolic path-
ways even when no differences in average metabolite levels
were found.

Targeted metabolomics analyses of selected pathways

We briefly discuss a selected secondary metabolism
pathway based on the diversity of its metabolites in the
model plant Arabidopsis. The term “phenylpropanoid”
is mostly used to refer to any compound bearing a
3-carbon chain attached to 6-carbon aromatic ring (C6–C3
compounds). Majority of the phenylpropanoids are derived
from cinnamic or p-coumaric acids. Plants have the unique
ability to divert large amounts of carbon from aromatic
amino acid from shikimate pathway metabolism into the
biosynthesis of natural products based on a phenylpropane
skeleton. These diverse phenylpropanoid compounds
which include flavonoids, lignin, coumarins and many
small phenolic molecules, have multiplicity of functions
in structural support, pigmentation, defense and signaling.
Biosynthesis of phenylpropanoid compounds is not only
activated in specific tissues and cell types, but also in
response to environmental stresses such as by wounding,
pathogen infection, and/or UV irradiation.

Recent work has shown that plants exude large amounts
of secondary metabolites of which phenylpropanoids form
the majority. Metabolomics analysis was recently described
for the root exudates of Arabidopsis (Narasimhan et al.
2003). Of the 149 hydrophobic compounds identified in the
exudates, 125 were secondary metabolites and 76% of these
were phenylpropanoid compounds. Secondary metabolite

profiles of some of the metabolic mutants in the study were
significantly different from that of the wild type plants
(Fig. 3). These observations taken together with those
from stress responses discussed above point to the fact
that metabolic pathways can undergo system level read-
justments in response to genetic or external perturbations.

A noteworthy development in the field of metabolomics
has been its integration with the quantitative genetics field.
In one such series of studies, Kliebstein et al. (2001a,b)
carried out investigations on the inheritance patterns of glu-
cosinolates in Arabidopsis and found it to be under quan-
titatively inherited. It will be interesting to note further de-
velopments in the merger of these two fields as it will have
a bearing on the nutritional improvement of many crops.

While we have mostly used examples drawn from
the model plant Arabidopsis, some other plant systems
have emerged as highly suitable models for genomics
and metabolomics work. Legumes are a good source
of isoflavonoids and other valuable phenylpropanoid
compounds. These compounds include isoflavones such
as genistein, diadzein falvanones such as hesperetin and
others. They are also important in agriculture as key
metabolites involved plant-microbe interaction. Medicago
truncatula is the model plant for molecular and genetic
studies of legumes. Legumes are important agricultural
protein crops, and contribute to the biological fixation
of nitrogen. Legumes offer unique opportunities for the
study of plant-microbe interactions. Furthermore, legumes
synthesize several unique (pharmaceutical interesting)
compounds, such as iso-flavonoids, triterpenes, alkaloids,
and phytosterols.

One major application of metabolomics in studies
associated with legumes is on nodule cell differentiation.
Unlike roots, which acquire a range of essential mineral
nutrients from the soil, nodules are specialized in nitrogen
acquisition and are produced only when mineral nitrogen
is limiting. Such specialization might be expected to be
reflected by a more streamlined metabolism, carried out by
fewer proteins and orchestrated by fewer genes. A GC-MS
based approach was used to profile metabolites present in
nodules and other organs of Lotus (Raamsdonk et al. 2001).
Detailed analysis of nodule and root metabolite profiles
will help to identify novel aspects of nodule metabolism
that underpin symbiotic nitrogen fixation. For example
comparison of root and nodule transcript levels in Lotus un-
covered nodule-induced genes encoding enzymes that have
not previously been associated with symbiotic nitrogen fix-
ation. Quantification of the reactants and products of these
enzymes may provide some insight into their importance
in nodules. Metabolomics is also likely to prove useful in
analyzing the nodule phenotypes of symbiotic interactions
formed with either mutants of bacteria or plants.

Other applications of metabolomics approaches

A number of applications of metabolomic analyses, where
genetics could play a major role, can be imagined. Some
are more obvious—such as (i) metabolic engineering of
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Fig. 3 Metabolomics analysis
of root exudates from
Arabidopsis Landsberg erecta
ecotype (wild type) using a
combination of HPLC and mass
spectrometry (MS). A
Distribution of phenolic
compounds in the HPLC
profiles is uncovered by mass
spectrometry analysis of
individual fractions. Related
compounds generally elute in
HPLC in adjacent fractions B
indoles and lignin monomers;
Indole-3-acetic acid (m/z
175.18), syringaldehyde (m/z
182.18), camalexin (m/z 202.5)
C flavonols and flavonoid
aglycones; kaempferol (m/z
286.24) quercitin (m/z 302.4) D
indole and glucosinolate
conjugates; methyl IAA glucose
(m/z 365), sinapoyl glucose (m/z
386) and E flavonol and
cyanidin glucosides: cyanidin
glucoside (507.5) and quercetin
3-O-rutinoside (m/z 633).
Spectra were taken in the
positive mode of an electrospray
ionization triple-quadrupole
mass spectrometer

valuable biochemical pathways; (ii) enhancing the nutri-
tional value of foods; (iii) decreasing the need for pesticide
or fertilizer application or (iv) engineering of pathways
needed for the production of pharmaceuticals in plants
(Giddings et al. 2000). Other fields of applications are
less obvious. For example, metabolomics studies could be
applied for assessing the substantial equivalence of genet-
ically modified organisms if the metabolic phenotypes of
a variety of well-known cultivars (that are commonly be-
lieved to be safe) are compared to transgenic plants. In addi-
tion, metabolomics can have a deep impact in understand-
ing metabolism, for example, for the prediction of novel
metabolic pathways, and to describe cellular networks in
vivo. Three such applications are briefly discussed here.

Identification of uncommon phytochemicals

Metabolomics can be used to identify uncommon plant
metabolites. In one case, GC/MS method was used for
qualitative and quantitative detection of 150 compounds in
Arabidopsis (Fiehn et al. 2000a). Fifteen uncommon plant
metabolites were identified later from these compounds

(Fiehn et al. 2000b). A study of selected ecotypes and
mutants showed the power of this method for functional
genomics (Fiehn et al. 2000a). The number of metabolites
that can be identified in a single analysis has been growing
and more than 500 compounds can be identified currently
using techniques such as FT-MS as described above. Novel
transferases in the glucosinolate pathway were recently de-
scribed using the FTMS approach (Hirai et al. 2005).

Classification and quality control of phytomedicines

Recently, phyotmedicines have acquired great importance
in the drug industry. To improve the accuracy and
consistency of control phytomedicines worldwide new
analytical methods for their stricter standardization are
being employed. Such methods are both objective and
robust, addressing the reproducibility of the content
of the chemical profiles. These requirements can be
met by NMR-based metabolomics which combines
high resolution (1)H-NMR spectroscopy with chemo-
metrics analyses. In one such application, chamomile
flower extracts were analyzed from three different
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geographical regions and used to study the effects of
regional differences on composition of the extracts (Wang
et al. 2004). This metabolomics strategy can prove to be an
efficient tool for the quality control and authentication of
phytomedicines.

Assessment of the substantial equivalence of
genetically modified organisms

One distinct field of applications includes assessment of
the substantial equivalence of genetically modified organ-
isms (World Health Organization 2000). Metabolic pheno-
types of a variety of well-known cultivars that are com-
monly believed to be safe are compared with those of
transgenic plants to demonstrate substantial equivalence.
Chemical fingerprinting has been used for the evaluation
of unintended secondary metabolic changes in transgenic
food crops. An off-line combination of 400 MHz proton
(H1)-NMR spectroscopy and liquid chromatography was
used for the multi-component comparison of low molec-
ular weight compounds in complex plant matrices (Note-
burn et al. 2000). Metabolomics techniques involving NMR
spectroscopy were used to identify any unintended effects
of modifications (Le Gall et al. 2003). In a recent review,
a detailed discussion is provided of unintended effects and
their detection in genetically modified plants using recent
approaches such as metabolomics (Cellini et al. 2004).

Conclusions

Recent advances in analytical chemistry instrumentation
combined with data handling capabilities has led to the
adoption of metabolomics by a growing number of bi-
ologists, including plant scientists. Metabolomics, there-
fore, has emerged as the third component of functional
genomics, following the prior starts in the fields of ge-
nomics and proteomics. It is helping plant biologists to un-
derstand a number of plant processes and study responses
by combining genomics and biochemical phenotyping ca-
pabilities. Such integrated approaches are not only helpful
in assigning functions to a large class of function-unknown
(or FUN) genes and their interactions with other pathways,
but are also useful in applications such as metabolic engi-
neering and assessment of genetically modified plants. As
part of a more recent emerging area, robust and carefully
collected data generated from metabolomics can be com-
bined with computationally-intensive approaches based on
modeling of pathways to steer this field towards systems
biology, which promises to provide an integrated view of
the cellular processes.
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