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Abstract
Lipases from Pseudomonas species are particularly useful due to their broader biocatalytic applications and temperature activ-
ity. In this study, we amplified the gene encoding wild-type cold-active lipase from the genome of psychrotrophic bacterium 
isolated from the Himalayan glacier. The isolated CRBC14 strain was identified as Pseudomonas sp. based on the 16S rRNA 
gene sequence. Lipase activity was determined by observing the hydrolysis zone on nutrient agar containing tributyrin (1%, 
v/v). The sequence analysis of cold-active lipase revealed a protein of 611 amino acids with a calculated molecular mass 
of 63.71 kDa. The three-dimensional structure of this lipase was generated through template-supported modeling. Distinct 
techniques stamped the model quality, following which the binding free energies of tributyrin and oleic acid in the complex 
state with this enzymatic protein were predicted through molecular mechanics generalized born surface area (MMGBSA). 
A relative comparison of binding free energy values of these substrates indicated tributyrin’s comparatively higher bind-
ing propensity towards the lipase. Using molecular docking, we evaluated the binding activity of cold-active lipase against 
tributyrin and oleic acid. Our docking analysis revealed that the lipase had a higher affinity for tributyrin than oleic acid, as 
evidenced by our measurement of the hydrolysis zone on two media plates. This study will help to understand the bacterial 
diversity of unexplored Himalayan glaciers and the possible application of their cold-adapted enzymes.
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Introduction

Lipases are the potential bioresources, mainly responsible 
for the hydrolysis of acylglycerides, while some are more 
suitable for synthesis (Kumar et al. 2020). Among all the 
lipases, cold-active lipases found naturally in psychrotrophic 

and psychrophilic bacterial species have gained a lot of atten-
tion in structural investigations and industrial applications 
due to their remarkable stability at low temperatures (Bhatia 
et al. 2020). These lipases have presented great activity in 
biofuel production (Ribeiro et al. 2011), as detergent addi-
tives (Al-Ghanayem and Joseph 2020), in environmental 
bioremediations and food industries (Chandra et al. 2020), 
leather processing and suppressing the formation of inclu-
sion bodies in protein expression studies at low temperatures 
(Sathish Yadav et al. 2011; Joseph et al. 2008). Moreover, 
the global market for lipases is expected to reach $ 0.79 
billion by 2025 (Fatima et al. 2020). Cold-active lipases are 
in growing demand (Mhetras et al. 2021) because they are 
active at low temperatures and low water concentrations due 
to improved flexibility compared to their mesophilic and 
thermophilic counterparts (Kumar et al. 2020).

Furthermore, microbial lipases have a lower cost of 
manufacture, a more selective activity, lower energy usage 
(Kavitha 2016), easy handling and transportation in pow-
dered form in the enzyme market in comparison to lipases 
from plant and animal sources (Chandra et  al. 2020). 
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Pseudomonas lipases, in particular, have received special 
attention among bacterial lipases because of their thermo-
resistance, active at alkaline pHs and higher production 
rate (Chandra et al. 2020; Ramnath et al. 2016). Accord-
ing to their molecular properties and the need for correct 
folding and secretion of helper proteins, these lipases have 
been categorized into three groups viz., the groups I, II and 
III. Group III lipases do not require a lipase-specific foldase 
to obtain enzymatically active lipases and have a molecu-
lar mass between 50 and 68 kDa (Karakaş and Arslanoğlu 
2020).

The common methods of identifying the new lipases 
isolated from natural sources such as plants, animals and 
microorganisms used established protocols or selected 
methods. These methods include fermentation, precipita-
tion and purification of enzymes, which are usually time 
and resource consuming (Bharathi and Rajalakshmi 2019). 
Alternatively, the amplification of the target gene can be 
carried out using degenerate primers (Abd. Jalil et al. 2018). 
In addition, the in silico characterization of these enzymes 
also offers a higher success rate, increased discoverability 
and lower consumption of time and resources (Kamble et al. 
2018). The discovery of new lipases through the combined 
molecular and in silico approach for industrial use has 
become a valuable tool due to the increasing availability of 
whole-genome sequences (Kamble et al. 2018). Thus, sev-
eral lipase-encoding genes have either been amplified from 
the wild-type bacterial species or cloned into various other 
species (Baweja et al. 2016; Perfumo et al. 2020).

In light of this, there is greater interest in exploring cold 
habitats to isolate such enzymes from psychrotrophic bacte-
ria for commercial purposes. Kashmir Himalaya, which lies 
to the north-western extremity of the Himalayan biodiversity 
hotspot, has been less explored for lipase-producing psy-
chrotrophic bacteria (Yadav et al. 2016; Joseph et al. 2012). 
In this study, we used a combinatorial approach to character-
ize the cold-active lipase isolated from a psychrotrophic bac-
terium, CRBC14 of the Himalayan Thajwas glacier. Further, 
we explored the binding free energy of this lipase towards 
tributyrin and oleic acid through an extra-precision molecu-
lar docking approach in flexible mode and next-generation 
solvation model-based molecular mechanics generalized 
born surface area (MMGBSA) approach.

Materials and methods

Sample collection

The soil sample was collected at an altitude of 2944 m 
(34°16′30′′N; 75°17′10′′E) from the Himalayan Thajwas 
glacier. The soil sample was collected in 100 ml sterile 

plastic vials and transported to the laboratory in ice packs 
for analysis.

Isolation of the psychrotrophic bacteria

Isolation of bacterial colonies was carried on Luria–Bertani 
(LB) agar plates as per Srinivas et al. (2011). Soil sample 
(1 g) was dissolved in 100 ml of NaCl solution (0.9%, w/v) 
and kept in an orbital shaker incubator for 2 h at 150 rpm 
and 15 °C. Following that, 0.1 ml of the soil sample solu-
tion was inoculated on pre-prepared LB agar plates. The 
inoculated LB plates were then incubated at 4, 15, 20 and 
30 °C for 2–15 days, colony counts were taken and distinct 
morphotypes were purified and kept on LB agar medium.

Screening for lipolytic activity

The isolated, pure colonies were screened for their lipolytic 
activity (clear zone) on nutrient agar (NA) plates containing 
tributyrin (1%, v/v). The strain CRBC14 with a maximum 
lipolytic activity was chosen for further analysis. The pure 
isolate was grown at five different temperatures (4, 10, 15, 
20 and 30 °C) and pHs (6.0, 7.0, 8.0, 9.0 and 10.0) on two 
sets of NA plates. One set contained tributyrin (1%, v/v) 
and the other olive oil (1%, v/v) for the determination of 
lipolytic activity by analyzing the zone of hydrolysis (Joseph 
et al. 2012).

Determination of optimal growth temperature

The purified isolate was inoculated on pre-prepared LB 
plates and incubated at 7 different temperatures (0, 5, 10, 
15, 20, 30 and 37 °C) to determine the optimal growth tem-
perature. Growth was observed every 24 h for 2–30 days 
(Zhang et al. 2013).

Genomic DNA extraction and 16S rRNA gene 
amplification

The extraction of genomic DNA from psychrotrophic bac-
terial isolate CRBC14 was done by DNA purification kit 
(HiPura bacterial genomic DNA), as per the manufacturer’s 
instructions. The extracted DNA was used as a template 
for 16S rRNA gene amplification through PCR using 27F 
and 1429R primers (Shivaji et al. 2004). The PCR product 
purification and sequencing were done at Agrigenome labs, 
Kerala, India. Identification of isolate (CRBC14) was done 
by BLASTn (Nucleotide BLAST) search at NCBI to check 
the similarity with our sequence. Further, the sequence 
alignment of CRBC14 with similar species (downloaded 
at NCBI) was done with ClustalW (https://​www.​genome.​
jp/​tools-​bin/​clust​alw). MEGA 7 was used to create the 

https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
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phylogenetic tree (Kumar et al. 2016) by the Neighbor-join-
ing method (Bootstrapping at 1000 replicates).

Amplification of lipase gene

Lipase gene was amplified by PCR using the primers based 
on known Pseudomonas lipase sequences: (LF) 5′-ATG​GCT​
GTG​TAG​GAC​AAA​AGAAC-3′ and (LR) 5′-TCA​GGC​GAT​
TAC​AAT​GCC​ATC​AGC​-3′ (Zhang et al. 2007). Protein 
sequences of cold-active lipase from CRBC14 strain and of 
other similar lipases were aligned together in Clustal Omega 
(https://​www.​ebi.​ac.​uk/​Tools/​msa/​clust​alo/) and Fig. 2 was 
developed with ESPript 3.0.0 (Robert and Gouet 2014).

Model generation and assuring its validity

Using the amino acid sequence of cold-active lipase as 
input, the three-dimensional (3D) structure of this enzyme 
was generated using the sophisticated homology modeling 
tool, namely SWISS-MODEL (Bordoli et al. 2009). Among 
the various templates recognized by the search algorithm, 
the best template was chosen, taking various aspects like 
sequence identity, sequence coverage and best resolution 
into consideration. 2Z8X, the PDB ID of the extracellular 
enzyme (lipase), from Pseudomonas sp. MIS38 was used 
as template for model building (Angkawidjaja et al. 2007). 
The model quality was tested using various methods, includ-
ing PROCHECK, VERIFY3D, PROSA and by estimating 
RMSD between model and template (Laskowski et al. 1993; 
Lüthy et al. 1992; Wiederstein and Sippl 2007).

Preparing protein (lipase) and substrate (tributyrin 
and oleic acid) coordinates

As a rule of thumb, one has to perform protein preparation 
before molecular docking. The needful was done by tak-
ing advantage of the protein preparation wizard, the com-
ponent of the Schrödinger suite. During the preparation of 
protein, the standard protocol was followed (Madhavi Sas-
try et al. 2013; Mir et al. 2020). After fixing missing side 
chains and other parameters, the protein was optimized and 
then refined. The active site was selected by specifying the 
residues that were confirmed to be active site residues by 
various tools, including ScanProsite and Computed Atlas 
of Surface Topography of proteins (CASTp) (De Castro 
et al. 2006; Tian et al. 2018). Coordinates of tributyrin and 
oleic acid were retrieved from the huge database, PubChem. 
The PubChem CID of these molecules is 6050 and 445,639, 
respectively (Kim et al. 2020). Tributyrin and oleic acid 
structures were prepared for molecular docking with the 
help of LigPrep software (LigPrep, Schrödinger, LLC, New 
York, 2021). Substrates, as usual, were minimized, desalted, 
metal-binding states and tautomers were generated and 

default parameter for chirality was opted (Shankaran et al. 
2016).

Flexible molecular docking and binding free energy 
quantification

The prepared tributyrin and oleic acid were docked into 
the predefined active site of cold-active lipase. As it is well 
proven that flexible docking in extra-precision mode has 
better accuracy than standard-precision mode, thus we exe-
cuted molecular docking in the former mode. Docking was 
executed using the pandemically authenticated Glide tool. 
The best pose, in either case, was picked based on dock-
ing score criteria (Friesner et al. 2006; Ganai 2021). The 
individual tributyrin–lipase and oleic acid–lipase docked 
complexes were used as input for estimating the values of 
binding free energy. Calculations were done with the popu-
lar implicit solvation reliant MMGBSA method. MMGBSA 
of Prime module performs multiple energy estimations and 
from those, the binding free energy value is finally deduced 
using the standard equation;

E_complex (minimized) – E_ligand (minimized) − E_
receptor (minimized) = ΔG (bind).

Default parameters, including the novel energy model, 
namely VSGB 2.0 were maintained during the calculations 
in both cases (Ganai 2021; Li et al. 2011).

Results

Identification of psychrotrophic bacterium

The taxonomical study conducted on the lipase-producing 
psychrotrophic bacterial strain, CRBC14 showed that the 
strain was rod-shaped, Gram-negative and aerobic with an 
optimum growth temperature of 20 °C. Besides, the isolate 
could grow at temperatures between 4 and 30 °C, but could 
not grow at 37 °C. This behavior towards temperature indi-
cates that it is a psychrotrophic bacterium. The CRBC14 
strain was closely associated (100–98%) with Pseudomonas 
sp. based on the 16S rRNA gene sequence review. A high 
similarity rate was observed with Pseudomonas sp. ICMP 
13 603 (Fig. 1) after the nucleotide sequence was BLAST 
searched at NCBI. The sequence of 16S rRNA gene was 
deposited in NCBI GenBank under the accession number 
MT478141.

Screening for lipase activity

The lipolytic activity was seen at temperatures between 4 
and 30 °C on 1% (v/v) tributyrin, with a maximum at 20 °C 
and pH 8.0 in comparison to olive oil (Fig. S1). Lipase 

https://www.ebi.ac.uk/Tools/msa/clustalo/
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activity increased from 4 to 20 °C, after which the enzymatic 
activity started decreasing, indicating its cold-active nature.

Amplification of lipase gene and sequence analysis

Sequence analysis of our lipase (GenBank accession no. 
MW417497) revealed an open reading frame of 1,835 

nucleotides with 46% G + C content. The polypeptide 
sequence of the cold-active lipase showed 99% identity 
with that of Pseudomonas sp. 7323 lipase (GenBank: 
CAJ76166), 79% with LipA of Pseudomonas fluores-
cens F113 (GenBank: G8Q328) (Fig. 2). The nucleotide 
sequence encoded a protein comprising 611 amino acids 
with a calculated molecular mass of 63.71 kDa.

Fig. 1   Phylogenetic tree of strain CRBC14 (indicated by bold letters) based on the sequence of 16S rRNA genes. Using MEGA 7.0 software, the 
phylogenetic tree was developed from the neighbor-joining approach, and 1000 bootstrap analysis trials were performed

Fig. 2   Similarity analysis of multiple amino acids sequence. The red backdrop highlights exclusively conserved residues, and boxed are the con-
servatively replaced residues. The vertical row displays the signal peptide’s cleavage site, and the horizontal rows show the N-terminal residues
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Template guided modeling and validation

The extracellular lipase from Pseudomonas sp. MIS38 
(PDB ID: 2Z8X) was utilized as template to build the 3D 
structure of the cold-active lipase. This refined model (red) 
on superimposing with template (yellow) showed a very 
low RMSD (0.055 Å), suggesting its structural closeness 
with the latter (Fig. 3). Additionally, this model quali-
fied stereochemical quality check as its Ramachandran 
plot showed localization of 92.5% residues in the most 
preferred region (acceptable quality), 6.5% in the allowed 

region and 0.2% residues in the disallowed region (Fig. 
S2). Besides, the structure-sequence compatibility of this 
model was found to be highly acceptable as the percentage 
of residues scoring over or equal to 0.2 was found to be 
98.52%, the threshold being 80% (Fig. 4). PROSA analysis 
also supported the acceptable model quality as its z-score 
aligned with similar-sized proteins possessing experimen-
tally determined structures (Fig. 5).

Flexible molecular docking and binding free energy 
estimation

It was observed from the binding free energy estimates 
for two docked complexes that tributyrin has a higher 
affinity for cold-active lipase than oleic acid. While oleic 
acid’s value was estimated to be -29.3826 kcal/mol, tribu-
tyrin’s value was found to be -33.3136 kcal/mol (Figs. 6 
and 7). From the binding free energy estimations on two 
docked complexes, it can be inferred that tributyrin has 
more affinity towards cold-active lipase when compared 
to oleic acid. This crux is taken as tributyrin manifested 
more negative binding free energy value in comparison 
to oleic acid. While this value for oleic acid was found to 
be − 29.3826 kcal/mol, a value of − 33.3136 kcal/mol was 
demonstrated by tributyrin (Figs. 6 and 7). More negative 
binding free energy infers more binding inclination.Fig. 3   RMSD between the target (model) and template structure. On 

superimposing template and target RMSD value of 0.055 Å was esti-
mated. This indicates that the target is very close to the experimen-
tally solved template. For easy understanding, model has been shown 
in red and the template in yellow

Fig. 4   Measurement of model compatibility with its primary structure (sequence). 98.52% of residues scored beyond or equal to 0.2 (80% lowest 
limit), thereby confirming the model exactitude
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Discussion

Most of the Himalayan glaciers of north-western side are 
still untouched for their bacterial diversity, which can be a 
goldmine of potential bacterial enzymes. Isolation of such 
microbes for the screening and characterization of cold-
adapted lipases can bring new opportunities in the enzyme 
industry. In this study, a cold-active lipase was character-
ized from a psychrotrophic Pseudomonas sp. CRBC14 from 
a north-western Himalayan glacial soil. The 16S rRNA 

gene was used for the identification of the isolated bacte-
rium, which is most widely used universal gene marker for 
psychrophilic and psychrotrophic bacterial identification 
(Farooq et al. 2021; Rafiq et al. 2017).

Tributyrin has previously been used to determine the 
lipase activity in psychrophilic and psychrotrophic Pseu-
domonas sp. by analyzing the clear zone around the bacte-
rial colonies grown on tributyrin agar (Maharana and Ray 
2015; Salwoom et al. 2019). Bacterial lipases are mostly 
active in alkaline conditions (Gupta et al. 2004). We also 
observed the maximum lipase activity (zone of hydrolysis) at 
pH 8.0 on tributyrin agar. Similar observations were made in 
cold-active lipases from Pseudomonas sp. LSK25 (Salwoom 
et al. 2019), Pseudomonas sp. AKM-LS (Maharana and 
Ray 2015), Pseudomonas sp. KB700A (Rashid et al. 2020), 
Pseudomonas antartica and Pseudomonas meridian (Reddy 
et al. 2004). Furthermore, Pseudomonas sp. CRBC14 dis-
played its optimum lipase activity at 20 °C. This temperature 
was lower than reported in Pseudomonas sp. 7323 (Zhang 
et al. 2008), Pseudoalteromonas sp. 643A (Cieśliński et al. 
2007), Pseudoalteromonas sp. NJ 70 (Wang et al. 2012), 
Pseudoalteromonas Haloplanktis TAC125, CR9 (De Pascale 
et al. 2008) where optimal activity was observed at 30, 35 
and 40 °C, respectively. While as, cold-active lipases pre-
viously isolated from psychrophilic/psychrotrophic Pseu-
domonas fragi X14033 (Alquati et al. 2002), Pseudomonas 
sp. KB700A (Rashid et al. 2020) and Pseudomonas sp. 
7323 (Zhang et al. 2013) showed optimal activity at 20 °C. 
Besides, some lipases were reported to show better catalytic 
activity at low temperatures. For instance, Guo et al (2021) 
reported a cold-active lipase from Pseudomonas marinensis 
with optimal activity at 4 °C and pH 8.0. In another study, a 
novel cold-adapted lipase (LipI.3_KE38) from Pseudomonas 
fluorescence KE38 manifested optimal activity at 25 °C and 
pH 8.5 (Karakaş and Arslanoğlu, 2020).

Fig. 5   Testing model quality by estimating z-score. The cold-active 
lipase model showed z-score in agreement with the z-score displayed 
by similar-sized proteins whose structures have been solved by empir-
ical methods. The cold lipase model demonstrated a z-score of − 10.7 
that falls well within the range

Fig. 6   Tributyrin and oleic acid in the docked state with the lipase. As in both cases, protein is lipase thus, the same color has been used for pro-
tein. The ligands being different are presented in two distinct colors. Tributyrin has been shown in red and oleic acid in yellow
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In silico research has become an important means for 
discovering and detecting novel enzymes for industrial 
application (Kwoun Kim et al. 2004). Many analytical 
tools have been developed to classify conserved genes 
based on their identical relationships in order to extract 
the most information from the genome sequences that are 
currently available (De Pascale et al. 2008). In earlier stud-
ies, such approachs have been used to amplify the gene 
coding cold-active protease and lipase from a psychro-
philic Psychrobacter sp. 94-6 PB (Perfumo et al. 2020) 
and Psychrobacter sp. G (Xuezheng et  al. 2010). The 
structure of some cold-active lipases from psychrotrophic 
bacteria has previously been predicted using template-
guided modeling methods (Abd. Jalil et al. 2018; Kumar 
et al. 2020). Moreover, simulation approaches have been 
used to check the stability of substrates like Triton X-100/
toluene with a cold-active lipase from Pseudomonas sp. 
AMS8 (Abd. Jalil et al. 2018). A similar approach was 
thus used to amplify the gene coding for cold-active lipase 
from a psychrotrophic bacterium CRBC14 and predict its 
binding affinity towards two different substrates (tributyrin 
and oleic acid).

The molecular mass of current cold-active lipase was 
around 63.71 kDa; Rashid et al (2020) previously reported 
a similar lipase (CALip) from Pseudomonas sp. KB700A 
with a molecular mass of 49.92 kDa. In addition, psy-
chrotolerant lipases from Pseudomonas fluorescens KE38 
and Pseudomonas sp. AKM-L5 had a molecular mass of 
43 kDa and 57 kDa, respectively (Gökbulut and Arslanoğlu 
2013; Maharana and Ray 2015). The primary structure of 
present lipase indicated that it was a member of bacterial 
lipases (Arpigny and Jaeger 1999). Besides, the amino acid 
sequence of CRBC14 lipase showed 89% similarity with 
lipases belonging to group III (subfamily I.3).

The stereochemical quality of model proved to be accept-
able as over 92% of the residues were spaced in most favored 
regions (Mushtaq et al. 2021). While testing the compatibil-
ity of primary and 3D structure of model above 98% resi-
dues (Fig. 4) scored over or equal to 0.2 further stamping 
model correctness (Farooq et al. 2021). Apart from this, the 
z-score of model aligned well with the z-scores of similar 
length proteins (Fig. 5), having experimentally determined 
structures suggesting the overall model quality to be highly 
reliable for docking studies (Wiederstein and Sippl 2007). 
Moreover, the RMSD was estimated by way of comparing 
model with a template (Fig. 3). A very low RMSD (0.055 Å) 
was obtained on comparing these structures, again corrobo-
rating model accuracy (Farooq et al. 2021; Pettersen et al. 
2004).

On the whole, molecular docking studies coupled with 
binding free energy estimations revealed that the lipase 
has more binding inclination towards tributyrin than oleic 
acid. These results were consistent with our in-vitro studies, 
where the zone of hydrolysis was found to be more on tribu-
tyrin substrate than olive oil (oleic acid). As per the available 
literature, this was the first approach to use an in silico strat-
egy to characterize the protein sequence of a target gene cod-
ing a cold-active lipase from psychrotrophic Pseudomonas 
sp. CRBC14. With a low optimal temperature profile, this 
lipase could be a potential candidate for industrial uses. Fur-
ther, investigation of these unexplored Himalayan glaciers 
could lead to the discovery of new cold-active lipases with 
unique properties and applications.
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