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Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and 
important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs 
in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced 
cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situ-
ation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the 
earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained 
largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative 
protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the 
electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, 
we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative 
stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the 
activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides 
defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to 
harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important 
factor that underlies the success of LCFA-utilizing bacteria in the host.

Keywords  β-oxidation · Cpx · DsbA · DsbB · Envelope stress response · Reactive oxygen species

Introduction

Long-chain fatty acids (LCFAs) are amphiphilic molecules 
composed of a linear aliphatic chain of 12–20 carbon atoms 
and a terminal carboxyl group. Several bacteria acquire 
LCFAs from host tissues, which essentially have three fates 
inside the bacterial cell: degradation via β-oxidation, incor-
poration into membrane phospholipids, and recognition as 
signaling molecules. Thus, depending on their fate, LCFAs 
can provide metabolic energy, remodel bacterial membrane, 
and govern bacterial response to the environment. The effect 

of LCFAs on bacterial processes such as virulence, biofilm 
formation, and motility via their incorporation into the mem-
brane and as signaling molecules has been reviewed recently 
(Kumar et al. 2020). Further, studies have associated mem-
brane phospholipid composition with stress. In the bacterial 
strains where the ratio of unsaturated to saturated LCFAs in 
membrane phospholipids was altered due to a mutation in 
the enzyme involved in membrane incorporation of LCFAs 
or varied by either overproducing free fatty acids or overex-
pressing a fatty acid biosynthesis enzyme, the unsaturated 
LCFA content in membranes was found to be directly cor-
related with oxidative and membrane stress (Lennen et al. 
2011; Oberg et al. 2013; Pradenas et al. 2012).

Studies have suggested that LCFAs also induce stress in 
bacteria when used as a nutrient source (Doi et al. 2014; 
Rodriguez et al. 2014). Several bacteria obtain metabolic 
energy from host-derived LCFAs, which contributes to their 
survival and virulence. For example, the LCFA degrada-
tion enzymes are induced in Mycobacterium tuberculosis 

Communicated by Michael Polymenis.

 *	 Rachna Chaba 
	 rachnachaba@iisermohali.ac.in; rachnachaba@gmail.com

1	 Department of Biological Sciences, Indian Institute 
of Science Education and Research (IISER) Mohali, SAS 
Nagar, Punjab, India

http://orcid.org/0000-0002-0681-3956
http://orcid.org/0000-0002-7524-1816
http://orcid.org/0000-0002-9156-4543
http://crossmark.crossref.org/dialog/?doi=10.1007/s00294-021-01178-z&domain=pdf


574	 Current Genetics (2021) 67:573–582

1 3

and Pseudomonas aeruginosa during lung infection (Pan 
et al. 2020; Schnappinger et al. 2003; Son et al. 2007); the 
LCFA degradation enzymes are upregulated in Salmonella 
Typhimurium during infection, which likely contributes 
to the metabolism of pro-inflammatory host LCFAs and 
thereby suppression of the innate immune response (Mahan 
et al. 1995; Spector et al. 1999); in Vibrio cholerae, cholera 
toxin-dependent remodeling of the host metabolism causes 
lipolysis in target cells, accumulating LCFAs in the intesti-
nal lumen, which are ultimately used by the pathogen for its 
enhanced growth (Rivera-Chavez and Mekalanos 2019); and 
mutants of M. tuberculosis, P. aeruginosa and S. Typhimu-
rium defective in LCFA utilization exhibit reduced virulence 
(Fang et al. 2005; Kang et al. 2010; McKinney et al. 2000; 
Munoz-Elias and McKinney 2005). The widespread use of 
LCFAs as a nutrient source warrants a detailed understand-
ing of the mechanisms by which LCFA utilization induces 
stress and the cellular responses employed by bacteria to 
mitigate them. Recent studies have investigated this issue 
primarily in Escherichia coli (Agrawal et al. 2017; Jaswal 
et al. 2020). In this review, we first describe the LCFA 

utilization pathway in E. coli and then discuss the recently 
uncovered association of LCFA degradation with stress 
response mechanisms.

LCFA degradation pathway in E. coli

The LCFA utilization pathway has been extensively stud-
ied in E. coli, which can grow on this carbon source, both 
under aerobic and anaerobic conditions. LCFA metabolism 
is carried out by Fad (fatty acid degradation) proteins, which 
transport and activate LCFAs, and further, degrade these 
to acetyl-CoA via β-oxidation (Fig. 1). Briefly, the exog-
enous LCFAs are transported across the outer membrane 
by a β-barrel outer membrane protein, FadL. During aerobic 
metabolism, LCFAs are extracted from the inner membrane 
and activated to acyl-CoA thioesters by the inner membrane-
associated acyl-CoA synthetase, FadD. Acyl-CoAs are fur-
ther degraded in the cytoplasm via the various activities of 
β-oxidation enzymes FadE, FadB, and FadA. In each round 
of β-oxidation, two carbon atoms are released as acetyl-CoA, 

Fig. 1   The aerobic LCFA utilization pathway in E. coli. Exogenously 
provided LCFAs are transported across the outer membrane by FadL. 
LCFAs are extracted from the inner membrane and activated to acyl-
CoA by FadD. Acyl-CoAs are degraded via the β-oxidation enzymes 
FadE, FadB, and FadA, to acetyl-CoA, which is further metabolized 
in the TCA and glyoxylate cycles. NADH and FADH2 generated in 
β-oxidation and TCA cycle are oxidized in the ETC by respiratory 

dehydrogenases, and the electrons are transferred to ubiquinone. 
Ubiquinol further gives electrons to the terminal oxidases. Arrows 
with e− labels indicate the direction of electron flow. The dotted 
arrow denotes that the players involved in FadE oxidation and transfer 
of electrons from FadE to the ETC are not known. CP cytoplasm, IM 
inner membrane, PP periplasm, OM outer membrane, Ub ubiquinone, 
UbH2 ubiquinol
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and the shortened acyl-CoA re-enters the degradation cycle. 
Acetyl-CoA enters the tricarboxylic acid (TCA) and gly-
oxylate cycles to generate metabolic precursors for growth 
(Fig. 1). LCFA metabolism is mainly regulated at a tran-
scriptional level by three systems: (i) negative regulation 
by the transcriptional regulator, FadR, whose repression is 
relieved by binding of acyl-CoA, (ii) negative regulation by 
the ArcA–ArcB (anoxic redox control) two-component sys-
tem, and (iii) positive regulation by the cAMP-CRP (cyclic 
AMP receptor protein-cyclic AMP) complex [reviewed in 
Clark and Cronan (2005), Cronan and Laporte (2006)].

Unlike glucose, a fermentable carbon source, which gen-
erates energy both in glycolysis and in the electron transport 
chain (ETC), LCFAs being non-fermentable carbon sources 
generate energy in the ETC (Berger 1973; Campbell et al. 
2003; Clark and Cronan 2005; Romeo and Snoep 2005). 
The ETC components are present in the inner membrane 
of E. coli (Fig. 1). During aerobic metabolism of LCFAs, 
the reduced cofactors, NADH and FADH2, generated in 
β-oxidation and TCA cycle, are oxidized at the ETC by 
NADH dehydrogenases and succinate dehydrogenase, 
respectively, and the electrons are transferred to ubiquinone, 
a lipid-soluble electron carrier. Ubiquinol, the reduced form 
of ubiquinone, in turn, donates electrons to the terminal oxi-
dases, which finally transfer electrons to molecular oxygen 
(O2) (Aussel et al. 2014b; Unden et al. 2014). The acyl-
CoA dehydrogenase, FadE, which catalyzes the first step of 
β-oxidation, i.e., the conversion of acyl-CoA to enoyl-CoA 
together with the reduction of FAD to FADH2, has also been 
hypothesized to re-oxidize FADH2 by transferring electrons 
to the ETC (Fig. 1) (Campbell and Cronan 2002). During 
electron transfer through ETC, proton motive force is gen-
erated, which is then used by ATP synthase to drive ATP 
synthesis (Unden et al. 2014).

LCFA metabolism and stress responses

Since LCFA degradation generates a large number of 
reduced cofactors (Fig. 1), its utilization may confer redox 
stress in bacteria. Studies in a laboratory strain of E. coli, 
summarized below, showed that LCFA utilization generates 
elevated levels of reactive oxygen species (ROS) and causes 
problems in oxidative protein folding; however, bacteria 
induce cellular responses to counteract the detrimental effect 
of these stresses (Agrawal et al. 2017; Jaswal et al. 2020).

LCFA metabolism‑associated oxidative stress 
and combat mechanisms

During metabolism, ROS are formed as an inevitable con-
sequence of redox reactions. The ROS molecules, superox-
ide (O2

−), hydrogen peroxide (H2O2), and hydroxyl radical 

(.OH), are produced by mechanisms that include electron 
leakage during oxidation-reduction cycles of ETC promoting 
the adventitious collision of free electrons with O2, extrac-
tion of electrons from metal centers of several metabolic 
enzymes by O2, and auto-oxidation of flavoproteins (Imlay 
2003, 2013; Søballe and Poole 2000). E. coli grown aerobi-
cally in LCFAs generates higher levels of ROS compared 
to cells cultured in fermentable (glucose) or other non-fer-
mentable (acetate and succinate) carbon sources (Agrawal 
et al. 2017; Doi et al. 2014). The fad mutants defective in 
different steps of LCFA transport and degradation are unable 
to produce ROS validating LCFA utilization as the reason 
for LCFA-induced oxidative stress (Agrawal et al. 2017). 
Importantly, the high NADH/NAD+ and FADH2/FAD ratios 
during LCFA metabolism increase electron flow in the ETC 
(Fig. 1) (Jaswal et al. 2020); this likely increases electron 
leakage and auto-oxidation of respiratory dehydrogenases. A 
predominant source of ROS during LCFA metabolism could 
be the flavoprotein involved in β-oxidation, i.e., the acyl-
CoA dehydrogenase FadE. The auto-oxidation of reduced 
flavin bound to FadE might generate ROS (Agrawal et al. 
2017).

The imbalance in ROS production and antioxidants leads 
to oxidative stress. The highly reactive ROS molecules oxi-
dize macromolecular components resulting in DNA damage, 
lipid peroxidation, and disassembly of iron-sulfur clusters 
and formation of undesired disulfide bonds in proteins. For 
decades, the enzymes, catalases, peroxidases, and super-
oxide dismutases have been known as the major oxidative 
stress combat players in E. coli [reviewed in Chiang and 
Schellhorn (2012), Farr and Kogoma (1991), Imlay (2013)]. 
On the contrary, the role of ubiquinone as an antioxidant 
remained underappreciated.

In bacteria, the antioxidant function of ubiquinone was 
first suggested in a study by Søballe and Poole (2000), 
where an E. coli strain defective in ubiquinone biosynthe-
sis was shown to exhibit several oxidative stress pheno-
types in LB medium. However, the physiological condi-
tion under which ubiquinone plays a more prominent role 
in comparison to other oxidative stress response players 
had not been investigated. We identified ubiquinone as a 
key antioxidant during LCFA metabolism (Agrawal et al. 
2017). The first hint came from the comparative analy-
sis of the datasets from high-throughput genetic screens 
of the single-gene deletion library of E. coli on various 
carbon sources, which included non-fermentable carbon 
sources, acetate, succinate, and oleate (an LCFA; C18:1 
cis-9). This large-scale analysis revealed that the require-
ment of aerobic ETC components for growth is inversely 
correlated with the ATP yield of non-fermentable carbon 
sources; their requirement is maximal in acetate, which 
has the poorest net ATP yield. However, the requirement 
of ubiquinone does not follow this trend; it is maximally 
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required for growth in LCFAs. Following observations 
revealed that the increased requirement of ubiquinone in 
LCFAs is to mitigate oxidative stress: (i) the growth defect 
of ubiquinone biosynthesis mutants in oleate is partially 
recovered by chemical antioxidants, glutathione and thio-
urea, (ii) the exogenous supplementation of ubiquinone 
decreases ROS production in oleate-grown cells, and 
(iii) oleate utilization generates ROS and also results in 
ubiquinone accumulation; thus a feedback loop likely 
prevents excessive ROS formation during LCFA metabo-
lism. Further, as long as ubiquinone is present in LCFA-
grown cells, it does not allow ROS to build-up, thereby 
reducing dependence on other oxidative stress response 
players: (i) in oleate-utilizing cells, ROS levels increase 
in strains defective in ubiquinone biosynthesis but not in 
strains deleted for other oxidative stress combat players, 
and (ii) during oleate metabolism, enzymatic scavengers 
are induced only in a ubiquinone biosynthesis mutant. Col-
lectively, our study established ubiquinone as the cell’s 
primary defense against LCFA-mediated oxidative stress 
(Agrawal et al. 2017).

There are at least two possible mechanisms by which 
ubiquinone might combat LCFA-induced ROS. Consid-
ering its electron shuttling role in the ETC, it is likely 
that the increased levels of ubiquinone in LCFA-utilizing 
cells enable the rapid transfer of a large flow of electrons 
derived from LCFA metabolism, decreasing the residence 
time of electrons at the site of ROS formation (Agrawal 
et al. 2017). Further, based on a previous finding that the 
terminal oxidase, Cyd, exhibits quinol peroxidase activ-
ity in vitro (Al-Attar et al. 2016), we can speculate that 
the increased accumulation of ubiquinol (reduced form 
of ubiquinone) during LCFA metabolism promotes the 

peroxidase activity of Cyd to scavenge ROS (Agrawal 
et al. 2017).

Besides upregulating antioxidant defense mechanisms 
to mitigate elevated ROS produced due to high NADH/
NAD+ and FADH2/FAD ratios, it is plausible that bacteria 
induce anabolic pathways as a reductive sink to restore redox 
balance. In fact, the global transcriptome of M. tuberculo-
sis cultured in a medium supplemented with a mixture of 
even-length LCFAs showed overexpression of WhiB3 and 
DosR, the two heme sensor proteins involved in maintaining 
intracellular redox balance, and of several genes involved in 
complex lipid biosynthesis, a process that consumes reduced 
cofactors (Rodriguez et al. 2014). Notably, the comparative 
analysis of the high-throughput genetic screens of the single-
gene deletion library of E. coli on different carbon sources 
also revealed maximal enrichment of the anabolic pathway, 
gluconeogenesis, in LCFAs (Agrawal et al. 2017).

LCFA metabolism impedes oxidative protein folding 
and activates envelope stress response to restore 
homeostasis

Disulfide bond formation, an oxidative process that creates 
a covalent bond between the sulfur atoms of two cysteine 
residues, is required for the maturation and stability of many 
extracytoplasmic proteins in all domains of life. In Gram-
negative bacteria, this process takes place in the oxidizing 
environment of the periplasm, an aqueous space surrounded 
by the outer and inner-membrane layers of the envelope. In 
E. coli, a periplasmic oxidoreductase, DsbA, forms disulfide 
bonds in substrate proteins. DsbB, an inner-membrane 
disulfide oxidoreductase, re-oxidizes DsbA and transfers 
electrons to quinones, ubiquinone and menaquinone, during 

Fig. 2   The aerobic disulfide 
bond formation pathway in E. 
coli. DsbA oxidizes substrate 
proteins in the periplasm and 
becomes reduced. DsbB re-
oxidizes DsbA by transferring 
electrons to ubiquinone. Ubiqui-
nol further gives electrons to the 
terminal oxidases. Arrows with 
e− labels denote the direction of 
electron flow. CP cytoplasm, IM 
inner membrane, PP periplasm, 
OM outer membrane, Ub 
ubiquinone, UbH2 ubiquinol
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aerobic and anaerobic metabolism, respectively (Fig. 2) 
(Landeta et al. 2018; Manta et al. 2019). The role of ETC in 
oxidative protein folding in E. coli has been demonstrated in 
several studies: (i) DsbA accumulates in a reduced form in 
mutants with a defective respiratory chain, i.e., in mutants 
defective in either heme or quinone biosynthesis (Kobayashi 
et al. 1997), (ii) disulfide bond formation is compromised 
in E. coli grown in a purely fermentative manner, a condi-
tion where the ETC is non-operational (Bader et al. 1999), 
(iii) in vitro reconstitution of the oxidative protein folding 
system showed the involvement of ubiquinone and terminal 
oxidases in re-oxidizing DsbA–DsbB (Bader et al. 1999), 
and (iv) mutants defective in ubiquinone biosynthesis exhibit 
thiol hypersensitivity (Zeng et al. 1998), a phenotype shared 
by dsb mutants (Bardwell et al. 1991, 1993; Missiakas et al. 
1993).

An earlier study in E. coli, grown aerobically in glucose, 
reported ubiquinone to be present in ~ 15- to 20-fold excess 
over other ETC components (Cox et al. 1970). However, our 
observation that exogenous supplementation of ubiquinone 
decreases ROS production in oleate-grown cells strongly 
suggested ubiquinone to be limiting for its electron transfer 
function during LCFA metabolism (Agrawal et al. 2017). 
Given the convergence of metabolism and disulfide bond 
formation in the ETC, we investigated whether ubiquinone 
is also insufficient for oxidative protein folding in LCFA-
utilizing cells (Jaswal et al. 2020). The various phenotypes 
exhibited by oleate-grown cells, i.e., decrease in the activity 
of alkaline phosphatase (a DsbA substrate), hypersensitiv-
ity to thiol agents, sensitivity to cadmium (binds with free 
thiols of proteins), and accumulation of the reduced form 
of DsbA and its substrate, DegP, convincingly established 
that disulfide bond formation is hampered during LCFA 
metabolism. Importantly, these hallmarks are prevented 
when ubiquinone is exogenously provided to LCFA-grown 
cells (Jaswal et al. 2020).

In E. coli, ~ 300 extracytoplasmic proteins are predicted 
to have disulfide bonds (Dutton et al. 2008). Of these, more 
than two dozen proteins involved in diverse biological pro-
cesses are reported to be dependent on DsbA for correct 
folding (Delhaye et al. 2019; Kadokura et al. 2004; Manta 
et  al. 2019). Thus, to ensure cellular homeostasis, it is 
important for bacteria to monitor the envelope redox status 
and mount an appropriate response when disturbances occur. 
During LCFA metabolism, DsbA accumulates in its reduced 
form only transiently (Jaswal et al. 2020), which suggested 
that defense mechanisms are upregulated to deal with the 
hypo-oxidizing environment of the envelope. Of the five 
dedicated envelope stress response (ESR) pathways (Bae, 
Cpx, Psp, Rcs, and σE), which sense damage in the envelope 
and change the transcriptome to mitigate stress (Mitchell 
and Silhavy 2019), we identified Cpx to be the major ESR 
system activated by LCFAs (Jaswal et al. 2020). Cpx is a 

two-component system comprised of an inner-membrane 
sensor histidine kinase, CpxA, and a cytoplasmic response 
regulator, CpxR. In the presence of envelope stress signals, 
CpxA autophosphorylates and transfers its phosphoryl group 
to CpxR, which then directs the transcription of its regulon 
members involved in combating stress (Grabowicz and Sil-
havy 2017; Raivio 2014; Raivio and Silhavy 1997). Impor-
tantly, Cpx induction in LCFA-grown cells is partially down-
regulated upon exogenous supplementation of ubiquinone, 
indicating that at least one of the signals for Cpx during 
LCFA metabolism is redox-dependent (Jaswal et al. 2020).

The outer membrane lipoprotein, NlpE, is a well-recog-
nized signal for Cpx activation (Delhaye et al. 2019; Sny-
der et al. 1995). Recent observations that NlpE is a DsbA 
substrate, disruption of its C-terminal domain disulfide 
bond activates Cpx, and Cpx induction in ΔdsbA is NlpE-
dependent, have suggested NlpE to be a sensor of oxidative 
protein folding defects (Delhaye et al. 2019). However, NlpE 
is not the molecular cue for Cpx during LCFA metabolism; 
Cpx is fully induced in ΔnlpE grown in oleate (Jaswal et al. 
2020). A possible redox signal during LCFA metabolism 
is the periplasmic chaperone-protease DegP. The function 
of DegP is redox-dependent; its disulfide-bonded form is 
a chaperone, whereas the thiol form is a protease (Skorko-
Glonek et al. 2008). One of the substrates of DegP protease 
is CpxP, a negative regulator of the Cpx response (Buelow 
and Raivio 2005; Isaac et al. 2005). Since DegP accumulates 
significantly in its thiol form in LCFA-utilizing cells (Jaswal 
et al. 2020), the reduced form of DegP may degrade CpxP to 
activate Cpx. Further, the other known inducers of Cpx, i.e., 
the inner-membrane respiratory complexes and lipoproteins 
other than NlpE (Guest et al. 2017; Miyadai et al. 2004), 
may constitute the redox-dependent or redox-independent 
signals for Cpx activation during growth in LCFAs. Clearly, 
detailed studies are needed to identify the Cpx-inducing sig-
nals in LCFA-utilizing cells and investigate their interplay 
that leads to robust Cpx activation.

Several mechanisms can be envisaged for the mainte-
nance of envelope redox homeostasis by Cpx during LCFA 
metabolism: (i) Cpx response decreases envelope stress by 
repairing/degrading damaged proteins that accumulate due 
to inadequate disulfide bond formation, (ii) Cpx reduces 
the load on ETC by decreasing electron flow from LCFA 
metabolism, thereby increasing the availability of ubiqui-
none for disulfide bond formation, and (iii) Cpx facilitates 
electron transfer from disulfide bond-forming machinery by 
increasing the oxidizing power of ETC (Fig. 3). The fol-
lowing existing information on the Cpx pathway lends sup-
port to these suggested mechanisms: (i) Cpx upregulates 
several periplasmic chaperones, proteases and their modu-
lators, and peptidyl-prolyl isomerases (Raivio et al. 2013), 
(ii) Cpx downregulates NADH dehydrogenase I and succi-
nate dehydrogenase (Guest et al. 2017; Raivio et al. 2013). 
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Further, in the ΔcydD strain, which has a hyper-oxidizing 
envelope (a situation inverse of LCFA metabolism), Cpx is 
downregulated, whereas fad genes are upregulated (Gold-
man et al. 1996; Holyoake et al. 2016; Jaswal et al. 2020; 
Messens et al. 2007), and (iii) the upregulation of ubiqui-
none in LCFA-utilizing cells is abrogated in a ΔcpxR strain 
(Jaswal et al. 2020).

Detailed studies are available on the regulation of LCFA 
metabolism by FadR and the ArcA–ArcB two-component 
system. Both FadR and the cytoplasmic response regulator 
ArcA repress fad genes, and ArcA additionally regulates 
ETC components (Bongaerts et al. 1995; Cho et al. 2006; 
Cotter and Gunsalus 1992; Feng and Cronan 2012; Fujita 
et al. 2007; Iuchi and Lin 1988; Kwon et al. 2005; Zhang and 
Javor 2003). Importantly, the activity of the inner-membrane 
sensor kinase ArcB is governed by the redox state of qui-
nones (Alvarez et al. 2013; Georgellis et al. 2001). Since 
Cpx upregulates ubiquinone in LCFA-utilizing cells (Jaswal 

et al. 2020), it is possible that the effect of ArcA–ArcB on 
LCFA metabolism is modulated by Cpx. Understanding 
the feedback exerted by Cpx in LCFA-grown cells and its 
crosstalk with FadR and ArcA–ArcB under these metabolic 
conditions is an exciting area for future research.

Concluding remarks

Recent work on the interconnection between LCFA metabo-
lism and stress responses in E. coli opens up several new 
areas of investigation. In the immediate future, studies will 
be required to identify the major site of ROS formation, 
understand the mechanism by which ubiquinone counteracts 
LCFA-induced oxidative stress, and identify the molecular 
signal for Cpx activation and investigate the nature of its 
feedback. Further, it will be important to examine whether 
bacterial pathogens use mechanisms equivalent to those 

Fig. 3   Probable mechanisms by which Cpx restores disulfide bond 
formation in LCFA-grown cells. The CpxAR two-component sys-
tem is comprised of an inner membrane histidine kinase, CpxA, and 
a cytoplasmic transcriptional regulator, CpxR. Under unstressed con-
ditions, a periplasmic protein, CpxP, inhibits the phosphorylation 
of CpxA. In the presence of LCFA-generated stress signals, CpxA 
autophosphorylates and transfers its phosphoryl group to CpxR. The 
activation of the Cpx pathway decreases envelope stress by upregu-

lating periplasmic chaperones, proteases and their modulators, and 
peptidyl-prolyl isomerases, which repair/remove damaged proteins. 
Besides, Cpx increases the oxidizing power for disulfide bond for-
mation by upregulating ubiquinone and further increases ubiquinone 
availability for oxidative protein folding by downregulating the com-
ponents of LCFA metabolism. CP cytoplasm, IM inner membrane, 
PP periplasm, OM outer membrane
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identified in E. coli to defend against the harmful effects 
of LCFAs.

A pertinent question is why despite being predisposed 
to LCFA-induced stresses, bacteria readily use this nutrient 
source during infection. Does the use of LCFAs precondi-
tion bacteria to external stresses encountered in the host? In 
fact, a recent study demonstrated that hypoxia is less stress-
ful for M. tuberculosis cultured in LCFAs, suggesting that 
inside the foamy macrophages, LCFA utilization enables the 
tubercle bacilli to survive environmental stresses (Del Por-
tillo et al. 2018). During infection, bacteria often encounter 
ROS from the host immune system, such as the oxidative 
burst associated with neutrophils and phagocytes (Papp-
Szabo et al. 1994; Rhen 2019). LCFA-induced ROS forma-
tion and the accumulation of ubiquinone might be a prim-
ing mechanism by which bacteria adapt to oxidative stress 
from the host. Notably, ubiquinone biosynthesis mutants of 
S. Typhimurium are impaired for intracellular proliferation 
in macrophages (Aussel et al. 2014a; Loiseau et al. 2017). 
Since during infection, S. Typhimurium uses LCFAs in mac-
rophages (Fang et al. 2005; Mahan et al. 1995), it is plausi-
ble that LCFA-induced upregulation of ubiquinone serves to 
combat ROS produced by these immune cells.

The Cpx pathway governs many cellular processes in 
Gram-negative bacteria. Cpx affects biofilm formation, 
motility, and chemotaxis in E. coli and Salmonella Enter-
itidis by modulating the expression of structural, biogen-
esis, and regulatory components of flagella and curli (De 
Wulf et al. 1999; Dorel et al. 1999; Prigent-Combaret et al. 
2001; Raivio 2014; Raivio et al. 2013; Shetty et al. 2019). 
Further, Cpx regulates the expression and assembly of cell-
surface structures associated with virulence, such as pili of 
uropathogenic and enteropathogenic E. coli strains (Hern-
day et al. 2004; Hung et al. 2001; Nevesinjac and Raivio 
2005), and controls the invasiveness of S. Typhimurium 
and Shigella sonnei in a pH-dependent manner by regulat-
ing the expression of type III secretion system (Humphreys 
et al. 2004; Nakayama and Watanabe 1995; Nakayama et al. 
2003). The Cpx response is also associated with antibiotic 
resistance [reviewed in Raivio (2014)]. It is possible that 
LCFA-related problems in disulfide bond formation serve 
as a cue to induce Cpx to regulate cellular processes, which 
ultimately affect bacterial survival in the host.

Future research in the aforementioned directions will pro-
vide insights on how LCFA metabolism is integrated with 
stress responses and enable a deeper understanding of its 
impact on host-bacterial interactions.
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