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Abstract Rheumatoid arthritis (RA) is a chronic auto-

immune disease characterized by the influxation of synovia

and synovial compartments with immune cells including

dendritic cells (DCs). DCs that induce autoimmune toler-

ance are called tolerogenic DCs (tolDCs). As a promising

immunotherapeutic strategy for RA, tolDCs have received

increasing attention. In this review, we first introduce the

significant role of tolDCs in autoimmune regulation and

then describe the manipulation strategies to generate

tolDCs; next, we summarize recent progress in the exper-

imental application of tolDCs for RA therapy, and finally

we discuss the perspectives of tolerogenic vaccination for

the treatment for RA in clinic.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by the inflation of synovia and synovial

compartments with dendritic cells (DCs), monocytes, T

cells, B cells, neutrophils and natural killer (NK) cells [1].

RA affects multiple joints such as hands, wrists and feet

and is one important cause of disability.

RA is currently treated with immunosuppressive drugs

and biological agents. However, these therapeutic agents

may induce a generalized immune suppression that increases

the risk of infectious diseases [2]. Therefore, new therapeutic

approaches should aim at the suppression of inflammation

and establishment of tolerance toward arthritogenic antigens

without compromising the patients’ immune system [3].

Recent research has shown that a particular subset of DCs

could modulate immune responses [4]. These DCs play a key

role in maintaining both central and peripheral autoimmune

tolerance, and the constitutive ablation of DCs destroys self-

tolerance, resulting in spontaneous fatal autoimmunity [5].

The DCs that induce autoimmune tolerance are called tol-

erogenic DCs (tolDCs). As a promising immunotherapeutic

strategy for RA, tolDCs have received considerable attention

[6]. In this review, we first introduce the significant role of

tolDCs in autoimmune regulation and then describe the

strategies to generate tolDCs; next, we summarize recent

progress in the experimental application of tolDCs for RA

therapy, and finally we discuss the perspectives of tolero-

genic vaccination for the treatment for RA in clinic.

Features of DCs associated with tolDCs: subsets

and maturation stage

TolDCs are derived from DCs which exhibit tolerogenic

phenotype. It has been found that the subsets and matura-

tion stage of DCs are closely related to the generation of

tolDCs. In this part, we will introduce several features of

DCs that are associated with tolDCs.
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Subset of DCs and tolDCs

DCs constitute a heterogeneous population of cells char-

acterized by the differences in tissue distribution, pheno-

type and function [7]. Human peripheral blood DCs can be

divided into two major subsets according to the source they

derive from: myeloid DCs (mDCs) and plasmacytoid DCs

(pDCs) [8]. In addition to these two subsets, there is

another type of DCs that is derived from monocyte and

plays an important role in innate and adaptive immunity

and is named monocyte-derived DCs (mo-DCs) [9].

Detailed information on these subsets of DCs and their

applications in RA has been described in several reviews

[10].

Mature mDCs can induce the differentiation of naı̈ve T

cells into T helper (Th) cells with increased expression of

adhesion molecules and cytokine receptors as well as the

production of cytokines, which can activate autoimmune

responses [11]. On the contrary, immature mDCs have

been commonly loaded with antigen and manipulated to

generate tolDCs and suppress autoimmune responses both

in vivo and in vitro [12]. TolDCs derived from mDCs have

been widely used in the therapy of RA and experimental

arthritis [13].

pDCs represent a naturally occurring regulatory DC

subset with tolerogenic phenotype. Under certain circum-

stances, pDCs appear to induce the differentiation of reg-

ulatory T cells (Tregs) both in mice models and in human

[14]. Thus, the use of pDCs to induce immune tolerance

may offer new opportunities in autoimmunity and trans-

plantation [15]. Recent studies have demonstrated that

pDCs exhibited tolerogenic phenotype and modulated anti-

inflammatory function in RA patients through IDO path-

way [16].

mo-DCs are by far the most common type of cells used

in clinical immunotherapeutics [17]. Data based on the use

of mo-DCs have shown that mo-DCs can be manipulated

with certain biological agents to generate tolDCs [18].

Moreover, tolDCs derived from mo-DCs are proposed as a

promising cellular therapeutic tool for tailoring immuno-

modulation in the treatment for RA [19].

Maturation stage and tolDCs

Immature DCs do not express maturation markers nor

produce proinflammatory cytokines. The natural function

of immature DCs is to create conditions for self-tolerance

either via the generation of Treg or via the induction of

apoptosis or anergy of autoreactive effector cells [20].

During the past years, immature DCs have been widely

used to generate tolDCs and utilized in the treatment for

autoimmune diseases including RA [21]. Strikingly, while

mature DCs are considered immunogenic as professional

antigen-presenting cells, recent evidence suggested that

tolDCs can be generated from mature DCs by genetic

engineering [22], which provides additional means of

generating tolDCs for RA treatment.

Interestingly, an independent subgroup of DCs has been

recognized as semi-mature DCs, which express maturation

markers but do not produce inflammatory cytokines, and

they appear to be tolerogenic in autoimmune diseases

including RA [23]. However, other reports suggest that

semi-mature DCs become immunogenic when inoculated

at a high dose in CIA mice [24]. Therefore, further char-

acterization of the role of semi-mature DCs in RA patho-

genesis is required.

Generation of tolDCs: strategies

Manipulations of DCs to generate tolerogenic phenotype

have been extensively studied and reported. In this review,

we classify the commonly used strategies into three groups:

immunoregulatory drugs and biological agents, coculture

with apoptotic cells, and genetic engineering. Most of the

strategies have been practiced in studies aiming at RA

therapy, although several of them are practiced in other

autoimmune diseases.

Regulation of molecular targets on DCs

During the past years, various biological agents and phar-

macological agents have been used to confer tolerogenic

properties on DCs and regarded as a clinically applicable

option [25]. On the basis of recent data, we will introduce

the molecules that serve as targets for tolerogenic pheno-

type of DCs with pharmacological drugs and other agents.

RelB component of NF-jB has been shown to be critical

for DCs maturation in vivo [26]. Tumor necrosis factor-a
(TNF-a) is another molecular target on DCs because anti-

TNF-a therapies diminish DCs maturation and their ability

to produce proinflammatory cytokines and chemokines and

are effective in treating patients with RA [27].

On the contrary, induction or upregulation of other

molecules could be employed to generate tolDCs. PD-L1

signaling has been shown to negatively regulate T-cell

response and contribute to tolerogenic phenotype of these

DCs [28]. The immunoglobulin-like transcript (ILT) family

consists of a group of activating and inhibitory receptors,

and some of them play a role in tolerance induction [29].

The upregulation of ILT3 and ILT4 receptors on human

DCs renders them tolerogenic, along with reduced

expression of costimulatory molecules and induction of

antigen-specific unresponsiveness in CD4? T cells. IDO is

an immunosuppressive protein expressed on DCs, and

upregulation of IDO expression on DCs also makes them
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tolerogenic [30]. In addition, upregulation of ICOSL, a

molecule that induces anergy of T cells, could induce tol-

erogenic phenotype on immature DCs [31].

Uptake of apoptotic cells

Apoptotic cells induce tolerogenic properties of innate

immune cells including DCs, which then recognize and

phagocytose the apoptotic cells [32]. DCs produce IL-10

after ingestion of apoptotic cells and induce T-cell toler-

ance via immunosuppressive cytokines [32]. Immature

DCs was rendered tolerogenic in vitro by pre-exposure to

autologous apoptotic cells [33]. Recently, it has been found

that the culture of apoptotic DCs with immature DCs in

vitro results in their uptake by immature DCs, which sub-

sequently turn into tolDCs [34]. In vivo study in mice

models also demonstrated that apoptotic DCs can be taken

up by viable DCs, which suppress the ability of viable DCs

to undergo maturation and subsequent migration to the

lymph nodes [35]. Therefore, apoptotic cells are a prom-

ising agent to induce tolDCs, which could possibly be used

for therapy for RA in the future.

Genetic engineering strategy

Recently, genetic engineering was practiced as a novel

strategy to induce tolDCs regardless of their maturation

stages [36]. Moreover, applications aimed at treatment for

RA have been practiced in experimental murine models. Both

knockdown of costimulatory factors such as CD40, CD80 and

CD86 and expression of immunosuppressive molecules in

DCs have been exploited to generate tolDCs, which effec-

tively suppressed the onset of collagen-induced arthritis [37].

Possible mechanisms of tolDCs function in RA therapy

Past studies have shown that tolDCs induce immunotoler-

ance through a variety of mechanisms that have been

extensively investigated, and the readers are referred to

recent reviews and articles [28, 31, 38]. On the basis of

literature published recently, here we highlight the poten-

tial mechanisms of tolDCs function in RA therapy.

Reduction in Th17

Th17 is a new and unique subset of T cells that plays a

critical role in host defense against certain extracellular

pathogens and also contributes to the pathogenesis of vari-

ous autoimmune diseases including RA [39–43]. Notably,

Th17 produces inflammatory cytokines such as IL-17 and is

a subset of osteoclastogenic Th cells, which was demon-

strated to induce tissue destruction in RA [44–46].

IL-23 is essential for the expansion of Th17 cells, and

IL-23 receptor is expressed on DCs [47]. Moreover, DCs

that are tolerogenic demonstrated reduction in IL-23, which

gives rise to lower number of Th17 [48]. Recently, studies

have shown that tolDCs led to the reduction in Th17

responses in experimental RA models, which is a potential

mechanism by which tolDCs help treat RA [49].

Anergy and apoptosis in effector T cells

As an autoimmune disease, RA is partially characterized by

the excessive activation and infiltration of T cells toward

synovium and synovial compartments [1]. DCs induce

naive T cells to differentiate into T helper cells in process

of RA, which results in inflammation and bone destruction

[2]. Therefore, suppression of mature DC-induced T-cell

differentiation and activation is a crucial pathway for the

therapy for RA with tolDCs. It has been reported that

tolDCs could lead to incomplete signaling to T cells

through inhibition of IL-12 production and generation of

TGF-b, which induce alloantigen-specific T-cell hypore-

sponsiveness, anergy or apoptosis in vitro and suppress

immune reactivity [50]. During the past years, studies have

shown that tolDCs suppress effector T-cell response via

upregulation of molecules including IDO, FasL, PD-L1 and

CTLA-4 Ig that are associated with immunoregulation and

apoptosis and downregulation of self-peptide-MHC com-

plex in couple with limited costimulatory molecules

(especially CD86) [51]. These mechanisms have been

recapitulated in experimental model of RA and arthritis and

provide support for therapy of RA with tolDCs [13].

TolDCs suppress the activation of memory T cells

RA is characterized by the accumulation of CD4(?) T cells

in the inflamed synovium, and most of them are CD4?

memory T cells. Recent evidence suggests that steady-state

immature DCs, which constitutively present an endoge-

nously expressed antigen, can inactivate fully differentiated

memory CD8? T cells in vivo through deletion and inac-

tivation [52]. Moreover, studies have shown that tolDCs

that are generated with different immunosuppressive

agents and cytokines can induce antigen-specific anergy

and regulatory properties in CD4? memory T cells [48,

53]. Recently, it is reported that tolDCs can regulate CD4?

memory T-cell differentiation. Xu X et al. found that

coculture of tolDCs with CD4? T cells results in the

secretion of Th2 cytokines (IL-4, IL-5, IL-10 and IL-13)

and negative immune regulation by memory T cells [54].

Taken together, these studies suggest that inhibition of the

activation of memory T cells is another possible mecha-

nism for tolDCs function in RA treatment.

Rheumatol Int (2012) 32:837–844 839

123



Switch of Th1/Th2 balance to Th2 cells selectively

RA is characterized by a marked shift toward the Th1

phenotype, which is described as proinflammatory, with

overproduction of IFN and inadequate production of Th2

cytokines such as IL-4 and IL-13 [55]. The immune devi-

ation (skewing of T cells toward the Th2 type) and the role

of Th2 cytokines in immune tolerance have been discussed
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Fig. 1 Manipulation strategies to generate tolDCs and potential

mechanisms underlying tolDC-induced autoimmune tolerance. Var-

ious cytokines (such as ILs, TNF and TGF-b), and immunoregulatory

molecules (such as IDO, PD-L1, ICOSL and ILTs) participate in all

this process during which tolDCs induce special differentiation of

naı̈ve T cells, which cause tolerance of autoimmunity and protect and

improve RA. IL interleukin, MHC major histocompatibility complex,

TGF-b transforming growth factor-b, Th helper T cells, PD-L1
programmed death 1 ligand, DC dendritic cell, lIDO indoleamine 2,3-

dioxygenase, RA rheumatoid arthritis; NF-kb nuclear factor-kappa B;

Treg regulatory T cell; ILT immunoglobulin-like transcript, ICOSL
inducible costimulator ligand. Prevention/inhibition; upreg-

ulation; downregulation. BOX-1 (1) Genetic engineering as a novel

tool for the generation of tolDCs by suppressing expression of

costimulatory molecules (CD40, CD80 and CD86) and promoting

expression of immunosuppressive proteins (e.g. IDO). (2) Uptake of

ACs leads to ligation of individual receptors on human DCs that

recognize apoptotic cells (such as CR3 and CR4), during which

process DCs get tolerogenic phenotype to inhibit IL-12 production,

generate transforming growth factor b (TGF-b) and produce IL-10.

(3) Drugs and biological agents that target inhibition of costimulatory

molecules such as MHC, CD40, CD80 and CD86, and upregulation of

immunosuppressive molecules including IDO, PD-L1, ILTs and

ICOSL can induce tolerogenic phenotype of DCs. BOX-2 (1) Naive T

cells can differentiate into Th17, which produces inflammatory

cytokines and results in tissue destruction in RA. TolDCs lead to the

reduction in IL-23, which is essential for the expansion of Th17 cells.

(2) Effector T cells comprise main part of autoimmune reactions in

RA. TolDCs could inhibit IL-12 production, generate TGF-b and

induce hyporesponsiveness, anergy or apoptosis of effector T cells.

(3) CD4? memory T cells accumulate in RA synovium and take part

in T-cell inflammatory response. TolDCs can produce cytokines (e.g.

IL-10), which induce antigen-specific anergy in CD4? memory T

cells. (4) RA is characterized by a marked shift toward the Th1

phenotype, which is proinflammatory, with overproduction of IFN.

TolDCs lead to a switch from Th1 to Th2 response with more Th2

cytokines (e.g. IL-4, IL-13) and result in autoimmune tolerance. (5)

Tregs have been proved to attenuate RA via secretion of cytokines

such as IL-25. TolDCs can express IDO and produce TGF-b and IL-

10, which facilitate Foxp3? Tregs
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[56]). Th2 cells induce processes involved in cartilage

repair, including collagen synthesis [57]. Studies have

shown that therapies aimed at switch of Th1/Th2 balance

attenuated RA and CIA. Accumulating evidence has shown

that prophylactic treatment with tolDCs is associated with a

reduced collagen II-specific IgG2a/IgG1 ratio, indicating a

switch from a Th1- toward a Th2-driven collagen II-spe-

cific immune response, which inhibits CIA in experimental

arthritis models [3, 58].

Effect of tolDCs on regulatory T cells (Treg)

It has been well established that Foxp3? Treg cells could

lead to the suppression of autoimmune response. Interest-

ingly, recent data showed that induction of Treg cells

facilitates the restoration of immune tolerance in RA [59].

The potential role of Treg cells in RA was reviewed very

recently [60].

Tregs can be induced by repeated stimulation with

allogeneic immature human or mouse mDCs. In addition,

pDCs express tolerogenic phenotype and induce Treg cell

through the expression of IDO [61–64]. In vivo study

further showed that selective ablation of DCs led to the loss

of FoxP3-expressing Treg and the development of proin-

flammatory autoreactive T effectors, resulting in excessive

autoimmunity [65]. Recent studies have shown that tolDCs

can attenuate RA and experimental arthritis through

induction of Tregs [66], which represents another promis-

ing mechanism for treatment for RA with tolDCs.

Treatment for RA with tolDCs: current situation

and perspectives

Current situation of tolDCs for RA

Up to now, the therapeutic application of tolDCs is practiced

mostly in animal models of RA. The development of animal

models in which DCs are selectively depleted will help

characterize the specific role of these cells in the patho-

genesis of RA. Studies have shown that repetitive injection

of immature DCs or DCs, which were modulated with TNF,

IL-10, dexamethasone or LF 15-0195, could induce toler-

ance to autoimmunity and result in the amelioration of

inflammation and destruction in experimental RA models.

Furthermore, DCs transduced with Fas ligand or IL-4 could

prevent CIA and inhibit arthritic symptoms in mice with

established disease [3, 67, 68]. In addition, tolDCs modified

by other drugs or cytokines have been used successfully to

prevent the onset of CIA and alleviate established arthritis in

the antigen-induced arthritis model [69].

TolDCs induced via drugs or other agents have

also been evaluated for therapeutic effects in RA patients.

Anti-TNF therapy has been proven to be effective in

treating patients with RA clinically, which ameliorates

clinical symptoms partially through induction of tolDCs in

vivo. Moreover, analysis of the immunophenotypes of

circulating DCs in RA patients before and after treatment

with infliximab demonstrated that tolerogenic phenotype of

DCs is closely correlated with clinical outcome of RA [70].

Perspectives

The utilization of tolDCs as a promising cellular vaccine for

tumor, infection and some autoimmune diseases has been

well described in the literature [71–75]. Fortunately, the

application of tolDCs as potential vaccine for the clinical

treatment for RA is getting more attention [22, 76, 77].

TolDCs for immunotherapy must be safe, standardized

and controlled [78, 79]. Recently, it was reported that

tolDCs generated in one study exhibited high-level expres-

sion of a certain receptor TLR-2, which is an appropriate

quantity control marker [19] for safety purposes. This is

encouraging for the therapeutic use of tolDC vaccines in RA

clinically. In conclusion, we can see that although there are

still challenges for its clinical use, tolDC-based vaccination

has a promising future to treat RA safely, conveniently and

effectively (Fig. 1).
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