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Abstract
The aim of the study was to create the efficient tool for semi-automated detection of bone marrow oedema lesions in patients 
with axial spondyloarthritis (axSpA). MRI examinations of 22 sacroiliac joints of patients with confirmed axSpA-related 
sacroiliitis (median SPARCC score: 14 points) were included into the study. Design of our algorithm is based on Maksymow-
ych et al. evaluation method and consists of the following steps: manual segmentation of bones (T1W sequence), automated 
detection of reference signal region, sacroiliac joint central lines and ROIs, a division of ROIs into quadrants, automated 
detection of inflammatory changes (STIR sequence). As a gold standard, two sets of manual lesion delineations were created. 
Two approaches to the performance assessment of lesion detection were considered: pixel-wise (detections compared pixel by 
pixel) and quadrant-wise (quadrant to quadrant). Statistical analysis was performed using Spearman’s correlation coefficient. 
Correlation coefficient obtained for pixel-wise comparison of semi-automated and manual detections was 0.87 (p = 0.001), 
while for quadrant-wise analysis was 0.83 (p = 0.001). The correlation between two sets of manual detections was 0.91 for 
pixel-wise comparison (p = 0.001) and 0.88 (p = 0.001) for quadrant-wise approach. Spearman’s correlation between two 
manual assessments was not statistically different from the correlation between semi-automated and manual evaluations, both 
for pixel- (p = 0.14) and quadrant-wise (p = 0.17) analysis. Average single slice processing time: 0.64 ± 0.30 s. Our method 
allows for objective detection of bone marrow oedema lesions in patients with axSpA. The quantification of affected pixels 
and quadrants has comparable reliability to manual assessment.

Keywords  Spondylarthritis · Sacroiliitis · Sacroiliac joint · Ankylosing spondylitis · Magnetic resonance imaging · 
Algorithms · Diagnostic imaging

Introduction

Axial spondyloarthritis (axSpA) is an inflammatory rheu-
matic condition, involving primarily an axial skeleton and 
progressively leading to the sacroiliac, intervertebral and 
facet joint immobilization [1]. The definition of active 
sacroiliitis in MRI, fulfilling the ASAS (Assessment in 
SpondyloArthritis international Society) criteria, is bone 
marrow oedema visible on T2-weighted sequence sensi-
tive for free water (e.g., STIR sequence) or bone marrow 
enhancement (osteitis) present on T1-weighted sequence 
after contrast media administration. The lesion should be 
located periarticularly in a subchondral bone, and must be 
visible on the two consecutive slices of MRI examination 
or on only one slice if at least two lesions are noticeable 
[2]. Nonetheless, the assessment of active sacroiliitis in 
MRI is not an easy task, especially when lesions are small. 
The inter-rater agreement on the presence of ‘positive 
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MRI’ according to ASAS criteria is substantial (κ = 0.73), 
yet it is still unsatisfactory [3].

Computer-aided detection (CAD) is one of the fast-
est developing technologies in Radiology. Fundamental 
advantages of these systems in Radiology are a short-
ening of an examination assessment time, an increase 
in radiologists’ productivity as well as a reduction of 
errors incidence due to enlarged objectivity of examina-
tion evaluation [4]. CAD has not gained much popularity 
in Rheumatology as yet. The majority of existing solu-
tions focuses on the evaluation of some features of such 
diseases as rheumatoid arthritis (RA) and osteoarthritis 
(OA). Regarding axSpA, only one tool has been devel-
oped, which enables for the semi-automated quantification 
of active sacroiliitis in MRI [5]. However, the primary 
drawback of this method is that it requires manual selec-
tion of lesions (software only detects their contours) and 
does not detect lesions missed by the observer [5]. So far, 
any software allowing for the detection of bone marrow 
oedema lesions in MRI, which do not require their manual 
selection, has not been designed yet, even though the need 
is large [6].

The aim of our study was to create the efficient tool for 
the semi-automated detection of bone marrow oedema 
lesions in patients with axSpA.

Material and methods

Material

The study obtained an approval from the Institutional Bio-
ethics Committee (No. of approval: 1072.6120.156.2018, 
date of approval: 22nd June 2018).

MRI examinations of 22 sacroiliac joints of patients with 
confirmed sacroiliitis in the course of axSpA were included 
into this retrospective study.

Methods

Imaging protocol

All examinations were performed with using 3.0 Tesla MRI 
scanner (Achieva, Philips Healthcare, Amsterdam, The 
Netherlands) and 8-channel phased-array XL-torso body 
matrix coil. To further analysis, only T1-weighted and STIR 
(short tau inversion recovery) sequences were included. Both 
sequences were acquired in the coronal oblique plane, paral-
lel to the long axis of sacral bone and the position of patient 
remained unchanged during their acquisition time. Detailed 
scan parameters were:

•	 for T1-weighted turbo spin echo (TSE) sequence—TR 
500 ms, TE 14 ms, flip angle 90, NEX 1, slice thickness 
3 mm, matrix 560 × 560, FOV 240 × 240 × 71,

•	 for STIR TSE sequence—TR 5239 ms, TE 30 ms, inver-
sion time 190 ms, flip angle 90, NEX 2, slice thickness 
3 mm, matrix 400 × 400, FOV 240 × 240 × 71.

Sample 2D image from T1-weighted sequence (Fig. 1a), 
with corresponding image from STIR sequence (Fig. 1b), 
are presented in Fig. 1.

Image processing

Each three-dimensional (3D) MRI examination analysed in 
the present study consists of a sequence of various num-
ber of two-dimensional (2D) slices (between 18 and 24), 
which were assessed separately. The design of our algorithm 
was based on the method of systematic evaluation of active 
inflammatory changes in sacroiliac joints described by Mak-
symowych et al. [7].

The semi-automated algorithm for the detection of bone 
marrow oedema consisted of following steps:

1.	 Manual segmentation of the sacral bone and visible parts 
of both iliac bones on T1-weighted sequence images in 
Segmentation Editor plugin for ImageJ (National Insti-
tutes of Health, Bethesda, MD, USA). A unique label 
was assigned to each of bones.

2.	 Detection of reference signal region.
	   The central axis of the sacral bone was found and 

all sacrum pixels, which were closer to the central axis 
than some user-selected distance REFTH were marked as 
belonging to the reference signal region.

3.	 Detection of sacroiliac joint central lines.
	   The distance to the iliac and sacral bone for each non-

bone pixel was calculated. Then, an absolute value of 
the difference of these two distances was assigned to 
each of non-bone pixels. Pixels at the central line of the 
joint were equidistant to sacral and iliac bone, and there-
fore zero values were assigned to them. Next, Dijkstra’s 
shortest path algorithm was used to find central joint 
lines.

4.	 Detection of regions of interest (ROIs).
	   ROIs were defined as parts of bone adjacent to joint 

surfaces on some user-specified distance, where algo-
rithm searched for inflammatory changes. First, bony 
borders of joint surfaces were determined, which were 
simply projections of sacroiliac joints central lines on 
the surface of both sacral and iliac bones. Subsequently, 
separately for each bone, distances from pixels compos-
ing the bone to its joint surface were calculated. All pix-
els for which the distance was less than 10 mm were 
assigned to ROI of this bone.
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5.	 Division of ROIs into quadrants.
	   A midpoint of the central line of each sacroiliac joint 

was set and a straight line, perpendicular to the central 
line of the joint and passing through its midpoint, was 
determined to divide ROIs into upper and lower quad-
rants.

6.	 Detection of inflammatory changes.
	   Because the position of patient during the acquisi-

tion of T1-weighted and STIR sequence was unchanged, 
the reference region and quadrants determined on 
T1-weighted sequence images were transferred into 
STIR sequence images. A sample mask containing 
segmented bones with marked reference signal region, 
sacroiliac joint central lines, and quadrants is shown 
in Fig. 1c. To detect bone marrow oedema on STIR 
sequence images, a set of R reference pixels from the 
reference region was assigned to each pixel within ROI. 
Next, mean and standard deviation of the signal intensity 
of the reference set was computed. Subsequently, we 
calculated the test statistics, equal to the difference of 

signal intensity in the tested pixel and mean intensity 
of the reference set divided by the standard deviation of 
the reference set. If the test statistics exceeded a user-
selected threshold TH, the presence of bone marrow 
oedema was detected in the tested pixel.

Only the first step was performed manually, steps 2–6 
were fully automated. Detailed description of image pro-
cessing in steps 2–6 is presented in Online Resource 1.

Manual detection of lesions

As a gold standard for comparison of our algorithm’s per-
formance, two sets of manual delineations of bone marrow 
oedema lesions of all patients were created using Segmen-
tation Editor plugin for ImageJ. All manual segmentations 
were produced by two independent radiologists, who did 
not contact with each other during the process of lesion 
identification.

Fig. 1   a A sample image from T1-weighted sequence, b correspond-
ing image from STIR sequence, c a mask containing segmentation of 
bones with marked reference signal region (vertical dark grey strip) 
and 8 quadrants (brighter grey tones), d results of bone marrow 

oedema detection (yellow) by our algorithm for R = 1000, REFTH = 10 
and THOPT = 1.5, e for R = 1000, REFTH = 10 and THOPT = 3.5 (green) 
with marked reference region (purple) and quadrants, f and manual, 
by the radiologist (red)



628	 Rheumatology International (2020) 40:625–633

1 3

Statistical analysis

To evaluate the results of semi-automated detection of bone 
marrow oedema, they were compared with the results of man-
ual detection. Two approaches to the performance assessment 
of semi-automated lesion detection were considered. First, in 
a pixel-wise analysis, manual and semi-automated detections 
were compared pixel by pixel and pixel-wise false-positive 
and true-positive rates were determined in the function of the 
threshold TH. Second, in a quadrant-wise analysis, the manual 
and semi-automated detections were compared quadrant to 
quadrant. Optimal values of REFTH, R, and TH for semi-auto-
mated lesion detection were determined based on ROC curve 
analysis and Youden’s statistics. Manual detections of inde-
pendent readers were also compared in pixel- and quadrant-
wise manner. The normality of data distribution was evaluated 
prior to correlation analysis with the use of Shapiro–Wilk test. 
Basing on the results of the normality test, correlation analysis 
was conducted with the use of Spearman’s rank correlation 
coefficient to determine the association between the results of 
different measurement series (semi-automated vs. manual and 
manual vs. manual). Statistical analysis is described in details 
in Online Resource 2.

Results

Overall, 54.5% (n = 6) of patients included in the study 
were male. The median age of patients was 31 years (range 
18–38 years). The median SPARCC score of patients was 14 
points (range 2–89). Inflammatory back pain was present in 
90.9% of our patients (n = 10), peripheral arthritis in 45.5% 
of them (n = 5) and HLA-B27 haplotype was detected in 
27.3% (n = 3) of them. Moreover, 18.2% (n = 2) of patients 
had a family history of SpA, 18.2% (n = 2) of them suffer 
from enthesitis and 9.1% (n = 1) of them had inflammatory 
bowel disease.

First, we analysed ROC curves (Fig. A1 in Online 
Resource 3) generated for the basic version of our algorithm, 
designed strictly according to standard procedure proposed 
by Maksymowych et al.—that is, the reference signal in 
the midline of the sacral bone was determined at the same 
level and slice as analysed pixel located in ROI. Generally, 

AUC was enlarging with increasing REFTH and R, and the 
values R = 1000 points, REFTH = 10 mm were identified as 
the most optimal. The area under the pixel-wise ROC curve 
corresponding to REFTH = 10 and R = 1000 was equal to 
0.899 [standard error (SE) < 0.001] for Reader 1 and 0.879 
(SE < 0.001) for Reader 2. Next, the area under the quadrant-
wise ROC curve, also for REFTH = 10 and R = 1000, equalled 
to 0.876 (SE = 0.016) for Reader 1 and 0.870 (SE = 0.016) 
for Reader 2. There was no statistically significant difference 
between the area under the pixel-wise and the quadrant-wise 
ROC curves (p = 0.16 for comparison of the biggest and the 
smallest aforementioned AUC). In the next step, Youden’s 
statistics in function of the threshold value THOPT were cal-
culated for pixel- and quadrant-wise ROC curves (Fig. A2 in 
Online Resource 3). Set values of optimal thresholds, their 
sensitivity, and specificity are shown in Table 1.

Further, the correlation between semi-automated and 
manual detections was evaluated. First, Shapiro–Wilk test 
was performed to assess normality and neither the number 
of pixels nor quadrants with inflammatory lesions had nor-
mal distribution (p < 0.001 in all cases). For this reason, 
Spearman’s rank correlation coefficient was used both for 
pixel- and quadrant-wise analysis. The results of semi-auto-
mated bone marrow oedema detection by our algorithm for 
R = 1000, REFTH = 10 and THOPT = 1.5 (Fig. 1d), R = 1000, 
REFTH = 10 and THOPT = 3.5 (Fig. 1e) and manual, by the 
radiologist (Fig. 1f) are depicted on Fig. 1. Graphs showing 
the total number of pixels/quadrants with lesions detected 
by our algorithm for R = 1000, REFTH = 10 and THOPT = 1.5 
(pixel-wise comparison) as well as THOPT = 3.5 (for quad-
rant-wise comparison) plotted against the total number of 
pixels/quadrants with lesions detected manually are pre-
sented in Fig. 2. The correlation between semi-automated 
and manual detections was slightly stronger for the pixel-
wise than for quadrant-wise analysis—details regarding the 
strength of correlation are presented in Table 2. 

In several sections from MRI examination of some 
patients, the number of pixels in the midline of the sacral 
bone was not sufficient to perform the standard analysis of 
the reference signal and therefore the detection of inflam-
matory lesions on these sections could not be performed. 
In consequence, we decided to develop the second method 
of the reference signal calculation, namely, as an average 

Table 1   Optimal thresholds, their sensitivity, and specificity for both methods of reference signal calculation

Reference signal range Comparison type Optimal thresh-
old (THOPT)

Sensitivity Specificity

Reader 1 (%) Reader 2 (%) Reader 1 (%) Reader 2 (%)

Limited set of reference pixels Pixel-wise 1.5 86 79 86 89
Quadrant-wise 3.5 80 75 86 88

Reference signal from the entire 
reference region

Pixel-wise 1.5 87 78 90 92
Quadrant-wise 2.5 89 82 81 84
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of the reference signal from the entire reference region 
RREF of some user-selected thickness REFTH. For this 
method, ROC curves generated for REFTH = 10 mm, both 
for pixel- and quadrant-wise analysis, provided the biggest 
AUCs. The area under the pixel-wise ROC curve was equal 
to 0.925 (SE < 0.001) for Reader 1 and 0.897 (SE < 0.001) 
for Reader 2, while under the quadrant-wise ROC curve 
was at the level of 0.904 (SE = 0.014) for Reader 1 and 
0.889 (SE = 0.014) for Reader 2. Optimal thresholds, their 
sensitivity, and specificity for pixel- and quadrant-wise 
comparison are presented in Table 1. In this case, cor-
relation between semi-automated and manual detections 
was slightly higher for the pixel-wise analysis than for 

quadrant-wise comparison, but as in the first method, 
the difference is minimal—detailed results are grouped 
in Table 2. This method of reference signal calculation 
enabled to obtain an improvement of algorithm perfor-
mance for pixel-wise comparison (p < 0.001 for AUCs 
difference), as opposed to the quadrant-wise comparison, 
for which the difference was not statistically significant 
(p ≥ 0.05 for AUC difference).

The correlation between manual detections of bone mar-
row oedema lesions performed by two independent observ-
ers was also evaluated in pixel- and quadrant-wise manner 
(Fig. 3). Spearman’s correlation coefficients for pixel- and 
quadrant-wise comparisons are presented in Table 2.

Fig. 2   a, b The total number of pixels with lesions as detected by the 
algorithm for R = 1000, REFTH = 10 and THOPT = 1.5, plotted against 
the total number of pixels with lesions as detected manually by a 
Reader 1 and b 2. c, d The total number of quadrants with lesions as 

detected by the algorithm for R = 1000, REFTH = 10 and THOPT = 3.5, 
plotted against the total number of quadrants with lesions as detected 
manually by c Reader 1 and d 2

Table 2   Correlation between different detection methods both for pixel- and quadrant-wise comparisons

Comparison type p value Correlation coefficient 
(r)

95% confidence interval 
of r

Reader 1 Reader 2 Reader 1 Reader 2

Semi-automated vs. manual (limited reference region) Pixel-wise 0.001 0.86 0.87 0.79–0.91 0.83–0.92
Quadrant-wise 0.001 0.83 0.82 0.75–0.89 0.73–0.88

Semi-automated vs. manual (whole reference region) Pixel-wise 0.001 0.86 0.90 0.79–0.91 0.85–0.93
Quadrant-wise 0.001 0.77 0.76 0.66–0.85 0.65–0.84

Manual (reader 1) vs. manual (reader 2) Pixel-wise 0.001 0.91 0.86–0.94
Quadrant-wise 0.001 0.88 0.81–0.92
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Spearman’s correlation coefficient for comparison 
between the two manual assessments in terms of the number 
of lesion pixels was not statistically different from coeffi-
cients achieved for the comparison between semi-automated 
and manual detections for both methods of reference signal 
calculation (0.91 vs. 0.86 for the first method, 0.91 vs. 0.86 
for the second method; p = 0.140 in both cases). Moreover, 
there was not any statistically significant difference in Spear-
man’s coefficient between the one determined for compari-
son of two manual assessments of the number of affected 
quadrants and achieved for comparison of semi-automated 
and manual assessments for the basic method of reference 
signal calculation (0.88 vs. 0.82, p = 0.170). In the case of 
the second method of reference signal computation (over the 
entire reference region), Spearman’s correlation coefficient 
for quadrant-wise comparison of two manual delineations 
was significantly higher than for the comparison of manual 
and semi-automated detections (0.88 vs. 0.76, p = 0.020).

The average processing time for a single slice was equal 
to 0.64 ± 0.30 s for R = 1000 and below 0.1 s for an entire 
RREF set for REFTH = 10 mm on a PC with 8 GB RAM and 
Intel® Core i7-5500U 2.40 GHz CPU, without including the 
time required for manual segmentation of iliac and sacral 
bones (30–45 min).

Discussion

The automation of the process of bone marrow oedema 
detection is a highly difficult task. The definition of the bone 
marrow oedema lesion developing in the course of axSpA 
[2] seems to be specific, yet after thorough analysis it is 
obvious that there are some issues that remain unclear, such 
as the exact interpretation of the term ‘highly suggestive 
of axSpA’. To increase reliability of sacroiliitis assessment, 
Maksymowych et al. created SPARCC (SpondyloArthritis 
Research Consortium of Canada) score and disambiguated 
the rules of active sacroiliitis evaluation [7]. Nonetheless, it 

is undoubtedly difficult to perform the examination assess-
ment with the use of SPARCC scoring method in a reason-
able time and completely objectively using only the human 
eye. However, these objectives were met by our semi-auto-
mated algorithm, which credibility was proven to be com-
parable to the results of manual assessments. The biggest 
similarity to the agreement between two manual readers 
was observed for the detection of inflammatory lesion pixels 
regardless of the method of reference signal acquisition as 
well as for the detection of quadrants affected by bone mar-
row oedema using the basic method of reference signal cal-
culation. Both detection of all pixels belonging to the poten-
tial lesion and quadrants affected by the inflammation have 
similar performance, but their application could be different. 
Focusing detection on particular pixels enables to detect and 
highlight areas suspected of bone marrow oedema presence 
and therefore radiologist can verify the actual significance 
of detected changes and easily describe examination results. 
Concentration on the detection of altered quadrants may be 
a good tool for a quick quantitative assessment of inflamma-
tion extent as well as a valuable help to speed up SPARCC 
score calculation. Both SPARCC score and the number of 
affected quadrants could be used as a quantitative measure 
to monitor disease activity during the treatment or clinical 
studies, as both these techniques have comparable reliability 
(ICC for the number of affected quadrants: 0.47, ICC for 
SPARCC: 0.55) [8, 9]. Thus, these scoring systems could 
be used interchangeably and the most convenient method 
should be chosen individually.

Our analysis confirms that both methods of reference sig-
nal acquisition have similar credibility—the calculation of 
the mean intensity of limited number of pixels on the same 
level as particular pixel within ROI, as well as averaged 
intensity over the whole reference region. On the contrary, 
intensity comparison during manual assessment is highly 
estimated, which gives the opportunity to make mistakes in 
evaluation of the presence and the extent of bone marrow 
oedema lesions. There is a vast range of situations, which 

Fig. 3   The total number of pixels (a) and quadrants (b) with lesions as detected by two independent manual readers
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may mislead the radiologist—for instance, the signal inten-
sity of bone marrow in the midline of the sacral bone could 
be highly heterogeneous (Fig. 4a), or the lesion could consist 
of two parts—well-marginated of very high intensity and 
surrounding it large, blurred, less intense area (Fig. 4b). In 
the first case, the radiologist could use tools provided by a 
medical image viewer allowing for the calculation of the 
mean intensity inside the user-selected ROI and then manu-
ally compare values between the suspected lesion and the 
midline of the sacral bone. Regrettably, this method is time-
consuming, especially when a patient has many suspicious 
areas within the sacroiliac joints, as well as there still could 
be a problem of the absent midline part of the sacrum, due to 
its shape. In the second case, the risk of the diagnostic mis-
take is high, as only well-marginated, highly hyperintense 
part of a change might draw the attention of the evaluating 
radiologist, and hence the magnitude of the lesion would be 
underestimated. The second problem was solved by Zarco 
et al. tool which was invented for the semi-automated detec-
tion of bone marrow oedema borders and further lesions 
scoring [5]. The concept of this software is completely dif-
ferent from ours, as it requires the mouse-click within the 
suspected change to detect its actual borders, basing on pre-
determined tolerance range. Hence, this software does not 
provide the objectivity regarding lesions detection, as an 
observer might unintentionally omit some small changes.

The mean analysis time per single slice was 0.64 s for 
reference region limited to 1000 pixels and < 0.1 s for entire 
reference region. MRI of sacroiliac joints performed in our 
centre consists of 18–22 slices (for slice thickness equal to 

3 mm) and the joint space is visible on approximately 8–12 
slices. In consequence, an analysis time of the whole MRI 
examination of one patient is up to 10 s for our technique, 
which is faster than median analysis time of Zarco et al. 
method—28 s [5]. Processing time reduction for the sec-
ond method of reference signal calculation is a result of an 
identical average reference signal intensity and its standard 
deviation for all tested pixels. Therefore, an analysis time of 
whole SIJ examination for this method of reference signal 
acquisition is up to 2 s, which is an excellent result. Never-
theless, the biggest limitation of our method is that before 
the automated detection of inflammatory changes it requires 
manual preparation of segmentations of bones forming the 
sacroiliac joints. This procedure is highly arduous, and it 
took our experts approximately between 30 and 45 min to 
perform these segmentations. At this point in time, it hinders 
the implementation of our method in daily clinical prac-
tice, but our team is currently working on an algorithm for 
automated detection of bones forming these joints. Up to 
now, any study describing segmentation method of bones 
in the sacroiliac joints region on MRI images has not been 
published. The first obstacle to the development of this 
technique is the fact that STIR sequence cannot be used to 
bone segmentation purposes, as clear boundaries are not 
visible between bones and some soft tissue structures, for 
instance the insertion of piriformis muscle to the sacrum. 
Preferred MRI sequence to the assessment of joints ana-
tomical structure is T1-weighted sequence and it was used 
in previous studies to the automated segmentation of wrist 
bones [10, 11]. The simplest solution of this problem may 

Fig. 4   a Heterogeneous signal intensity of bone marrow in the mid-
line of sacral bone visible on STIR sequence. b Large bone marrow 
oedema lesion within the left iliac bone, which consists of two parts: 

small, well-marginated of very high intensity (arrow) and surround-
ing it large, blurred, less intense area (asterisk)—STIR sequence
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be the detection of active sacroiliitis signs on T1-weighted 
sequence after contrast media administration, which is also 
included in ASAS criteria regarding the positive MRI defini-
tion [2]. Nonetheless, the use of gadolinium-based contrast 
media is linked with potential adverse events [12], and there-
fore sequences with contrast enhancement should be avoided 
when equally reliable alternative, such as STIR sequence, 
is available. Next obstacle is that to transfer segmentations 
between T1-weighted sequence and STIR, some technical 
parameters (as slice thickness) and patient position must 
be identical, what not always is achievable. Conversely, the 
accurate method of sacroiliac region bones segmentation and 
sacroiliitis detection was developed for computed tomogra-
phy by Shenkman et al.—however, bones are clearly visible, 
hyperdense structures in this type of examination and their 
segmentation could be performed easily using thresholding 
method [13]. Moreover, computed tomography enables to 
visualize only late, irreversible changes within the sacro-
iliac joints (erosions, sclerosis, ankylosis) and is not recom-
mended by ASAS to the diagnostics of axSpA in the early 
stage [14].

Currently, ASAS axSpA classification criteria consider 
bone marrow oedema as the only lesion which fulfils the 
definition of positive MRI [2] and this was the reason why 
we decided to design an algorithm detecting this kind of 
active inflammatory changes. However, next limitation of 
our method is that the presence of bone marrow oedema 
within the sacroiliac joints is not pathognomonic for axSpA 
and it could be visible in patients with non-specific back 
pain (up to 23% of cases), women in the postpartum period 
(21–41%), athletes (30–41%), soldiers (36%) and healthy 
volunteers (up to 7%) [15-19]. For this reason, investiga-
tors are searching for the perfect combination of changes 
within the sacroiliac joints, which will increase the specific-
ity of axSpA diagnosis with the use of MRI. Recent reports 
suggest the combination of the presence of bone marrow 
oedema and chronic structural lesions (such as erosion, fatty 
infiltration or sclerosis) in at least two to three quadrants 
increases the specificity of axSpA diagnosis without the 
decline in sensitivity, in comparison to the bone marrow 
oedema presence alone [20, 21]. Hence, the tool for auto-
mated detection of structural changes within the sacroiliac 
joint should also be developed in the future.

Another limitation of our method, which is universal for 
all CAD systems, is the presence of the automation bias. 
This phenomenon is described as the tendency of over-reli-
ance on automated systems, which leads to increased inci-
dence of errors in examination assessment. It is the result 
of various factors such as the user cognitive style, previ-
ous experience with CAD systems, task complexity as well 
as workload, and could be avoided by strengthening user 
accountability [22]. Thus, it is crucial to critically review all 
changes highlighted by the algorithm, as well as screen the 

remaining part of sacroiliac joint for the presence of inflam-
matory lesions omitted by the algorithm, before the decision 
regarding the disease is made. Finally, the last shortcoming 
of the study is a small number of analysed cases.

In conclusion, our semi-automated algorithm allows for 
highly objective and credible detection of bone marrow 
oedema lesions visible on MRI examination of patients 
with axSpA. The detection of affected pixels and quad-
rants with the use of our basic method has comparable 
reliability to manual assessment. However, further work 
on the algorithm is vital to automate the process of bone 
segmentation in the sacroiliac region.
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