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Abstract
Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including 
infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune 
role of the main blood coagulation executor—the platelet. Platelets store and release a plethora of immunoactive molecules, 
generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of plate-
let involvement in immune processes, especially in autoimmune diseases, are conflicting—from inciting inflammation to 
mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new 
therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the 
role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.

Keywords  Blood platelets · Autoimmunity · Rheumatoid arthritis · Systemic lupus erythematosus · Systemic sclerosis · 
Anti-phospholipid antibody syndrome

Introduction

Platelets are anucleate derivatives of the megakaryocytic 
cytoplasm. They were long perceived as participating solely 
in haemostasis and thrombosis [1]. As many as 100 billions 
of these discoid, cell elements with a relatively short life 
span need to be produced daily to maintain the average 
platelet count of 2–3 × 108 per blood ml [2]. Platelets are 
equipped with megakaryocyte clusters of differentiation, 
various surface receptors and glycoproteins, cytoskeletal 
elements, granules, and a smooth endoplasmic reticulum 
tubular system [3]. These properties, together with plate-
lets’ ubiquitous presence, make them perfect candidates for 
immune cells. Currently, platelets are gaining increasing 

recognition as active regulators of innate and adaptive 
immunity [4]. With chronic systemic inflammation being 
regarded as the axis of the pathogenesis of autoimmune 
disorders (AD) and elevated risk of cardiovascular events 
among AD patients, research into the contribution of plate-
lets in the pathogenesis and course of these diseases is par-
ticularly attractive [5, 6]. The aim of this comprehensive 
narrative review is to present the most current evidence for 
platelet involvement as immune cells in the course of sys-
temic AD, discuss usefulness of platelet indices in clinical 
practice, and point towards future areas of research.

Literature search and review methodology

Literature searches were conducted between April and Sep-
tember 2017 using MEDLINE database, comprised of pub-
lished data only and included both existing review articles 
and original studies in English. The search used the follow-
ing search string: ‘blood platelets’ AND ‘autoimmunity’ OR 
‘autoimmune diseases’ OR ‘immune’. Preference was given 
to the sources published since 2002. Articles and abstracts 
were screened for relevance and only those covering sys-
temic autoimmune disorders were included. References in 
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the articles meeting inclusion criteria were examined as 
well.

Platelets as immune cells

The role of platelets in haemostasis

Blood flow forces platelets along the vessel wall, where they 
act as sentinels of vascular integrity. Disruption of the vessel 
wall results in exposure of extracellular matrix components 
such as subendothelial collagen, vitronectin, fibronectin, or 
laminin. Platelet glycoprotein complex GP Ib/IX/V and vari-
ous surface integrins work as initial adhesive receptors and 
enable platelet binding at the site of an endothelial lesion. 
This binding initiates the adhesion, activation, and accumu-
lation of platelets, which together is regarded as the first step 
of haemostasis. Platelets also contribute to the second step: 
the blood coagulation pathway [7]. Upon platelet activation, 
changes in the composition of the phospholipid bilayer of 
the plasma membrane occur. Unsaturated acyl chains are 
exposed on the outer leaflet. The platelet cell membrane 
bears a nett negative charge, and this accelerates the acti-
vation of factor X and prothrombin, by providing sites for 
the assembly of enzyme substrate complexes. Changes in 
the platelet cell membrane lead also to the generation of 
platelet-derived microparticles and a body of evidence 
points towards their role as initiators of thrombosis via the 
tissue factor pathway [8]. In mouse models, platelets were 
shown to become hyperactive after induction by microparti-
cles derived from damaged endothelial cells [9]. This repre-
sents a positive feedback loop further enhancing the already 
increased coagulant activity of the platelets and putting them 
in the centre of thrombotic events.

However, a variety of pathological conditions, which are 
not strictly associated with vascular damage, manifest as a 
tendency towards thrombosis or as excessive bleeding [10]. 
This includes conditions as diverse as bacterial and parasite 
infections, malignant neoplasms, and autoimmune disorders. 
This observation has inspired a new route of research, inves-
tigating whether platelets should be regarded as immune 
cells [11].

Platelets’ surface receptors

An examination of platelet surface reveals it to be bristling 
with receptors. Quiescent platelets bear receptors intended 
to efficiently monitor vascular integrity. Upon activation, 
platelets upregulate other types of receptors, and shared 
with classic constituents of the immune system [12]. For 
example, toll-like receptors (TLRs) enable platelets to rec-
ognize pathogen- and damage-associated molecular pat-
terns and immune complexes. TLRs also enable numerous 

interactions between platelets and leukocytes [12]. Ligand 
binging results in the initiation of intracellular signalling that 
converges upon significant cytoskeletal changes, involving 
the formation of pseudopodia and the opening of the cana-
licular system. These changes provide small-sized cells with 
a greater surface area, enable release of stored molecules, 
generation of microvesicles and microparticles and, most 
importantly, rearrangement of surface proteins [13]. Siglec 
receptors are involved in platelet apoptosis and down-regu-
lation of the inflammatory response [14–20].

Two of the platelet surface proteins should be discussed 
more thoroughly due to their role in predicting cardiovascu-
lar complications. Glycoprotein integrin αIIbβ3 (GPIIb/IIIa) 
is the most abundant platelet receptor with 50–80 thousand 
copies on the cell surface and an additional pool stored in 
the α granules [19]. An increase in the intracellular level of 
calcium leads to conformational changes of the molecule 
and subunit association, which only jointly form a functional 
complex. The surface density of the complex increases as 
well. This enables the cross-linking of plasma fibrinogen 
or von Willebrand Factor (vWF) and consequent platelet 
aggregation and intracellular communication, necessary for 
the recruitment of additional platelets to the site of vascu-
lar injury and thrombus formation. Platelet glycoprotein Ib 
alpha chain (GPIba), a component of the Glycoprotein Ib-IX-
V receptor complex, is also up-regulated; it facilitates fur-
ther platelet adhesion to the endothelium and supports inter-
cellular signalling, also with neutrophils [21, 22]. P-selectin 
is present only on activated platelets (but also expressed on 
endothelial cells) and, therefore, serves as a marker of plate-
let activation. The counter ligand for P-selectin (PSGL-1) 
is a homodimeric mucin expressed on most leukocytes, but 
especially abundant on monocytes and neutrophils. The 
interaction is crucial for adaptive immunity as it induces leu-
kocyte activation, integrin Mac-1 surface clustering (which 
enables other adhesion interactions between platelets and 
leukocytes), and neutrophil transendothelial migration. In 
addition, P-selectin enables the binding of complement C3b.

Platelets’ granules

Together with the changes occurring in the composition 
and quantity of their surface proteins, activated platelets 
also release the contents of their granules. Platelets contain 
almost 4000 unique proteins, more than 300 of which have 
been detected in platelet releasates. Many of them are meg-
akaryocyte-preformed and stored in one of the three types 
of granules: dense granules, alpha granules, or lysosomes. 
Dense granules contain mostly small molecules, such as 
adenosine diphosphate (ADP), ionised calcium, or seroto-
nin (5-HT). Lysosomes encapsulate a variety of hydrolytic 
enzymes. Alpha granules contain a plethora of cytokines, 
whose immune functions range from unquestionably 
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pro-inflammatory to serving as indispensable anti-inflam-
matory agents [23]. Table 1 presents some of the platelet 
releasates stored in alpha granules. It is unlikely that such a 
multitude of bioactive substances with contradictory effects 
is secreted randomly: it is currently believed that platelets 
are capable of stimulus-dependent packaging and release of 
granule content.

A secreted molecule that deserves particular attention 
in the context of autoimmunity is CD40L (also known as 
CD154). It is a membrane glycoprotein expressed by acti-
vated platelets [32]. Over a period of minutes to hours, sur-
face-expressed CD40L is cleaved and released in soluble 
form (sCD40L). It is estimated that over 95% of sCD40L is 
of platelet origin [33]. Its binding to CD40 on endothelial 
cells triggers an inflammatory response, such as the release 
of leukocyte-attracting mediators [34]. It is involved in regu-
lating T-cell function, the activation of dendritic cells, and 
the regulation of T-dependent antibody isotype switching; it 
also provides a novel mechanism for platelet autoactivation 
and the formation of homotypic platelet aggregates [35].

Protein production de novo

However, platelets are not just storage vesicles that degranu-
late upon activation. Recent studies revealed that the mol-
ecules present in platelets may come from sources other than 
megakaryocytes. They can be absorbed from the plasma or 
generated de novo [36]. Surprisingly, these anucleate cyto-
plasts possess functional spliceosome and transcriptome, 
accompanied by a range of ribonucleic acids and all the 
molecular machinery needed to autonomously produce pro-
teins. This was a fascinating discovery, since spliceosome 
has never been described outside the nuclear boundaries 
[37]. Spliceosome allows platelets to synthesize proteins de 
novo in a stimulus-tailored manner. The process was well 
depicted for a potent pro-inflammatory factor interleukin 
1-β (IL1-β) [38]. mRNA for IL1-β is one of the constitu-
tive transcripts in unstimulated platelets [39]. It is located 
in the polysomes of resting and activated platelets. Accu-
mulation of pro-IL1-β is sustained over hours after platelet 
activation and followed by processing the precursor into its 
mature, active form [37]. Integrated post-transcriptional 
control mechanisms regulate the initiation and resolution of 
inflammation and give explanation to the role of platelets in 
immune response and tissue injury [40].

Platelet microRNA

A fascinating discovery revealed that platelets possess 
significant amounts of small non-coding RNA, of which 
around 80% accounts for microRNA (miRNA) [41]. miRNA 
molecules are thought to post-transcriptionally regulate 
the expression of over 60% of human genes. The miRNA 

present in platelets not only influences the functioning of 
the platelets themselves but also other immune cells, and can 
both restrain and promote autoimmunity [42]. For instance, 
miR-146a contributes to controlling the overproduction of 
cytokines, such as TNF-α, functions as a negative feedback 
control of innate immunity in TLR signalling and is critical 
for the suppressor functions of regulatory T lymphocytes. 
miR-155 promotes the development of pro-inflammatory 
Th17 and Th1 cell subsets [42].

Platelet‑derived microparticles

Another sign of platelet activation is the generation of 
microparticles. A range of cells release these small mem-
brane vesicles in both quiescent state and upon activation, 
but it is platelets that account for over 90% of plasma micro-
particles found in healthy individuals [9, 43]. Thanks to their 
size, platelet-derived microparticles (PMP) can easily infil-
trate tissues and work as highly efficient carriers of bioactive 
molecules [44, 45]. They perform this task instead of acti-
vated platelets, which acquire binding properties that make 
it difficult for them to travel through the circulatory system. 
Microparticles may affect target cells by stimulating them 
directly via surface-expressed ligands or by transferring 
surface receptors, which has been reported for both physi-
ological and malignant cells [46]. They modify recipient 
cell function also by the delivery of cytoplasmic proteins 
and miRNA [45, 47–49]. They have been shown to increase 
the expression of adhesion molecules on endothelial and 
immune cells, enhance cytokine release, and consequently 
induce angiogenesis [50]. Moreover, PMPs are highly proco-
agulant and play important role in haemostasis and thrombo-
sis [8, 51]. PMPs provide a surface for complement deposi-
tion and participate in complement activation [52, 53]. The 
fact that circulatory levels of PMPs are significantly elevated 
in infections, AD, cardiovascular disorders and other patho-
logic conditions points to their possible role as actual effec-
tors of platelet immune functions [5].

Platelets in cell–cell interactions

The up-regulation of adhesion molecules and soluble releas-
ates, coherently functioning together, enables platelet–leu-
kocyte interactions [54].

Platelet–neutrophils

Activated platelets have been shown to adhere to circulating 
neutrophils and via the release of pro-inflammatory ILβ1, 
HMGB1, PDGF recruit them to the site of vascular injury 
[55]. P-selectin expressed on the surface of both activated 
platelets and endothelial cells promotes the generation of 
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Table 1   Selected platelet releasates stored in alpha granules

Selected molecules stored in platelet alpha granules [6, 21, 23–31]
CXCL4, PF4 platelet factor 4, NET neutrophil-extracellular traps, TNF tumor necrosis factor, VEGF vascular Endothelial Growth Factor, PPBL, 
CXCL7 pro-Platelet Basic Protein, RANTES, CCL5 Chemokine C–C motif Ligand 5, regulated on activation, normal T-cell expressed and 
secreted CCL5, CCL3, MIP1-alpha Chemokine C–C motif Ligand 3, Macrophage Inflammatory Protein 1-alpha, NK natural killer, DC Den-
dritic Cells, CCL-7 Chemokine Ligand 7, monocyte-chemotactic protein 3, PDGF Platelet-derived Growth Factor, TGFβ transforming growth 
factor beta, EGF epidermal growth factor, HMBG high mobility group box-1, CD40L, CD154 CD40 Ligand, PAF platelet activating factor, vWF 
von Willebrand Factor, HRG Histidine-rich glycoprotein

Molecule classification Molecule Immune function

chemokines β-thromboglobulin Chemoattractant and activator for neutrophils
CXCL4, PF4 Most abundant cytokine in alpha granules; involved in platelet-mediated killing of 

Plasmodium falciparum; necessary for platelet-induced NETosis; prevents neutrophil 
apoptosis, activation and adhesion of neutrophils to endothelial cells, phagocytosis and 
respiratory burst in monocytes, chemotaxis of T lymphocytes; PF4 in the presence of 
TNF-α induces exocytosis and firm neutrophil interaction with endothelium thereby 
enhancing inflammation in the lesion; modulates TNF expression; is a potent anti-angi-
ogenic factor by preventing binding of VEGF to endothelial cells

PPBL, CXCL7 As a result of proteolytic modifications is transformed into connective tissue- and 
neutrophil-activating peptide, stimulates transendothelial migration of neutrophils

RANTES, CCL5 Arrests monocyte infiltration of the endothelium
CCL3, MIP1-alpha Involved in host defence, targets and induces chemotaxis in multiple immune cells: 

monocytes, eosinophils, basophils, NK cells, CD8 + T lymphocytes, and DC subsets; 
significant for development and stabilization of atherosclerotic lesions; induces hista-
mine release from basophils

CCL-7 Targets and induces chemotaxis in multiple immune cells: monocytes, eosinophils, baso-
phils, NK cells, CD8 + T lymphocytes and DC subsets

Growth factors VEGF Involved in physiological angiogenesis and wound healing
PDGF Involved in angiogenesis, is potent mitogen for mesenchymal cells including fibroblasts, 

smooth muscle cells, and glial cells
Chemoattracts and activates neutrophils and monocytes; modulates T-cell functions

TGFβ Essential permissive factor for metastasis, specifically in epithelial–mesenchymal-like 
transition

EGF Monocyte chemoattractant
Angiopoietin-1 Preserves vascular integrity at site of inflammation

Cytokines IL-1β Activates endothelial and smooth muscle cells; augments neutrophil adhesiveness
IL-7 Involved in apoptosis resistance, stimulates pro-inflammatory cytokine production
IL-8
HMBG Activates neutrophils: pericellular granules distribution and release of NETs
MIP-1-α See: chemokines

Proteolytic enzymes Metalloproteinase Inhibitors
Protease inhibitors
 Platelet inhibitor of FXI
 C1 inhibitor

Attenuates inflammation and promotes resolution, involved in clot dissolution

Other CD40L, CD154 Induces chemokine secretion and up-regulation of adhesion molecules on endothelial 
cells; involved in maturation of immunoglobulin affinity and isotype switch in B cells; 
involved in DC maturation; augmentation of T-cell responses

PAF Pro-inflammatory lipid mediator, involved in host defence; activates monocytes, neutro-
phils and promotes formation of heterotypic platelet aggregates

Histamine Pleiotropic immune modulator
Fibronectin Involved in host defence
Vitronectin Matrix binding protein
Thrombospondin Adhesion molecule involved in angiogenesis regulation
Fibrinogen Positive loop of platelet activation
vWF Positive loop of platelet activation
HRG Antimicrobial protein; supresses T-cell activity suppressor, macrophage phagocytosis and 

formation of immune complexes
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reactive oxygen species, activation of β2 integrins and leu-
kocyte tissue factor, release of pentraxin 3, and proteolytic 
enzymes [33]. Platelets have an important effect on neutro-
phils: the induce neutrophil-extracellular trap (NET) forma-
tion [56]. This is a form of cell autophagy, distinctive from 
apoptosis, which is based on the fusion of primary granules 
with nuclear membrane. It results in the destruction of neu-
trophil genetic material and its subsequent expulsion to the 
extracellular environment, where the NET engulfs patho-
gens. NETs reversely activate platelets, what may lead to a 
vicious loop of NET formation and platelet activation [57], 
resulting in tissue injury, prothrombotic phenotype, and 
propagation of autoimmunity [58]. Interactions with neu-
trophils also enable platelet extravasation and the targeting 
of other tissues, as reported in several autoimmune disorders 
[59]. Platelets support reactive oxygen species generation by 
monocytes and promote neutrophil oxidative burst and pro-
thrombotic phenotype of monocytes [55, 60]. At the same 
time, platelet–neutrophil conglomerates enable transcellular 
synthesis of bioactive lipid compounds, including molecules 
required for inflammation resolution such as lipoxins, mares-
ins, and resolvins [61, Fig. 1].

Platelet–lymphocytes

In healthy subjects, about 3% of circulating lymphocytes is 
bound to platelets. This number increases significantly upon 
platelet activation and homeostasis deregulation [62, 63]. 
The proportion varies between lymphocyte subpopulations 
and depends on the level of platelet activation and the form 
of stimulus [64]. Larger, activated lymphocytes are more 
prone to bind to platelets. Surface proteins P-selectin, GPIIb/
IIIa, CD40, and CD11b all contribute to the interaction. The 
presence of the scavenger receptor CD36 on lymphocytes 
was recognized as proof of interaction with platelets [65].

The co-culturing of autologous platelets and CD4 + T 
cells enhanced the production of IL-10 and cytokines char-
acteristic for Th1 and Th17 cells: IFNγ, IL-17. Moreover, 
the T cells were more prone to differentiate towards types 
Th1 and Th17, which are associated with autoimmunity [66, 
67]. IL-17 is an independent predictor of vascular function 
in rheumatic diseases [68]. At the same time, platelet bind-
ing reduces the capability of lymphocytes to proliferate 
and produce Th1/Th17 cytokines [69]. This suggests that 
platelets may have a different effect on leukocytes depend-
ing on the stage of inflammatory response. Platelets alter 

Fig. 1   Platelet–neutrophil interactions. The figure presents interactions between platelets and neutrophils
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immunoglobulin production also through direct contact with 
lymphocytes B. They are capable of delivering CD40L sig-
nalling that is crucial to immunoglobulin affinity matura-
tion and isotype switching and T-cell-dependent humoral 
immune response [70]. The co-incubation of differentiated 
B cells with activated platelets was associated with increased 
in vitro production of IgG1, IgG2, and IgG3 [70]. Moreover, 
platelets were demonstrated to directly activate naïve T cells 
by presenting antigens in the context of MHCI and deliver-
ing co-stimulatory molecules [71].

Transcellular synthesis of bioactive lipid mediators

Adhesive platelet–heterotypic cell interactions enable the 
process of transcellular production of bioactive lipids that 
act as autacoids [72]. Eicosanoids have gained recognition 
as regulators of two active, contrary processes: the evolu-
tion and resolution of inflammation. The fact that these mol-
ecules are unstable and highly bioactive first implied that 
they must be independently synthesized by different cells. 
However, only a few cell types are capable of performing the 
complete biosynthetic process of the limited range of eicosa-
noids due to lack of key enzymes. Cells must, therefore, 
share their enzymes and coordinate efforts to produce bioac-
tive lipid compounds in the process of transcellular synthesis 
[73]. The omnipresence of platelets in blood makes them 
perfect candidates for this phenomenon. Indeed, platelets 
are unique cells equipped with a range of enzymes including 
several forms of phospholipase A2 (PLA2) and 12-lipooxy-
genase (12-LOX) [9].

Platelets participate in both intensifying inflammation and 
in its resolution. Upon activation, platelet membrane phos-
pholipid bilayer composition undergoes changes, and sub-
strates are made available for bioactive species production 
[74]. Platelets can autonomously generate some eicosanoids: 
thromboxane A2 (TXA2), 12-hydroxyeicosatetraenoic acid 
(12-HETE), 12-hydroxyheptadecatrienoic acid (12-HHT), 
prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and 
isoprostanes. The molecules have generally proaggregatory 
and pro-inflammatory properties. Moreover, platelet–neu-
trophil transcellular biosynthesis of leukotrienes accounts 
for significant physiological changes associated with an 
ongoing inflammatory response [75]. Platelets may deliver 
both arachidonic acid (AA) and leukotriene A4 (LTA4) to 
neutrophils, as well as other leucocytes and endothelial cells. 
Prostaglandins have dual role: they initiate inflammatory 
responses [76], but also induce the transcriptional regulation 
of neutrophil 15-lipooxygenase (15-LOX). This is the first 
step in the class switch of lipid mediators [61, 77].

The resolution of inflammation is an active process initi-
ated by a switch in the class of synthesized mediators, from 
the aforementioned thromboxanes, leukotrienes, and pros-
taglandins to endogenous pro-resolution lipid mediators: 

resolvins, protectins, maresins, and lipoxins. Lipoxins may 
be AA derivatives, but others are derived solely from dietary 
polyunsaturated fatty acids (PUFAs) [77]. Lipoxins them-
selves are produced in only three pathways, one of which 
is performed by platelet–neutrophil aggregates, whereby 
the neutrophils deliver LTA4, which is consequently trans-
formed into lipoxin B4 (LB4) with platelet 12-LOX. LB4 
has potent anti-inflammatory properties: it counter-regulates 
LT and cytokine production (including TNF), decreases 
vascular permeability, inhibits neutrophil tissue infiltration, 
and regulates platelet–neutrophil interactions [61]. These are 
also affected by ASA-triggered lipoxin (ATL), a molecule 
synthesized in a pathway enabled by acetylation of cycloox-
ygenase 2 (COX-2) enzymes [78]. Platelets deliver prosta-
glandin H2 (PGH2), a COX product, to endothelial cells 
which transform it into prostacyclin (PGI2). PGI2 works as 
a counterweight to TXA2. An imbalance between these two 
molecules may result in the formation of a prothrombotic 
phenotype [9].

Along with macrophages, monocytes and neutrophils, 
platelets transform omega-3 essential PUFAs to resolvins, 
protectins, and maresins. These molecules promote wound 
healing, deactivate leukotrienes, and attenuate nuclear factor 
NFkB [79]. They also intensify phagocytosis of apoptotic 
cells and phagocyte removal via lymphatic vessels. Their 
anti-inflammatory effect on platelets is based on reducing 
ADP-dependent platelet aggregation and redirection mol-
ecule production onto growth factors and pro-resolving 
mediators [77]. Platelet–neutrophil aggregates form maresin 
1, a compound that is organ-protective [80], and influences 
blood cells by promoting a pro-resolving platelet phenotype 
and reposing macrophage functions [81, 82].

Evidence for platelet contribution 
in autoimmune disorders

Rheumatoid arthritis (RA) is probably the most common 
connective tissue disease, affecting almost 1% of global pop-
ulation. Cardiovascular disease is the leading cause of death 
in RA patients [83]. According to European League Against 
Rheumatism (EULAR) recommendations, the result of tra-
ditional cardiovascular risk assessment equations should be 
multiplied by 1.5 for RA patients [84].

Multiple evidence point towards increased platelet activa-
tion in RA patients. Many of them have an increased platelet 
count. It can be explained by reduced platelet survival and 
accelerated turnover rate [85]. Intensified platelet production 
results in higher percentage of young platelets in circulation. 
Younger platelets are characterized by enlarged size and 
higher reactivity. Increased amount of soluble platelet rele-
asates, such as: P-selectin, beta-thromboglobulin, or PF4, are 
found in the serum of RA patients. They were also found to 
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have a higher number of circulating PMPs [86]. Increased 
platelet activation, assessed with these indicators, correlates 
positively with disease severity [87–93]. In mouse, model of 
RA platelet depletion leads to inflammation alleviation [94].

In the serum of RA patients, immune complex and 
autoantibody characteristics for RA can activate platelets 
[95]. This includes anti-citrullinated protein antibodies 
(ACPA) and rheumatoid factor (RF). ACPA–IgE immune 
complexes may activate platelets via FccRIIA and FceRIa—
high- and low-affinity receptor (FceRII/CD23) for IgE, and 
low-affinity immunoglobulin G (IgG) receptor (FcγRIIa) 
[17]. The percentage of ACPA to total IgG shows a posi-
tive correlation with platelet activation and disease activity 
[95]. The presence of these antibodies [96, 97] was proposed 
as a novel risk factor of cardiovascular events [98, 99] and 
atherosclerotic plaque instability [15, 100, 101].

In vessels as well as in RA-inflamed joints, the exposure 
to the extracellular matrix stimulates platelets. Platelets bind 
to exposed collagen via glycoprotein VI membrane recep-
tor (GPVI) and this interaction provokes generation of PMP 
abundant in IL-1 [102]. Elevated PMP counts were found not 
only in plasma, but also in the synovial fluid of RA patients. 
In fact, PMP concentration in synovial fluids was signifi-
cantly higher than in blood, suggesting that increased PMP 
generation occurs locally [102].

IL-1, so abundant in synovial fluid PMP, is the key 
molecule for intercommunication between platelets and 
fibroblast-like synoviocytes (FLS) [103]. Activated FLS 
are regarded as key effectors of cartilage destruction [104] 
and defective angiogenesis in RA [50]. In comparison with 
healthy subjects, RA patients’ FLS express altered levels 
of cytokines, chemokines, adhesion molecules, and matrix 
metalloproteinases, and they also become resistant to apop-
tosis. Their interaction with platelets expands beyond the 
soluble cytokines. In the process of transcellular biosynthe-
sis, platelets and FLS produce prostaglandin I2 (PGI2). PMP 
stimulate up-regulation of eicosanoid synthesis enzymes: 
COX-2, microsomal prostaglandin E synthase 1 (mPGES-
1), and PGE2 [105]. PGE2 itself enhances the expression of 
membrane-bound mPGE. Independently of PMP generation, 
and platelet–fibroblast-like synoviocytes aggregate synthe-
size prostacyclin. The synthesis occurs in a COX-1-depend-
ent manner [106]. Lipid profiling of the synovial fluid of RA 
patients demonstrated significant amounts of platelet-related 
mediators, showing disproportion favouring pro-inflamma-
tory lipids, such as LTB4 isomers [107]. In a mouse, model 
of RA resolution of inflammation is disrupted by inhibition 
of COX-2, but can be restored by lipoxins [108]. PMP in the 
synovial fluid of RA patients are highly heterogeneous in 
size. Larger microparticles were found to contain immune 
complexes (IC), which, moreover, responded to majority of 
the IC detected [109]. Immunoglobulins and complement 
are associated with majority of PMP in RA synovial fluid.

PMP express platelet-derived antigens and associate with 
autoantigens from other sources that are present in plasma 
[53]. Platelet-derived antigens include intracellular proteins, 
such as vimentin. Vimentin externalisation occurs during 
platelet activation. PMP surface may be a site of further 
post-transcriptional autoantigen modifications, for exam-
ple, citrullinisation [110]. This results in the generation of 
neoepitopes, recognized by autoantibodies characteristic for 
RA [111]. Complement proteins can bind to PMP surface. 
Highly bound C1q, C3, and C4 complement components are 
characteristic for PMP in the synovial fluid of RA patients. 
These immune complexes were showed to strongly acti-
vate neutrophils. Self-sustaining activation of platelets and 
neutrophils at the site of synovial bleeding may synergize 
in the formation of citrullinated fibrinogen and vimentin 
neoepitopes [110]. Proteins of platelet origin are being trans-
formed by peptidylarginine deiminase 4 (PAD4): a neutro-
phil-derived enzyme [112]. Upheld activation of platelets 
and neutrophils results in NETosis which, in turn, strongly 
activates FLS. FLS are capable of internalising NETs. It 
induces antigen-presenting cell properties in FLS, which can 
now present platelet-derived, post-transcriptionally modified 
autoantigens. The process supports autoimmunity [20, 113].

Finally, platelets contribute to RA synovitis by maintain-
ing persistent permeability of synovial microvasculature. 
They activate endothelial cells what results in the expres-
sion of surface adhesion molecules and enables cell migra-
tion [62]. Platelets release serotonin in the spots of vascular 
damage which cause formation of endothelial gaps with sub-
micron dimension. It favours synovial infiltration by inflam-
matory cells [114, Fig. 2].

Systemic Sclerosis (SSc) is a heterogenous and complex 
autoimmune disorder with three main components: produc-
tion of autoantibodies and cell-mediated autoimmunity, vas-
cular damage leading to fibroproliferative vasculopathy and 
fibroblast dysfunction consisting of excessive accumulation 
of collagen in organs [115].

Patients suffering from SSc have increased blood levels 
of platelet activation markers and higher platelet aggrega-
tion ratio in comparison with healthy subjects [116–119]. 
The suggested reason was endothelial dysfunction, con-
sidered the primary event in SSc. Subsets of enlarged von 
Willebrand multimers were found in their plasma, revealing 
another cause of chronic activation [120]. Platelets become 
hypersensitive to activating factors such as serotonin, 
adrenalin, ADP, and collagen. In fact, characteristic over-
expression of the non-integrin receptor for collagen I was 
found in SSc patient platelets. There is growing evidence 
for existence of a network between platelets and autoreactive 
T lymphocytes specific against collagen I. Autoreactive T 
cells produce IFNγ and IL-1, which stimulate megakaryo-
cyte expression of PI3K and Akt. This results in overexpres-
sion of these signatures of activation on platelets, enhanced 
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response to collagen I, and platelet aggregation. Exposure to 
collagen I increases with the disease progression, depicted 
by gradual fibrosis [120].

5-HT signalling seems to be of particular importance in 
the activation of platelets in SSc. Concomitant excessive lev-
els of 5-HT in circulation and defective platelet content were 
found. The presence of a polymorphism in the gene for the 
serotonin 2A receptor, resulting in weaker platelet activation 
and aggregation, was associated with reduced susceptibility 
to SSc and alleviation of the course of the disease [121].

Activated platelets release stored granule contents, and 
the releasates contribute to imbalance between vasodila-
tors and vasoconstrictors and enhance fibrosis [122]. The 
mechanisms are well described for lysophospholipids, 
5-HT, PDGF, TGFβ, and other growth factors. VEGF stim-
ulates angiogenesis, PDGF activates smooth muscle cells 
and connective tissue fibroblasts proliferation, and TGFβ 
may increase collagen and matrix components synthesis. 
The angiogenesis-promoting factors, however, seem to be 
inhibited by anti-angiogenic mediators such as PF4, which 
together with pro-inflammatory and pro-fibrotic agents, 
contribute to the progression of microvascular damage, 
defective vascular repair, consequent hypoxia, and fibrosis 
in patients with SSc [123]. Platelet-derived HMGB1 serum 
level is higher in SSc patients and associated with micro-
vascular damage [49]. CXCL4, a potent anti-angiogenic 
chemokine secreted by platelets and dendritic cells, was 

recognized as parameter predicting disease progression and 
organ complications [124].

Persistent platelet activation implicates deregulation 
of platelet–neutrophil interactions [112]. Cell aggregates 
produce pro-inflammatory lipids, and neutrophils release 
matrix-degradation enzymes and superoxide radicals. These 
humoral and cellular components alter the process of rep-
erfusion what results in self-sustaining vasculitis, vascular 
remodelling, and inflammation [56].

Systemic lupus Erythematosus (SLE) In SLE, chronic, 
systemic inflammation is associated with the formation of 
autoantibodies and immune complexes, and their subsequent 
deposition is tissues and eventual organ damage [125]. B 
cells become hyperactive as a result of escalated stimulation 
from autoantigens exposed on the surface of apoptotic cells, 
enhanced by T lymphocytes and other immune cells.

SLE has many haematological manifestations, including 
thrombocytopenia. Low platelet count is more frequent in 
SLE patients than increased platelet number [126]. It has 
been associated with other severe symptoms such as kidney 
injury, haemolytic anaemia, neuropsychiatric manifestations, 
and a worse course of the disease [91]. At the same time, the 
following evident markers of platelet activation are increased 
in the blood of SLE patients: thromboxane, P-selectin, PMP, 
and platelet–leukocyte aggregates. Circulating immune com-
plexes, high-affinity antibodies against nuclear constituents, 

Fig. 2   Platelet role in the pathogenesis of rheumatoid arthritis
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the hallmark of SLE, can activate platelets via the FcγRIIA 
receptor [87].

Activated platelets contribute to the maturation of den-
dritic cells (DC) [127]; these are crucial in the pathogenesis 
of SLE, as their interactions with B- and T cells lead to the 
production of autoantibodies, including those against nuclear 
antigens (ANA) and DNA (anti-ds-DNA). PMP-associated 
CD154 can cause DC activation and soluble CD154 levels 
were found to be increased in SLE patients and to correlate 
with disease activity measured by SLE Disease Activity 
Index. Level of CD154 correlates positively with the pres-
ence of anti-phospholipid antibodies in SLE patients [128]. 
Platelet association with DC promotes the secretion of type 
I IFN(IFN) [129], which is another important constituent 
of SLE pathogenesis [130]. In addition, platelets from SLE 
patients were found to over-express IFN-regulated genes, 
resulting in up-regulated numbers of the proteins PRKRA, 
IFITM1, and CD69 leading to increased activation of 
platelets from SLE patients associated with the type I IFN 
response [130].

Moreover, platelets themselves and PMP are a source 
of autoantigens involved in the formation of immune com-
plexes [53]. Platelet autoantibodies were found in SLE 
patients [131]. The majority of circulating immune com-
plexes formed with microparticles are of platelet origin. 
PMP may deliver ANA and anti-ds-DNA antibodies, both 
of which are potent pro-inflammatory agents. Circulating 
PMP in SLE patients carry increased loads of IgG, IgM, and 
C1q [132]. IgG PMP are associated with autoantibodies and 
complement activation, their level correlated with anti-DNA 
antibodies titres. The platelet surface may also be the site of 
complement activation and deposition. It has been described 
as a target for circulating anti-phospholipid antibodies (aPL), 
with the major antigen recognized by aPL being β2 gly-
coprotein 1, a member of the complement control protein 
superfamily [87]. The interaction can occur by mechanisms 
other than direct recognition of platelet antigens, such as by 
crosslinking of the apolipoprotein ER2′ receptor, and with 
the involvement of the FcγRIIA receptor. The complement 
Cd4 protein specifically accumulates on the platelet surface 
in SLE patients, correlates with disease activity, and is asso-
ciated with the presence of anti-phospholipids [20].

A large number of SLE autoantigens is exposed in close 
proximity to the oxidant-generating site, and this is another 
way in which platelets may promote autoantigen formation 
[133]. More frequently, deregulated interactions between 
platelets and neutrophils occur in SLE [112]: PMP-IC elicit 
leukotriene production and NET generation by neutrophils 
[60, 127]. Nuclear autoantigens, including ds-DNA, his-
tones, ANA, and neutrophil cytoplasmic antigens all serve 
as major component of NETs [131]. NET degradation is 
impaired in SLE, and patients with defective NET deg-
radation have significantly higher titres of anti-NET and 

anti-ds-DNA autoantibodies, as well as a higher frequency 
of developing lupus nephritis. Deregulated platelet–neutro-
phil interactions result in the creation of a self-sustaining 
cycle of oxidant generation and necrotic cell formation that 
stimulates the autoimmune response.

SLE patients have an increased risk of developing car-
diovascular disease, stroke, and venous thrombosis, which 
cannot be explained by classic cardiac risk factors [134]. 
Platelet activation seems to be a potential link between ath-
erosclerotic lesions and systemic inflammation [20], and 
many patients have been diagnosed with comorbidity of 
SLE and APS [8].

Anti-phospholipid Syndrome (APS) is a systemic auto-
immune disorder directly associated with thrombotic and 
cardiovascular risk [135]. In addition, anti-phospholipid 
antibodies are present in around 40% of SLE patients [87], 
around 20% of RA patients and around 10% of SSc patients 
[136].

Anti-phospholipid antibodies (APLs), particularly lupus 
anticoagulant, anticardiolipin antibodies (aCL), and anti-
β(2)-glycoprotein I (anti-β2 GPI), are a family of antibod-
ies against phospholipids that can exert pathogenic effects. 
These antibodies may interfere with the membrane phospho-
lipids of endothelial cells and platelets, or with the bioactive 
phospholipids of signalling cascades, including the coagula-
tion cascade [137]. Circulating anti-phospholipid antibod-
ies with anti-β2 GPI activity recognize endothelial cells, 
which synthesize TF4 and express adhesion molecules such 
as ICAM1 and E-selectin upon recognition. This synthesis 
results in platelet activation and increased TXA2 produc-
tion. High levels of TF4 and TXA2 mediate the procoagulant 
state: a known risk factor of thrombosis.

Thrombocytopenia is commonly observed among APS 
patients, and the most common determinant autoantigen 
described is platelet β2-glycoprotein I (β2-GPI). β2-GPI 
is an apolipoprotein which plays a complex role in blood 
coagulation. Its active form exposes an epitope recognized 
by specific IgG autoantibodies. Binding the autoantibodies 
to β2-GPI results in the formation of a macromolecular com-
plex, PF4-β2-GPI–anti-β2-GPI, that contributes significantly 
to platelet activation [63]. Platelets may thus be perceived 
as the primary target of anti-phospholipid antibodies [138], 
although aCL antibodies can only bind to platelet plasma 
membrane phospholipids after activation, as the major bind-
ing targets are the anionic phospholipids of the inner layer of 
the membrane. Enhanced platelet activation sustained over 
time is related to vascular dysfunction and progressive dam-
age, thrombotic events, and complement activation [139]. 
Immune complexes containing C4d and C3b complement 
proteins have been found to be deposited in the placentas of 
APS patients [87]. Activated platelets produce thrombopoi-
etin and contribute to increased platelet turnover, which rep-
resents a positive regulatory loop. Despite the augmented 
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production and accelerated maturation of platelets, up to 
50% of APS patients develop thrombocytopenia, usually 
explained as a result of excessive platelet destruction [138].

PMP are significantly increased in APS patients, espe-
cially in those with APS secondary to SLE or patients with 
a history of thrombotic complications [63]. A study of APS 
thrombus composition revealed a great number of PMP. A 
higher level of platelet-derived bioactive releasates was also 
found in APS patients, with most being CXCL4 (PF4) [128]. 
In APS patients, PF4 interacts with the anti-β2-GPI–β2-GPI 
macromolecule and further enhances platelet activation. The 
levels of platelet–leukocyte aggregates are significantly 
higher in APS patients compared to a healthy population 
[63].

Evaluation of platelet activity in clinical practice

The platelet indices such as a mean platelet volume (MPV) 
and platelet distribution width (PDW) are currently under 
investigation as possible new indicators of platelet activa-
tion. Since they are routinely evaluated as a part of a com-
plete blood count test, they could become a cheap and highly 
accessible measurement of platelet parameters. The hypothe-
sis is based on the fact that upon activation platelets increase 
volume and form pseudopodia. Several research teams have 
attempted to correlate MPV with the RA, SSc, and SLE 
disease severity and cardiovascular risk; however, they have 
reported contradictory results [63, 90, 92, 128, 140–142]. 
In SLE, smaller platelet size was proved to correlate with 
greater platelet activation, PMP formation, the presence of 
aCL antibodies, and secondary APS [143]. Changes to MPV 
have also been investigated in response to the RA treatment 
with anti-TNFα agent. A recent study showed that platelet 
count decreased and MPV increased at the end of the treat-
ment period [144]. These discrepancies may be due to a 
magnitude of variables influencing MPV with age and sex 
being just the tip of the iceberg. There is an inverse correla-
tion between platelet count and MPV and there are large 
interindividual differences between both the indices. MPV is 
also a parameter prone to change upon pre-analytical varia-
bilities [145]. Due to MPV variability, one research team has 
identified PDW as a more specific marker of platelet activa-
tion of coagulation [146]. Even then, there are significant 
differences in measuring MPV and PDW among blood coun-
ters [147]. It remains controversial whether platelet indices 
correlate with the optical aggregometry results [148].

Another challenge in the interpretation of platelet indices 
in the systemic AD is the vast prevalence of atherothrom-
bosis among patients. MPV is a well-established predictor 
of cardiovascular risk [149]. Increased MPV was associated 
with an acute myocardial infarction, ischemic stroke, and 
atrial fibrillation [150]. High MPV predicts a poor outcome 
of these events [151]. As rheumatic disorders are known to 

increase the risk of atherosclerosis and its complications, 
it cannot be excluded that increased MPV in AD reflects 
the existing subclinical atherosclerosis. Therefore, altered 
MPV value in AD patients could be an expression of an 
overlapping cardiovascular disease. At the same time, both 
systemic AD and chronic inflammatory diseases (including 
cardiovascular disease) are characterized by a high level of 
IL6. IL6 may stimulate the bone marrow to an increased 
release of younger, bigger platelets [152].

Future studies could investigate these issues further by 
designing research protocols including several different 
methods of platelet reactivity assessment. This includes well 
documented methods such as light transmission aggregom-
etry, flow cytometry, and quantification of platelet-derived 
soluble proteins in blood plasma.

Conclusions

Platelets recently became an intriguing topic of research on 
mechanisms of autoimmunity. Growing evidence on platelet 
role in autoimmune disorders is being delivered by inde-
pendent research teams.

There is no doubt that platelets are a source of autoanti-
gens. Their prolonged activation may lead to the recognition 
of surface molecules by autoantibodies, or to their enzymatic 
transformation and the formation of neoepitopes. In auto-
immune-mediated inflammation, platelets act as a compo-
nent of the positive feedback loop response by secreting and 
synthesising vast amounts of bioactive compounds. They 
contribute to pathological hallmarks of autoimmune inflam-
mation such as: extensive complement activation, circulation 
of immune complexes, impaired phagocytosis of apoptotic 
cells, and NETs. Platelets promote T helper leukocyte matu-
ration towards type 1 and type 17, associated with autoim-
munity. Costimulation signal delivered by platelets enable 
maturation of antibodies affinity. The enzymes and growth 
factors delivered by platelets facilitate tissue degeneration 
and neovasculogenesis. Mechanisms and pathways described 
for platelets in the context of AD overlap with those charac-
teristic of thrombosis and atherosclerosis, which explains the 
increased cardiovascular risk of AD patients [5, 8, 88, 153].

However, platelets also play an opposite role. They are 
indispensable in the production of pro-resolution and anti-
inflammatory lipid mediators, which trigger adaptive immu-
nity, promoting a shift in balance between types of Th lym-
phocytes and dendritic cells. These compounds enhance the 
clearing of apoptotic cells and immune complexes—poten-
tial autoantigens. Platelet-rich plasma (PRP) infusions are 
widely applied in treating joint trauma, as platelet-derived 
growth factors have a positive influence on chondrocytes 
[154, 155]. A recent study proposes an immunological 
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mechanism of resolving antigen-induced arthritis and imple-
mentation of PRP infusions in rheumatology. In a porcine 
model of RA, PRP was found to alleviate disease symptoms 
[156]. Platelets can internalize larger IgG-coated particles in 
a process similar in some respects to phagocytosis in leuko-
cytes, thus supporting the clearance of immune complexes. 
Finally, platelet binding to Th lymphocytes reduce their abil-
ity to produce cytokines typical for autoimmunity-related 
subtypes.

The evidence for platelet involvement in the patomecha-
nisms of autoimmune disorders suggests that platelets play 
either a pro- or anti-inflammatory role depending on the 
inflammation-initiating stimuli [28, 157, 158]. The main 
limitation of the most of the available studies is that they 
only present a selected phase of platelet activity. Further-
more, they often use a single marker to assess it. It would be 
important for the future research to present platelet activity 
as a dynamic, variable process. A further investigation of 
the platelet traditional indices (like MPV and PDW) and the 
other markers (soluble platelet-derived protein assays, flow 
cytometry, PMP, and optical aggregometry) could provide 
an attractive tool for clinicians. It would be worth to investi-
gate the influence of the available anti-rheumatic medication 
on platelet function. Other examples of the potential areas 
for further research include, for instance, the role of plate-
let-derived miRNA in AD or PMP as carriers of bioactive 
molecules. The authors hope that the exploration of the role 
of platelets as a potential therapeutic target and a possible 
ally in the treatment of autoimmune disorders will continue.
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