ORIGINAL PAPER

Huaming Wang · Michael Ward

Molecular characterization of a PDI-related gene *prpA* in *Aspergillus niger* var. *awamori*

Received: 10 January / 21 September 1999

Abstract A gene (prpA) homologous to the protein disulfide isomerase gene was isolated from Aspergillus niger by Southern hybridization using the pdil gene isolated from *Trichoderma reesei* as a DNA probe. The corresponding cDNA of the prpA gene has also been isolated from an A. niger var. awamori cDNA library. The *prpA* gene does not belong to any currently recognized family of protein disulfide isomerases since it contains only a single conserved thioredoxin domain at the N-terminus of the protein. The C-terminal twothirds of the protein has no homology to any known proteins in the database. The PRPA protein contains an ER retention signal (HDEL) at its C-terminal end suggesting that it is located in the ER. Southern hybridization at high stringency showed that it was present as a single copy in the genome. Northern hybridization indicated that the transcript level of the prpA gene was higher if the cells were secreting a heterologous protein, bovine prochymosin. However, over-expression of the prpA gene from a multicopy integrated vector had little effect on chymosin secretion. A strain containing a deletion of the *prpA* gene was viable. However, deletion of the prpA gene appeared to cause a reduction of bovine chymosin production.

Key words Aspergillus niger \cdot Protein disulfide isomerase \cdot Bovine prochymosin \cdot prpA

Introduction

Protein disulfide isomerase (PDI, EC5.3.4.1) has been subjected to extensive study in both lower and higher

Communicated by K. Esser

H. Wang (⊠) · M. Ward Genencor International, 925 Page Mill Road, Palo Alto, California, CA 94304-1013, USA e-mail: hwang@genencor.com Fax: +1-650-845 6509 eucaryotic cells since it was first discovered in the early 60s (Freedman et al. 1994). Molecular analysis and biochemical studies indicated that the PDI protein possesses disulfide-bond exchange properties in vitro. More importantly, due to its ER location, it has been proposed that the PDI protein, in conjunction with other chaperone proteins, is required for the proper folding of soluble ER proteins in vivo (Freedman et al. 1994). It has been demonstrated that protein disulfide isomerase is essential for normal cell growth since gene deletion causes loss of viability in Saccharomyces cerevisiae (Farquhar et al. 1991). Genes, or closely related genes, of the PDI protein have been isolated from a number of different organisms such as fungi, plants and mammals. There are four major groups in the family defined respectively as PDI, ERp72, ERp60 and ERp5 (Freedman et al. 1994). Each protein contains two conserved domains centered on the WCGHCK sequence except for the *ERp72* family proteins which contain three such regions (Mazzarella et al. 1990) and Mpd1 from S. cerevisiae which contains only one conserved domain (Tachikawa et al. 1995). Genes encoding PDI have been isolated from several filamentous fungi such as Humicola insolens (Kajino et al. 1994), Aspergillus oryzae (Hjort 1994) and Aspergillus niger (Malpricht et al. 1996; Ngiam et al. 1997). A gene (tigA) encoding a PDI-related protein of the Erp60 family has also been cloned from A. niger (Jeenes et al. 1997).

Purified PDI protein has not only been shown to possess disulfide-bond exchange activities but also to be able to enhance in vitro folding of proteins such as chymosin (Tang et al. 1994). Over-expression of the PDI protein has been found to selectively increase the secretion of human PDGF and *Schizsaccharomyces pombe* acid phosphatase in *S. cerevisiae* (Robinson et al. 1994). It has also been shown that improvement of the production of mammalian Fab' antibody fragments in the periplasm of *Escherichia coli* could be achieved by coexpression of human protein disulfide isomerase (Humpherys et al. 1996) as could increased yield of the bovine pancreatic trypsin inhibitor by co-expression of 58

rat protein disulfide isomerase (Ostermeier et al. 1996). Heterologous protein production in A. niger has been improved through classical mutagenesis and screening, and sufficient progress has been made to obtain commercial yields of bovine chymosin (Dunn-coleman et al. 1991). Although these approaches can improve protein production, the mechanism of improvement is not well understood and the yields of mammalian proteins are still much lower than for fungal proteins. We are now trying to address the problem by identifying individual components of the secretion pathway and attempting to identify the limiting steps in the production of heterologous proteins. We have isolated a pdiA-related gene (prpA) from A. niger by Southern hybridization and subsequent screening of a genomic DNA library using the *pdi1* gene isolated from *Trichoderma reesei* as a probe (Saloheimo et al. 1999). The corresponding cDNA of the *prpA* gene has been isolated from a cDNA library of A. niger var. awamori. Molecular characterization of the *prpA* gene is reported here.

Materials and methods

Strain constructions

The A. niger var. awamori UVK143f strain, a derivative of NRRL 3112, was obtained through several rounds of UV mutagenesis and screening for increased glucoamylase production (Ward et al. 1990). The A. niger 2663 E strain was derived from a separate lineage but was also improved for glucoamylase production after mutagenesis and screening. The GCAAP4 strain was derived from UVK143f by deleting the major aspartic proteinase (Berka et al. 1990). A. niger var. awamori strain dgr246p2 (pyrG-) is deleted for the aspartic proteinase gene and was improved for chymosin expression by several rounds of mutagenesis and screening (Ward et al. 1993). The dgr246p2:trp- strain was isolated from a dgr246p2 strain in which the ApaI to XhoI fragment of the trpC coding region (Adams and Royer 1990) was deleted from the genome by homologous recombination and replaced by the A. niger pyrG gene. The pyrG gene was subsequently removed by selecting for 5-FOA resistance and the loss of the pyrG gene was confirmed by Southern analysis (Ward et al. 1993).

Southern analysis of the *A. niger* genomic DNA and library screening

A 1.3-kb EcoRI to XhoI fragment was purified from the Trichoderma pdil cDNA clone (Saloheimo et al. 1999) and used as a DNA probe in Southern-hybridization experiments. The genomic DNA from the A. niger var. awamori strain UVK143f was isolated by repeated phenol/chloroform extraction (Hvnes et al. 1983), digested with restriction enzymes, electrophoresed on a 1% agarose gel with TBE buffer and then transferred to a nitrocellulose membrane and hybridized with a radioactively labeled DNA probe in a buffer containing 25% formamide, 5× SSPE, 0.5% SDS and 0.1 mg/ml of denatured herring-sperm DNA. After hybridization, the DNA blot was washed twice with 2× SSC, 0.1% SDS, once with 0.5× SSC, 0.1% SDS and once with 0.1× SSC, 0.1% SDS. Each wash was for 30 min at 50 °C. The same conditions were used to screen an A. niger (2663E strain) genomic DNA library which was constructed by Clontech with approximately 15-kb inserts, generated by partial Sau3A digestion, in a lambda DASHII vector (T. Fowler, personal communication). DNA fragments from isolated phage were then subcloned into plasmids for sequence analysis.

Northern analysis

Fungal strains were first grown on plates at 37 °C. An agar plug containing growing mycelium was transferred to CSL medium (Dunn-coleman et al. 1991) and cultured for 2 days at 37 °C. The growing mycelium was then transferred to 50 ml of CSM medium (Ward et al. 1990). Two-day old CSM cultures were used for RNA purification by phenol/chloroform extraction (Ward et al. 1990). RNA was electrophoresed in a 1% agarose-formaldehyde gel, transferred to Nytran membranes and probed with radiolabeled DNA. The blots were washed at 65 °C in 0.1× SSC, 0.1% SDS.

Cloning of Aspergillus cDNA

Total RNA was extracted from the *A. niger* var. *awamori* UVK143f strain after the mycelium was grown in four different media containing either glucose, starch or beet pulp as the sole carbon source or else under nitrogen starvation. The cDNA library was constructed from a mixture of all above four RNAs in the yeast expression vector pYES2.0 (Invitrogen). The cDNA of the *prpA* gene was isolated after six rounds of sib-selection. The cDNA was completely sequenced on both strands.

Construction of expression vectors

The glucoamylase-prochymosin fusion-protein expression vector pGAMpR-II (Baliu and Wang 1995) was used as a control plasmid (see Fig. 4 a). The pGAMpR-II plasmid is similar to the pGAMpR plasmid (Ward et al. 1990) except that the starch-binding domain of glucoamylase was removed (codons 502-610 of mature glucoamylase). The plasmid pGCprpA constructed to co-express the *prpA* and glucoamylase-prochymosin genes was made by two steps: first, a 2800-bp *Bg/II* to *XbaI* fragment containing the *prpA* genomic DNA was inserted into the *BamHI* to *XbaI* sites of pBH2 (Ward et al. 1989). A 2400-bp *SmaI* to *NsiI* fragment of the *prpA* gene containing a polylinker sequence of the pBH2 plasmid was then inserted into the *SspI* site of pGAMpR-II (see Fig. 4 b).

Deletion of the *prpA* gene

Deletion of the prpA gene was done by transforming the dgr246p2 strain with a linear *Hin*dIII to *Xho*I DNA fragment within which the coding region of the prpA gene from *Pst*I to *Sal*I was substituted by the *Xho*I to *Sca*I fragment of the *A. niger pyrG* gene (see Fig. 6 a). After screening ten transformants by PCR, one strain was found containing a prpA gene disruption which was then confirmed by Southern analysis (see Fig. 6 b). The pGAMpR-II plasmid was co-transformed into this disrupted strain with pOBT which contains the *Aspergillus nidulans oliC* promoter driving the bleomycin resistant gene isolated from *Escherichia coli* and the *A. nidulans trpC* terminator in a pUC-based plasmid. The transformants were selected on plates overlaid with 50 µg/ml of phleomycin.

Fungal transformation

All plasmids used for transformation were purified on DNA affinity columns from Qiagen and transformed into fungal protoplasts by standard procedures of PEG-calcium transformation (Ward et al. 1990). The transformants were selected on minimal plates without uridine or with plates containing phleomycin. Chymosin expression was assayed by measuring the milk-clotting activity (Dunn-Coleman et al. 1991).

Results and discussion

Cloning of the A. niger pdil-related gene prpA

Using the isolated *pdi1* gene from *T. reesei* as a DNA probe (Saloheimo et al. 1999), several bands in restric-

1788

tion digests of A. niger var. awamori genomic DNA were detected on a Southern blot by low-stringency hybridization, suggesting that multiple homologous genes may exist. Similar conditions were subsequently used to isolate several phage clones from an A. niger genomic DNA library. Restriction mapping of phage DNA inserts indicated that they belonged to two distinct groups of clones. The genomic DNA of both clones was then analyzed by sequencing and the corresponding cDNAs were isolated from an A. niger var. awamori cDNA library and completely sequenced. Molecular characterization of the first *pdi1*-related gene revealed that it was the same as the *tigA* gene (Jeenes et al. 1997). The second gene was a distinct type of pdi1 related gene which was then named prpA (Fig. 1). A TC-rich region (from -73 to -109) was found in the promoter region of the *prpA* gene which is similar to the TC-rich region found

Fig. 1 The genomic DNA sequence of the A. niger prpA gene. In the promoter region, the TC-rich region is underlined. Two introns are written in lower case letters. The translated protein sequence is also shown under the DNA sequence. The translation stop codon is represented by an asterisk. The DNA sequence was submitted to Genbank under the accession number AF095899

in the promoter of the *pdiA* gene of A. niger (Ngiam et al. 1997). There is a TATA-like sequence (TATTA) located 58 bp upstream of the TC-rich region (from -168 to -172), and several putative CAAT boxes were identified in the promoter region in both directions (data not shown). The genomic DNA of the prpA gene contains two introns located near the 5' end of the coding sequence. The *prpA* gene encodes a protein of 464 amino acids. The translated protein sequence contained only one activation site (APWCGHCQNLKP) near the Nterminus of the protein. Sequence comparison showed that the N-terminal 150 amino acids contain homology to the protein disulfide isomerase while the C-terminal two-thirds of the protein did not match any sequences in the database. It does, however, contain an ER retention signal (HDEL) at the C-terminal end suggesting that it is an ER resident protein. Recently a yeast gene homologous to protein disulfide isomerase (MPD1) has been isolated as a high-copy suppressor of a deletion of the yeast PDI1 gene and it contains only one active site (Tachikawa et al. 1995). Searching of the database revealed that Mpd1 is one of the PDI-related proteins that shared highest homology to the PRPA protein. Figure 2 shows a sequence comparison of the thioredoxin domain of the two proteins.

AGA	TCT	ccc	TGG	GCA	gaa	GGG	CCA	TGC	CCT	TGC	CTT	CAG	ATG	GGG	ATG	CAA	TGG	ACA	TGT	TCG	TTT	GTA	АТТ	TGA	GGA	TTG	GTG	AGG	CGG	GGA	AGT	GCC	TGG	CTT	CCG	AGC	ACT	AAG	ААА	-469
GAG	ACC	стс	GAT	TAG	TAC	GGA	GCA	GGT	AGT	AAC	TAA	TCT	AGT	ста	ACG	CTT	AAG	TAG	ATA	GGT	AAG	GGC	TCC	GCA	таа	ACA	AAG	GAT	CTT	ATG	GGC	CCG	GAG	CTA	CGG	AGC	TCG	TGC	TCA	-349
TGG	AGG	CTT	ccc	GGA	AGA	CAG	GAT	TGC	CGA	CGC	CAT	GGA	TTT	TGC	AGA	АТА	GTT	AAC	TGA	ATC	CAA	TCC	CGT	AGA	GAA	TGG	ATG	CCA	TTC	ATG	GGG	GGA	TGA	ACA	ATG	GAC	TGG	TGT	GAT	-229
GGC	GGG	GCA	ACA	TCG	AAC	GGA	CGG	ATC	CGC	CGC	CAT	TCC	AAA	TCC	АТА	CAA	TTC	ААТ	атт	ACT	TCT	таа	GAC	ATT	TCG	CGT	CAC	ATG	CCA	AGA	GCT	TCA	GGA	CAC	СТТ	GCT	TCT	ATC	ta <u>c</u>	-109
TTC	TTT	CTG	TCC	TCT	CTT	CTC	CCT	CTC	TTC	TTC	CTC	GAT	TCA	TCC	CCG	CTG	GGT	GAT	GCT	TTA	GCT	GCT	ACT	CTT	GGA	TCC	CCT	CTC	GCA	TCT	TCC	TTA	ссс	GCA	ATC	ATG met	CTG leu	CAG gln	CCC pro	12
AGC	TCT	GCG	TTG	CTT	TTC	GTC	ACG	TCG	CTT	CTG	GCG	GCG	TTG	CCC	GTC	AAC	GCC	GAT	GGA	TTG	TAT	ACG	AAG	AAG	TCC	CCC	GTC	TTG	CAG	GTC	AAC	CAG	AAG	AAC	TAC	GAC	CAG	CTC	ATT	132
ser	ser	ala	leu	leu	phe	val	thr	ser	leu	leu	ala	ala	leu	pro	val	asn	ala	asp	gly	leu	tyr	thr	lys	lys	ser	pro	Val	leu	gln	val	asn	gln	lys	asn	tyr	asp	gln	leu	ile	
GCA ala	AAC asn	TCC ser	AAT asn	CAC his	ACT thr	TCG ser	gta	agt	aca	gct	gtg	cag	gtt	att	aca	att	gcc	tac	aga	caa	gtc	taa	taa	gct	ctc	cta	gAT ile	CGT val	AGA Lglu	gta I	agc	cat	cga	tca	ccc	tac	cca	tct	acc	252
tcc	cac	aat	cct	aaa	cct	ccc	cgc	tct	ccc	tct	agA	TTC phe	TAC tyr	GCT ala	CCC pro	TGG trp	TGC cys	GGC gly	CAC his	TGC cys	CAG gln	AAC asn	CTA leu	AAG lys	ccc pro	GCC ala	TAC tyr	GAA glu	AAA lys	GCC ala	GCA ala	ACT thr	AAT asn	CTC leu	GAC asp	GGC gly	CTG leu	GCC ala	AAA lys	372
GTC	GCC	GCC	GTC	AAT	TGC	GAC	TAT	GAC	GAC	AAC	AAA	CCC	TTC	TGC	GGC	CGC	ATG	GGC	GTC	CAG	GGC	TTC	CCT	ACC	CTC	AAG	ATC	GTC	ACC	CCC	GGC	AAG	AAA	CCC	GGC	AAG	CCC	CGC	GTG	492
val	ala	ala	val	asn	CYS	asp	tyr	asp	asp	asn	lys	pro	phe	cys	gly	arg	met	gly	Val	gln	gly	phe	pro	thr	leu	lys	ile	val	thr	pro	gly	lys	lys	pro	gly	lys	pro	arg	val	
GAA	GAC	TAC	AAG	GGC	GCA	CGA	AGT	GCC	AAA	GCG	ATT	GTC	GAG	GCA	GTC	GTC	GAC	CGG	ATT	ccc	AAC	CAT	GTG	AAG	CGC	GCA	ACA	GAC	AAG	GAC	CTT	GAC	ACT	TGG	CTC	GCG	CAG	GAT	GAG	612
glu	asp	tyr	lys	gly	ala	arg	ser	ala	lys	ala	ile	val	glu	ala	val	val	asp	arg	ile	pro	asn	his	val	lys	arg	ala	thr	asp	lys	asp	leu	asp	thr	trp	leu	ala	gln	asp	glu	
GAA	TCC	CCC	AAG	GCC	ATC	CTC	TTC	ACG	GAG	AAA	GGC	ACC	ACC	AGC	CCA	CTC	CTC	CGC	GCC	CTG	GCC	ATC	GAC	TTC	CTC	GGC	TCC	ATC	CAA	GTC	GCT	CAA	GTC	CGC	AAC	AAG	GAA	ACC	GAA	732
glu	ser	pro	lys	ala	ile	leu	phe	thr	glu	1ys	gly	thr	thr	ser	pro	leu	leu	arg	ala	leu	ala	ile	asp	phe	leu	gly	ser	ile	gln	val	ala	gln	Val	arg	asn	lys	glu	thr	glu	
GCC	GTC	GAG	AAA	TT C	GGC	ATC	ACC	GAG	TTC	CCA	ACC	TTC	GTC	CTA	CTC	CCA	GGA	GGC	GGC	CAA	GAC	CCC	ATC	GTC	TAC	GAC	GGC	GAA	CTG	AAG	AAG	AAG	CCC	ATG	GTC	GAA	TTC	CTC	AGC	852
ala	val	glu	lys	phe	gly	ile	thr	glu	phe	pro	thr	phe	val	leu	leu	pro	gly	gly	gly	gln	asp	pro	ile	val	tyr	asp	gly	glu	leu	lys	lys	lys	pro	met	val	glu	phe	leu	ser	
CAA	GCC	GCT	GCT	CCT	AAC	CCG	GAT	CCT	GCT	CCC	AAG	GGC	TCG	ACC	GCG	CCC	CGC	GAT	AAC	AAC	AAG	AAG	AAA	TCC	ACC	GAA	CCT	TCT	CCA	GAC	TCC	AAG	ATT	GTC	TCG	GAC	GAG	GCC	AAA	972
gln	ala	ala	ala	pro	asn	pro	asp	pro	ala	pro	lys	gly	ser	thr	ala	pro	arg	asp	asn	asn	lys	lys	lys	ser	thr	glu	pro	ser	pro	asp	ser	lys	ile	val	ser	asp	glu	ala	1ys	
CCC	GCC	AGT	GTG	CCC	ATT	CCG	GCT	CCC	CCC	ATT	GGT	ACC	CTG	CCC	ACT	GCG	GAA	GCC	CTC	GAG	GCT	GCT	TGT	CTG	ATG	CCG	AAA	TCC	GGT	ACC	TGT	GTG	CTG	GCT	CTC	CTC	CCT	GAA	CCG	1092
pro	ala	ser	val	pro	ile	pro	ala	pro	pro	ile	gly	thr	leu	pro	thr	ala	glu	ala	leu	glu	ala	ala	cys	leu	met	pro	lys	ser	gly	thr	cys	val	leu	ala	leu	leu	pro	glu	pro	
AGT	GAG	CCG	GAC	GCA	GAG	CTC	CCG	GCT	CCG	GCC	AAG	GAC	GCC	CTC	CTC	AGT	CTC	GCT	GAG	ATC	TCG	CAC	AAG	CAC	GCA	GTC	CGT	AAG	AGC	AAG	CTC	TTC	CCG	TTC	TAC	AGT	GTC	CCG	GCT	1212
ser	glu	pro	asp	ala	glu	leu	pro	ala	pro	ala	lys	asp	ala	leu	leu	ser	leu	ala	glu	ile	ser	his	lys	his	ala	val	arg	lys	ser	1ys	leu	phe	pro	phe	tyr	ser	val	pro	ala	
ATC	AAT	AGC	GGA	GCT	AAG	ACC	CTC	CGC	GCT	GGG	CTT	GGT	CTG	CCT	GAG	GAT	AAC	TCG	GTG	GAG	ATC	GTT	GCT	GTG	AAT	GGA	CGC	CGT	GGC	TGG	TGG	CGC	CGG	TAT	GAC	TCG	GTT	GAG	GGC	1332
ile	asn	ser	gly	ala	lys	thr	leu	arg	ala	gly	leu	gly	leu	pro	glu	asp	asn	ser	val	glu	ile	Val	ala	val	asn	gly	arg	arg	gly	trp	trp	arg	arg	tyr	asp	ser	val	glu	gly	
GCA	GAG	TAC	GGC	CAG	GAG	CGT	GTC	GAG	GCT	TGG	ATT	GAT	GCG	ATC	AGG	CTG	GGT	GAG	GGT	GAG	AAG	CAG	AAG	TTG	CCT	GAT	GGC	GTT	GTC	GTT	GAA	GAG	GTA	GTT	GAG	GAG	AAG	GTC	GAA	1452
ala	glu	tyr	gly	gln	glu	arg	val	glu	ala	trp	ile	asp	ala	ile	arg	leu	gly	glu	gly	glu	lys	gln	lys	leu	pro	asp	gly	val	val	Val	glu	glu	val	val	glu	glu	lys	val	glu	
GAG glu	AAG lys	GTC val	GAG glu	GAA glu	GTG val	GTT val	GAA glu	GAA glu	ccc pro	GTC val	GAG glu	GAG glu	AAG lys	CCG pro	GCG ala	GTC Val	GAC asp	CAC his	GAC asp	GAA glu	TTG leu	таа *	AAC	ATA	TGG	TCC	GTA	TGG	AGT	GCA	TGA	ATT	TGT	TTA	TTA	GCA	CAG	GTG	TTT	1572
ATC	AGG	TCA	ААТ	AAG	TAC	TAC	TAG	CTG	GTT	ccc	CAT	ATC	GAG	TAT	CAA	AAG	CAT	ACA	ТАТ	CAT	СТА	СТG	TCA	GCT	ACT	TCA	ATT	CCA	CTA	ATC	GGG	ATG	AAC	TTG	ТАТ	TGG	AAC	ACT	CAT	1692

	10	20	3	30 4	0	50	60
prpA	MLQPSSALLF	VTSLLAALPVN	JADGLYTKK	CSPVLQVNQKN	IYDQLIANSNI	HTSIVEFYAP	WCGHCQNLKP
	:	:		: :	:	:	
MPD1	MLFLNIIKL	LLGLFIMNEV	CAQNFYDSE	OPHISELTPKS	SFDKAIHNTN	YTSLVEFYAP	WCGHCKKLSS
	70	80 9	90	100	110	120	130
prpA	AYEKAATNLD	GLAKVAAVNCI	DYDDNKPFC	CGRMGVQGFPI	LKIVTPGKK	PGKPRVEDYK	GARSAKAIVE
	:	:		: :	:	::	:
MPD1	TFRKAAKRLD	GVVOVAAVNCI	DLNKNKALC	CAKYDVNGFPI	LMVFRPPKI	DLSKPIDNAK	KSFSAHANEV

Fig. 2 Sequence alignment of the *N*-terminal 136 amino-acid sequence of the *A. niger* var. *awamori PRPA* protein with the *S. cerevisiae* Mpd1 protein sequence. Identical residues are marked by *vertical lines* and conserved changes are indicated by *two dots*. There are 51 identical amino acids (37.5%) and 14 conserved amino acids (10.3%) between the two proteins

Northern analysis

We have obtained and analyzed many transformants from strain dgr246p2 (a strain improved for chymosin production) containing four different expression plasmids. Two transformants, selected for Northern analysis, contained a similar copy number of multicopy integrated plasmids expressing either the preproglucoamylase catalytic domain (aa 1-501 of the mature glucoamylase) or the preproglucoamylase catalytic domain fused to bovine prochymosin. The other two strains selected for Northern analysis contained only a single plasmid integrated at the glucoamylase locus expressing either the catalytic domain of glucoamylase or the glucoamylase-prochymosin fusion protein. Northern hybridization was performed to determine the effects of the above expression vectors on the expression levels of the prpA gene. The results clearly showed that the level of transcription of the *prpA* gene increased when cells were expressing fusion proteins containing chymosin (Fig. 3 a, lanes 1 and 3). The highest increase of mRNA can be seen in lane 1, as compared to lane 2, when the chymosin was expressed as a fusion protein in a multicopy-integrant. Ethidium bromide staining indicated that slightly more RNA was loaded in lane 2. A modest increase in mRNA level was also evident in lane 3, as compared to lane 4, when the chymosin was expressed as a fusion, but only a single expression plasmid was integrated at the glucoamylase locus. Ethidium bromide staining demonstrated that very similar amounts of RNA were loaded in lanes 3 and 4. The mRNA level of the prpA gene was similar in an untransformed control strain (data not shown) compared to the two strains which did not produce chymosin (lanes 2 and 4). The mRNA of the prpA gene was also induced when the bovine chymosin was expressed as a fusion to the catalytic domain of the glucoamylase in a multicopy integrant in strain GC Δ AP4 (see lanes 1 and 2 of Fig. 5). We have also observed a similar induction of the *pdiA* and the *tigA* genes (data not shown). Therefore, the expression of heterologous proteins affects the expression of all three pdi-related genes in A. niger.

Fig. 3 A,B Northern analysis of expression levels of the *prpA* gene in transformants of *A. niger* var. *awamori* strain dgr246p2. Panel A shows the ethidium bromide staining picture of the RNA gel. The 28S and 18S ribosomal RNA bands are indicated by *arrows*. Panel B shows the Northern hybridization result using the *prpA* gene as probe (the 747-bp XbaI to XhoI genomic DNA fragment of the *prpA* gene). The mRNA transcripts of the *prpA* gene are indicated by an *arrow*. Lane 1 contains RNA extracted from a multicopy integrant transformant with pGAMpR-II. Lane 2 contains RNA extracted from a strain with a single copy of plasmid pGAMpR-II integrated at the glucoamylase locus. Lane 4 contains RNA extracted from a strain with a single plasmid integrated at the glucoamylase locus expressing the glucoamylase catalytic domain only

Effect of over-expression of the *prpA* gene

Since the expression of a heterologous protein in A. niger var. awamori clearly induced expression of the prpA gene, we decided to test the effects of further over-expression of the *prpA* gene on bovine prochymosin production. We first constructed a vector (pGCprpA) designed to co-express the preproglucoamylase catalytic domain-prochymosin fusion with the prpA gene in the same plasmid (Fig. 4 b). The plasmid, pGAMpR-II (Fig. 4 a), which did not contain the *prpA* gene, was used as control. The expression vectors were transformed into strain GC Δ AP4. Twenty transformants with each vector were isolated, grown in shake flasks and assayed for chymosin activity. Table 1 shows the results obtained from the three highest chymosin producers obtained with each plasmid. The level of chymosin produced by the control transformants without over-expression of the prpA gene (pGAMpR-II transformants) was similar to the transformants with over-expression of the *prpA* gene (pGCprpA transformants). Therefore, there was no effect of over-expression of the *prpA* gene on chymosin production. The difference in chymosin expression level between strains presumably results from integration of the expression plasmids at different chromosomal loci or at different copy numbers. We showed by Northern hybridization that the messenger levels of the *prpA* gene were indeed increased in two of three pGCprpA transformants (lanes 4 and 5 of Fig. 5 a). The smearing of the *prpA* transcript in these two lanes may result from abnormal transcription initiation or termination when over-expressed. In the control experiment, the messenger

Fig. 4 A,B Circular maps of two plasmids used in the co-expression of chaperone genes with a prepro-glucoamylase catalytic domainbovine prochymosin fusion. A shows the pGAMpR-II plasmid which was used as a control for prochymosin expression without any chaperone gene. B is pGCprpA containing the *A. niger* var. *awamori prpA* gene cloned into the *SspI* site of pGAMpR-II. Plasmids are not drawn to the same scale

Table 1 Assay data for chymosin expression from transformant strains containing the expression plasmids. The first column lists the names of the plasmids that were used for each transformation. The second column shows the designation of the three best transformants among 20 independent transformants picked from each transformation. The third column indicates the chymosin expression level of each construct in chymosin milk-clotting activity units

Integrated plasmid	Transformant	Chymosin units
pGAMpR-II	Q33-3 Q33-4 Q33-16	12.9 9.9 13.1
pGCprpA	Q57-2 Q57-4 Q57-6	18.3 9.7 12.0

level of the pgk gene was similar in all five strains (lanes 1–5 of Fig. 5 b). However, we have not been able to confirm over-expression at the protein level due to the lack of corresponding antibodies and activity assays of the PRPA protein. Similar results, showing a lack of effect of prpA over-expression, were obtained with strain dgr246p2 which is capable of producing higher levels of chymosin than the GC Δ AP4 strain.

A previous report (Jeenes et al. 1997) showed induction of the *pdiA* and *tigA* mRNAs when cells were treated with tunicamycin. Here, we have clearly demonstrated that the prpA mRNA levels (and those of pdiA and *tigA*, data not shown) increased as a result of the production of the heterologous protein prochymosin in A. niger var. awamori. Several reports have suggested that over-expression of protein disulfide isomerase will enhance heterologous protein production extracellularly in S. cerevisiae, especially for those proteins that contain multiple disulfide bonds (Robinson et al. 1994). However, over-expression by an increased copy number of the prpA gene in A. niger var. awamori did not stimulate extracellular chymosin production significantly. Similar results were obtained when the *pdiA* or *tigA* genes were over expressed (data not shown). No improvement was

Fig. 5 A,B Northern analysis of *prpA* over-expression in strain GC Δ AP4. **Panel A** the Northern blot was probed with the *prpA* genomic DNA (the 747-bp *XbaI* to *XhoI* genomic DNA fragment of the *prpA* gene). *Lane 1* shows the *prpA* mRNA level in the parental strain (GC Δ AP4). *Lane 2* shows the *prpA* mRNA level in GC Δ AP4 transformed with plasmid pGAMpR-II. *Lane 3* shows the *prpA* mRNA level in the GC Δ AP4 strain containing pGCprpA (the transformant Q57-2). *Lane 4* shows the *prpA* mRNA level in the GC Δ AP4 strain containing pGCprpA (the transformant Q57-6). **Panel B** shows Northern hybridization of an identical blot using the *pgk* probe (the 2.3-kb *ClaI* to *PstI* genomic DNA fragment of the *pgk* gene)

also observed for chymosin production when we used another strain, dgr246p2:trp- (a strain improved for glucoamylase-prochymosin production by mutagenesis and selection, and having a *pepA* gene disruption). In this case, the glucoamylase-prochymosin fusion and the *prpA* gene were expressed from separate plasmids (data

not shown). It seems that the A. niger var. awamori ER chaperones are well regulated to meet the requirement for high-level expression of some heterologous proteins. The fact that over-expression of the *prpA*, *pdiA* or *tigA* genes did not improve chymosin production may suggest that expression of these chaperones is not the limiting step. However, it is possible that over-expression of these genes may enhance the production of other heterologous proteins. We cannot eliminate the possibility that over-expression of the chaperone genes may increase the intracellular chymosin level, without affecting extracellular levels, by promoting proper folding in the ER. This was apparently the effect on IL-6 production since over-expression of the *bipA* gene increased the intracellular human interleukin-6 level, but not the extracellular protein level in A. niger (van den Hondel et al. 1997). It will be important to determine the effect of the combination of over-expression of the *prpA* gene with other ER chaperones, such as the bipA gene, on hetero- logous protein production in filamentous fungi

Fig. 6 A,B Scheme for the deletion of the *prpA* gene and Southern analysis of the deletion strain. **Panel A** shows the restriction map of the wild-type *prpA* genomic DNA (top) and a restriction map of the *prpA* gene deletion (bottom). The Δ prpA strain was made by replacing the *PstI* to *SaII* fragment of the *prpA* gene (most of the coding region) with *A. niger pyrG* gene. **Panel B** shows the Southern hybridization result for the *prpA* gene deletion. DNA isolated from the wild-type strain and the deletion strain are indicated on top of the Southern blot. The DNA probe used for Southern analysis is indicated on top of the restriction map in **Panel A**. A 3.7-kb *XhoI* fragment detected in the wild-type strain is representative of the undisrupted *prpA* gene. However, in the deletion strain, a larger *XhoI* fragment (about 7 kb) is present due to insertion of the *A. niger pyrG* gene and loss of an internal *XhoI* site. Two weak hybridization bands in each lane may result from partial *XhoI* digestion of the genomic DNA

Table 2 Assay data for chymosin expression from the wild-type strain and the prpA deletion strain containing the expression plasmids. The expression levels of the top three producers are shown in the wild-type strains from 15 randomly picked transformants and in the prpA deletion strain from 19 randomly picked transformants

Strain used for transformation	Wild-type strain	Deletion strain
Plasmid used for transformation	pGAMpR-II	pGAMpR-II and pOBT
Chymosin units from top three producers	58 units (CS5-6) 64 units (CS5-7) 52 units (CS5-14)	12.8 units (Q6971-1) < 3.2 units (Q6971-11) 8.2 units (Q6971-19)

since an additive effect has been reported in *Saccharo-myces* (Shusta et al. 1998).

Effect of *prpA* gene disruption

We decided to test the effects of disruption of the prpAgene of A. niger var. awamori on strain viability and chymosin expression. Southern hybridization indicated that the prpA gene was present in only a single copy in the genome (data not shown). We disrupted the prpA gene in strain dgr246p2 by replacement with the pvrG gene of A. niger through homologous recombination (Fig. 6 a). The disrupted transformant was first identified by PCR and Southern hybridization was used to confirm this deletion (Fig. 6 b). It is a nonessential gene since we have not detected any noticeable growth difference compared to an undeleted strain. Unexpectedly, we were unable to obtain stable uridine auxotrophic derivatives of this deleted strain by 5-FOA selection. Therefore we co-transformed pGAMpR-II with the plasmid, pOBT, which contains the bacterial phleomycin resistance gene under the control of an A. nidulans oliC promoter and trpC terminator (see Materials and methods), into the prpA deleted strain. The transformation efficiency was very low for this strain, but 19 colonies were obtained from phleomycin-containing plates, of which only three transformants produced bovine prochymosin. The production level of bovine prochymosin was lower than expected for three randomly isolated transformants (Table 2), which may result from prpA gene deletion. However, we cannot rule out that this simply reflects the integration sites or copy number of the expression plasmid since only three transformants expressing chymosin were analyzed. We have also deleted the *tigA* gene but were unable to detect any noticeable effect of the deletion on cell growth under normal laboratory growth conditions or on chymosin production (data not shown).

Acknowledgements We thank Markku Saloheimo and Merja Penttilä (VTT Biotechnology and Food Research) for their critical readings and for providing the *Trichoderma pdi1* DNA probe. We also thank Tim Fowler for providing the *A. niger* genomic DNA library.

References

- Adams RR, Royer T (1990) Complete genomic sequence encoding trpC from Aspergillus niger var. awamori. Nucleic Acids Res 18:16
- Berka RM, Ward M, Wilson LJ, Hayenga KJ, Kodama KH, Carlomagno LP, Thompson SA (1990) Molecular cloning and deletion of the Aspergillopepsin A gene from *Aspergillus awamori*. Gene 86:153–162
- Baliu E, Wang H (1995) Increasing the yield of recombinant bovine chymosin by Aspergillus niger var. awamori by modification of the expression vector. 209th ACS National Meeting Abstracts, BIOT 190
- Dunn-coleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R, Wilson LJ, Kodama KH, Baliu EF, Bower B, Lamsa M, Heinsohn H (1991) Commercial levels of chymosin production by *Aspergillus*. Bio/Technology 9:976–981
- Farquhar R, Honey N, Murant SJ, Bossier P, Schultz L, Montgomery D, Ellis RW, Freedman RB, Tuite MF (1991) Protein disulfide isomerase is essential for viability in *Saccharomyces cerevisiae*. Gene 108:81–89
- Freedman RB, Hirst T, Tuite MF (1994) Protein disulfide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336
- Hondel CAMJJ van den, Veldhuisen G, Kuijvenhoven A, Punt PJ (1997) Analysis of the first steps of the secretion pathway of *Aspergillus niger*. In: Protein Folding, Modification and Transport in the Early Secretory Pathway, Keystone Symposia on Molecular and Cellular Biology, Taos, New Mexico, p 27
- Hjort CM (1994) A fungal protein disulfide isomerase. Patent, International Publ. No. W95/00636
- Humpherys DP, Weir N, Lawson A, Mountain A, Lund PA (1996) Co-expression of human protein disulfide isomerase (PDI) can increase the yield of an antibody FAB' fragment expressed in *Escherichia coli*. FEBS Lett 380:194–197
- Hynes MJ, Corrick CM, King JA (1983) Isolation of genomic clones containing the *amdS* gene of *Aspergillus nidulans* and their use in the analysis of structural and regulatory mutations. Mol Cell Biol 3:1430–1439
- Jeenes DJ, Pfaller P, Archer DB (1997) Isolation and characterization of a stress-inducible PDI-family gene from Aspergillus niger. Gene 193:151–156
- Kajino T, Sarai K, Imaeda T, Idekoba C, Asami O, Yamada Y, Hirai M, Udaka S (1994) Molecular cloning of a fungal cDNA encoding protein disulfide isomerase. Biosci Biotech Biochem 58:1424–1429
- Malpricht S, Thamm A, Khanh NQ (1996) Cloning of cDNA for the protein disulfide isomerase from *Aspergillus niger* strain NNRL3 using PCR. Biotechnol Lett 18:445–450
- Mazzarella AR, Srinivasan M, Haugejorden MS, Green M (1990) Erp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J Biol Chem 265:1094–1101
- Ngiam C, Jeenes DJ, Archer DB (1997) Isolation and characterization of a gene encoding protein disulphide isomerase, *pdiA*, from *Aspergillus niger*. Curr Genet 31:133–138
- Ostermeier M, Sutter KD, Georgiou G (1996) Eukaryotic protein disulfide isomerase complements *Escherichia coli dsbA* mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem 271:10616–10622
- Robinson AS, Hines V, Wittrup KD (1994) Protein disulfide isomerase overexpression increases secretion of foreign protein in *Saccharomyces cerevisiae*. Bio/Technology 12:381– 384
- Saloheimo M, Lund M, Penttilä ME (1999) The protein disulphide isomerase gene of the fungus *Trichoderma reesei* is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262:35–45
- Shusta EV, Raines RT, Pluckthun A, Wittrup KD (1998) Increasing the secretory capacity of *Saccharomyces cerevisiae* for

production of single-chain antibody fragments. Nature Bio-technol 16:773-777

- Tachikawa H, Takeuchi Y, Funahashi W, Mirura T, Gao XD, Fujimoto D, Mizunaga T, Onodera K (1995) Isolation and characterization of a yeast gene, MPD1, the overexpression of which suppresses inviability caused by protein disulfide isomerase depletion. FEBS Lett 369:212–216
- Tang B, Zhang S, Yang K (1994) Assisted refolding of recombinant prochymosin with the aid of protein disulphide isomerase. Biochem J 301:17–20
- Ward M, Kodama KH, Wilson LJ (1989) Transformation of Aspergillus awamori and A. niger by electroporation. Exp Mycol 13:289–293
- Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM (1990) Improved production of chymosin in *Aspergillus* by expression as a glucoamylase-chymosin fusion. Bio/Technology 8:435–440
- Ward M, Wilson LJ, Kodama KH (1993) Use of Aspergillus overproducing mutants, cured for integrated plasmid, to overproduce heterologous proteins. Appl Microbiol Biotechnol 39:738–743