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Abstract
The cell cycle is a complex network involved in the regulation of cell growth and proliferation. Intrinsic molecular noise 
in gene expression in the cell cycle network can generate fluctuations in protein concentration. How the cell cycle network 
maintains its robust transitions between cell cycle phases in the presence of these fluctuations remains unclear. To understand 
the complex and robust behavior of the cell cycle system in the presence of intrinsic noise, we developed a Markov model 
for the fission yeast cell cycle system. We quantified the effect of noise on gene and protein activity and on the probability 
of transition between different phases of the cell cycle. Our analysis shows how network perturbations decide the fate of the 
cell. Our model predicts that the cell cycle pathway (subsequent transitions from G1 → S → G2 → M ) is the most robust and 
probable pathway among all possible trajectories in the cell cycle network. We performed a sensitivity analysis to find cor-
relations between protein interaction weights and transition probabilities between cell cycle phases. The sensitivity analysis 
predicts how network perturbations affect the transition probability between different cell cycle phases and, consequently, 
affect different cell fates, thus, forming testable in vitro/in vivo hypotheses. Our simulation results agree with published 
experimental findings and reveal how noise in the cell cycle regulatory network can affect cell cycle progression.

Keywords  Transition probability · Cell cycle · Fission yeast · Markov chain · Global sensitivity analysis

Introduction

The biochemical machinery of eukaryotic cells in the cell 
cycle network allows them to perform cell growth and 
reproduction. The cell cycle of eukaryotic cells involves 

consecutive transitions among the cell cycle phases, namely 
G1, S, G2, and M. Cells with an adequate mass in gap phase 
G1 can start the cell cycle process by transitioning into the 
S phase and performing DNA synthesis. Cells in gap phase 
G2 commit to proceeding to the M phase and reproduce 
by dividing themselves into daughter cells. The cell cycle 
network of eukaryotic cells is controlled by complex interac-
tions of key biochemical species including cyclin-dependent 
kinases and their inhibitors and activators. The concentration 
of biochemical species that changes during the cell cycle 
process is responsible for causing the dynamics of subse-
quent transitions between the cell cycle phases. Although 
the reaction network controlling the cell cycle has been sub-
ject to comprehensive and extensive deterministic models, 
there are a few reliable stochastic models. Stochastic mod-
els can capture the dynamics of biochemical species in the 
reaction network in the presence of intrinsic noise caused 
by molecular fluctuations. In this study, we aim to present 
a stochastic Markov model to investigate the dynamics of 
noisy cell cycle progression in the fission yeast Schizosac-
charomyces pombe.

Gene/protein regulatory networks are complex with 
some components and regulations not yet experimentally 

Communicated by M. Kupiec.

 *	 Amir. H. Jafari 
	 h_jafari@tums.ac.ir

1	 Department of Biomedical Engineering, School of Medicine, 
Tehran University of Medical Sciences, Tehran, Iran

2	 Research Center for Biomedical Technologies and Robotics, 
Tehran, Iran

3	 Students’ Scientific Research Center, Tehran University 
of Medical Sciences, Tehran, Iran

4	 Division of Systems Biology, Academy of Integrated 
Science, Virginia Tech, Blacksburg, VA, USA

5	 Cellular and Molecular Research Center, Research Institute 
for Prevention of Non‑Communicable Diseases, Qazvin 
University of Medical Sciences, Qazvin, Iran

6	 Department of Biostatistics and Informatics, Colorado 
School of Public Health, University of Colorado-Denver 
Anschutz Medical Campus, Aurora, CO, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00294-020-01146-z&domain=pdf


786	 Current Genetics (2021) 67:785–797

1 3

characterized. For instance, the cell cycle regulatory network 
of budding yeast is described by approximately 800 interacting 
genes and proteins, which ensure correct cell division (Spell-
man et al. 1998). In regulatory networks, a large number of 
genes and proteins interact with each other and, based on these 
dynamic interactions, the cell determines its fate and performs 
its functions (Sundaram and Buechner 2016; Karlebach and 
Shamir 2008). Regulatory networks are modeled using different 
mathematical approaches including Boolean (Li et al. 2004), 
artificial neural networks (Hart et al. 2006; Liu et al. 2017), 
differential equations, and hybrid approaches (Novak and Tyson 
1995; Novak et al. 2001; Tyson et al. 2019). The effects of 
regulatory uncertainties and molecular noise (Di Talia et al. 
2007) in a hypothetical molecular regulatory network can be 
assessed by using stochastic modeling approaches (Ahmadian 
et al. 2019, 2020; Tyson et al. 2019) (Braunewell and Born-
holdt 2007) (Okabe and Sasai 2007). Although considerable 
research has been devoted to fission yeast cell cycle regulation 
(Novak and Tyson 1995) (Novak et al. 2001) (Davidich and 
Bornholdt 2008) (Castro et al. 2019), the effect of uncertainty 
on the fission yeast cell cycle regulatory network has not yet 
been characterized.

We adopted the biological rules of uncertain protein–pro-
tein interactions of a first-order Markov model from an existing 
Boolean model of the fission yeast cell cycle (Davidich and 
Bornholdt 2008). The Boolean model simulates the transition 
of a cell between different states without regard to noise or ran-
domness, which is an inherent feature of the cell cycle network. 
The result of simulation using the Boolean model revealed 
that the cell cycle system is robust in the absence of noise and 
the size of the largest attractor of the system (stationary G1) is 
762

1024
 [among all of the 1024 initial states that ten binary nodes 

have in the BN model with 762 initializations, the state of the 
system reaches a unique stationary G1 state (SG1)]. Our model 
of the fission yeast cell cycle network describes how uncer-
tain gene/protein interactions robustly control cell transitions 
between subsequent cell cycle phases.

In general, the dynamic models that are developed to study 
cell cycle regulation can be divided into several categories (Fuβ 
et al. 2005), including models that simulate the dynamics of 
genes/proteins as a discrete/continuous quantity over discrete/
continuous time points. Boolean networks (BNs) (Li et al. 2004; 
Davidich and Bornholdt 2008), probabilistic BNs (Hashimoto 
et al. 2009), and Markov models (Zhang et al. 2006) are exam-
ples of discrete-quantity and discrete-time schemes. Ordinary 
differential equation models are based on continuous quantities 
of protein/gene concentration/activity levels during continuous 
time steps (Boczko et al. 2010; Ferrell Jr et al. 2011; Tyson et al. 
2002). Some other methods, based on the Gillespie algorithm 
(Gillespie 1977) such as stochastic Petri net (Mura and Csikász-
Nagy 2008), generate discrete values for genes/proteins during 
continuous time steps. BNs, as a dynamic discrete system, have 
been widely used in systems biology for logical analysis of 

signaling pathways (Fumia and Martins 2013; Lin et al. 2014; 
Mai and Liu 2009) and gene regulatory networks (Hickman 
and Hodgman 2009). BNs are made up of interacting nodes 
in which their states, according to logical rules, are updated 
synchronously/asynchronously over time. The state of each 
node is a logical variable, which is either zero (when the gene 
is inactive or the protein is unphosphorylated) or one (when 
the gene is active or the protein is phosphorylated) (Sutavani 
et al. 2018). BNs with simple deterministic rules simulate acti-
vatory/inhibitory biochemical interactions between the genes/
proteins and predict the dynamics of the state of the genes/
proteins, while stochastic models, such as Probabilistic Boolean 
Networks (PBNs) and Markov models with probabilistic rules, 
can capture uncertainty and stochasticity (as an inherent feature 
of biological systems) of gene/protein interactions (Shmulevich 
et al. 2002; Zhang et al. 2007). If a BN model consists of n 
binary nodes, it will have 2n different states where a few of 
them are attractors (fixed points) within the robust design of 
the network. It seems that the kinetic parameters related to the 
structure of gene/protein interactions (such as the weight of 
the interactions) in a regulatory network affect the robustness 
of the system and the number and basin size of the attractors 
(Shafiekhani et al. 2020). Previously, deterministic BN models 
of the budding yeast (Li et al. 2004) and fission yeast cell cycles 
(Davidich and Bornholdt 2008) were developed to prove the 
inherent robustness of the cell cycle network in the absence 
of molecular noise and variability in protein concentrations. 
The first-order Markov model of the present study, similar 
to the BN model of the fission yeast cell cycle, considers the 
same weight for gene/protein interactions and, using dynamic 
transition probabilities, predicts the state of the genes/proteins 
over time. These transition probabilities are derived from the 
structure of the gene/protein interactions in the fission yeast cell 
cycle network. In addition to considering the same weight for 
gene/protein interactions, another simplification that is carried 
out is to assume the same time scales for the system’s biochemi-
cal interactions. Ordinary Differential Equation (ODE) models 
(Novak and Tyson 1995; Novak et al. 2001) and Agent Bases 
Models (ABMs) (Castro et al. 2019) simulated the cell cycle 
process by considering the exact time for interactions using 
many kinetic/dynamic parameters. In ODE-based models, the 
time evolution of state variables is governed by solving a set 
of ordinary differential equations while ABMs assign different 
behaviors and rules for model variables (agents) to capture a 
system’s dynamics through agent–agent interactions. Since, in 
the present study, we aim to predict the probabilities of transi-
tion between different states of the cell cycle, we can ignore 
the time information of interactions and, by using a Markov 
model, predict cell state transitions during the process’ steps 
(Zhang et al. 2006).

This paper is organized as follows: In the “Methods” 
section, we describe how the Markov model was built and 
simulated based on previously defined rules of protein 
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Fig. 1   The cell cycle network of fission yeast (Davidich and Born-
holdt 2008). Nodes represent proteins/protein complexes, green/yel-
low arrows represent activation/self-inhibition effects, and red dotted 
arrows represent inhibition effects. The values wij, i, j ∈ [1, 2,… , 9] 
represent the weight of the interaction between protein i and j by 
assuming the indices i or j are the following: SK: 1, Cdc2/Cdc13: 2, 
Ste9: 3, Rum1: 4, Slp1: 5, Cdc2/Cdc13*: 6, wee1/Mik1: 7, Cdc25: 8 
and PP: 9

interaction. In the “Results” section, we present the simula-
tion results.

Methods

The key constituents of the fission yeast cell cycle network 
are shown in the Fig. 1 (Davidich and Bornholdt 2008). As 
shown, ten key proteins (SK, Cdc2/Cdc13, Ste9, Rum1, 
Slp1, Cdc2/Cdc13*, Wee1/Mik1, Cdc25, and PP) with acti-
vatory (green arrows between nodes) and inhibitory (yel-
low and red dashed arrows) interactions control cell transi-
tion between consecutive phases (G1 → S → G2 → M) . 

The interactions between node/protein i and j have specific 
weights of wij, i, j ∈ [1, 2,… , 9], assuming the indices for i 
or j are SK: 1, Cdc2/Cdc13: 2, Ste9: 3, Rum1: 4, Slp1: 5, 
Cdc2/Cdc13*: 6, wee1/Mik1: 7, Cdc25: 8, and PP: 9. In the 
global sensitivity analysis, we assess the effect of perturba-
tion of these weights on the transition probabilities derived 
by the Markov model.

In the predictive Markov model, we assume that the cur-
rent state of the system depends only on the previous state 
(first-order Markov model), and the probabilities of tran-
sition between different states are as follows (Zhang et al. 
2006):

We also assume that the cell cycle is active (start = 1) and 
that the variable states of the fission cell cycle network are 
SK, Ste9, Rum1, Cdc2/Cdc13, PP, Cdc25, Slp1, Cdc2/
Cdc13*, and Wee1/Mik1, which create the dynamics of sub-
sequent cell cycle transitions between different states and the 
G1, S, G2, and M phases. In Eqs. (1–3), Sj(t) represents the 
state of protein j at time t, which is zero (inactive/unphos-
phorylated) or one (active/phosphorylated). For model sim-
plification, the weight of protein–protein interaction, wij , is 
either + 1 (activation effect that is depicted by green arrows 
in Fig. 1) or − 1 (inhibition effect that is depicted by yellow 
or red dotted arrows in Fig. 1). The state of the proteins at 
time points t + 1 is assessed according to their states at time 
point t  and can change or remain unchanged during that 
time. The parameters β and α in Eq. 2 and 3 are used to 
uniformly simulate the effect of randomness (noise) and 
uncertainty for all proteins in cell state transition. If, accord-
ing to Boolean model rules ( Ti =

∑9

j=1
wijSj(t) ≠ 0 ), the state 

of protein Si  at  t ime point t + 1 must change 
( Si(t + 1) ≠ Si(t) ), then the transition probability will be 
exp (�Ti(2ki−1))

2 cosh (�T)
 , ki = {0, 1} , and the parameter β is used to 

apply the level of noise in cell state transitions. Here, we 
note that higher β corresponds to a lower noise level and vice 
versa.  If ,  according to Boolean model rules, 

( Ti =
9∑
j=1

wijSj(t) = 0 ), then the state of protein si at time point 

(1)Pr
(
S1(t + 1), S2(t + 1),… , S9(t + 1)|S1(t), S2(t),… , S9(t)

)
=

9∏

i=1

Pr
(
(Si(t + 1)||S1(t), S2(t),… , S9(t)

)

(2)Pr
(
Si(t + 1) = ki|S1(t), S2(t),… , S9(t)

)
=

exp
(
�Ti

(
2ki − 1

))

2 cosh
(
�Ti

) ifTi =

9∑

j=1

wijSj(t) ≠ 0, ki = {0, 1}

(3)Pr
(
Si(t + 1) = ki|S1(t), S2(t),… , S9(t)

)
=

1

1 + exp(−�)
ifTi =

9∑

j=1

wijSj(t) = 0, ki = {0, 1}
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t + 1 should not change ( Si(t + 1) = Si(t) ) and the transition 
probability will be 1 − 1

1+exp(−�)
 (the parameter α is used to 

apply the level of noise in cell state transitions). We notice 
that the lower α corresponds to higher noise and vice versa. 
In BN, when the state of all proteins does not change, the 
system tends toward a fixed point or an attractor, while in the 
Markov model, it is possible to change the state of proteins 
with a certain probability using the α parameter.

In Fig. 1, nine key proteins/protein complexes responsible 
for the control and regulation of the fission yeast cell cycle 
network are depicted (Davidich and Bornholdt 2008). The 
set of nine binary nodes of BN, namely SK, Ste9, Rum1, 
Cdc2/Cdc13, PP, Cdc25, Slp1, Cdc2/Cdc13*, and Wee1/
Mik1, create {0, 1}9 state-spaces, including 29 = 512 differ-
ent states. The evolution of protein/protein complex states 
in the fission yeast cell cycle regarding noise is modeled via 
Eqs. (1–3). The Markov model simulates the dynamics of 
subsequent cell cycle transitions between the 512 different 

states to mimic the subsequent transitions between the G1, 
S, G2, and M phases.

As depicted in Fig. 2, we implemented Eqs.  for each of 
the 512 initializations to capture the dynamics of the transi-
tion of the proteins/protein complex states during the pro-
cess. We recorded the state of nine binary proteins/protein 
complexes for all initializations as a decimal number 
( S ∈ [0, 1, 2,… , 511] ) during the process to create a Markov 
chain of subsequent transitions of the cell during the cell 
cycle process. The Markov chain is created using multiple 
long simulations of the Markov model for all initializations. 
Therefore, if the chain of subsequent transitions between 
different states for the ith initialization ( ith column of Fig. 2) 
is X

i
 , i ∈ {0, 1, 2,… , 511} , then the Markov chain for the 

first repetition of model simulation will be Xtotrep1
=

{X0,X1,… ,X511} . To reduce the effect of aleatoric uncer-
tainty (Shaker and Hüllermeier 2020), we replicated the 
Markov model simulation several times to create a Markov 
chain based on multiple long simulations of the Markov 

Fig. 2   Schematic diagram of model simulation. One repetition of the 
Markov model simulation of the fission yeast cell cycle for a11 512 
initializations (columns in the figure). For each 512 initial conditions 
(first row of each column) assigned to the nine proteins (SK, Cdc2 /
Cdc13, Ste9, Rum1, Slp1, Cdc2 /Cdc13 *, Wee1 /Mik1, Cdc25, PP) 

at time t0 and by applying Markov model rules, the cell dynamics 
(rows of the table) in the presence of noise over time is predicted. In 
each time step, the cell state is recorded as a decimal number to cre-
ate Markov chain Xtot_rep1
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model. Then, we used the resulting Markov chain to com-
pute the frequency rate Fij, i, j ∈ {1, 2, 3,… , 512} by count-
ing the number of transitions from state i to state j in one 
step and computing the one-step transition matrix 
Pij, i, j ∈ {1, 2, 3,… , 512} as follows: Pij =

Fij
∑512

j=1
Fij

 , where the 

element Pij represents the probability of transition from state 
i to state j in one step.

Global sensitivity analysis (GSA)

We aimed to use global sensitivity analysis (GSA) to 
investigate model robustness with respect to parameter 
perturbations and assess the correlation between transition 
probabilities and model parameters. Therefore, we carried 
out GSA with respect to the transition probabilities derived 
by the Markov model, including the weight of protein 
interactions. Following the GSA method introduced in 
Marino et al. (2008), we performed Latin hypercube sam-
pling (LHS) and assigned uniform distributions for all 25 
parameters (weight of protein interactions), generating 300 
samples to compute the partial rank correlation coefficient 
(PRCC) and their corresponding p values (significance 
level, p value < 0.05) with respect to the transition prob-
abilities between subsequent cell cycle phases and the 

steady-state probability of the SG1 state derived by the 
Markov model. The uniform distribution assigned to each 
parameter in the LHS method is in the range of 

[
1

2
2
]
 . The 

results of the GSA are presented in the next section.

Results

As shown in Fig. 3, the Markov model predicted the prob-
ability of transition from the G1 phase to all states (512 
states) for the different process steps and in the presence of 
a low level of noise (α = 5 and β = 4). As shown in Fig. 3a, 
the probability of transition from state G1 (356) to all 
states in one step has the largest probability (0.97) in the 
G1/S(4) state. Also, as shown in Fig. 3b–h, the probabil-
ity of transition from G1 (356) to all states in two, three, 
four, five, six, seven, and eight steps has its largest value in 
G2(132), G2(130), G2/S (138), G2/S(154), M(19), M(101), 
and G1(100), respectively. These results are consistent with 
results from the BN model of the fission yeast cell cycle 
(Table 1), which, with no regard for noise and uncertainty, 
simulated the cell cycle’s subsequent transitions (Davidich 
and Bornholdt, 2008). Markov model simulations revealed 
that the probability of transition between subsequent states 

Fig. 3   Transition probabilities from the G1 phase to all states of the 
fission yeast cell cycle during the process steps with a low level of 
noise (α = 5 and β = 4). The values of ’X’ (horizontal axis) in each 

subplot reflects the index of each decimal state by subtracting it from 
one is equivalent to a decimal state of the cell
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or phases of the cell cycle has its maximum probability 
among all possible states. For instance, Fig. 3a, shows 
that the probability of a one-step transition from the G1 
state (356) to all states except the G1/S(4) state is about 
(1−0.97 = 0.03 ), while the probability of a one-step tran-
sition from the G1 state (356) to its next state G1/S(4) is 
about 0.97.

We investigated the effect of different levels of noise 
on the dynamics of cell cycle transitions. Therefore, 
we executed the Markov model for different values of 
� ∈ [3 ∶ 1 ∶ 6] and � ∈ [1 ∶ 1 ∶ 10] to capture the dynam-
ics of the transition probabilities between cell cycle 
phases/states. As mentioned previously, as the param-
eters α and β increase, the level of noise decreases. 
Figures  4, 5, and 6 represent the mean, median, and 
standard deviation (10 replications of the Markov 
model assessment) of the transition probabilities (A) 
Pr(G1(356) → G1∕S(4)) , (B) Pr(G1∕S(4) → G2(132)) , (C) 
Pr(G2(132) → G2(130)) , (D) Pr(G2(130) → G2∕M(138)) , 
( E )  Pr(G2∕M(138) → G2∕M(154))   ,  ( F ) 
Pr(G2∕M(154) → M(19)) , (G) Pr(M(19) → M(101)) , (H) 
M (101) to SG1 (100), (I) Pr(all states → SG1(100)) in 
one step. The mean and median of the transition prob-
abilities (for ten replications of the model simulation) have 
the same trend and values and, as shown in the Figs. 4 
and 5, the size of the probabilities increases with increas-
ing α and β values. By increasing these parameters, the 
uncertainty of the model decreases and the behavior of 
the stochastic model becomes close to the deterministic 
BN model. As shown in Fig. 6, the standard deviation 
of transition probabilities between subsequent cell cycle 
phases for ten replications of the model simulations are 
much smaller than the mean of the probabilities.

We also used the Markov model to compute the prob-
ability of first passage from state i to state j in 1 ∶ t steps. 
If we define Tij as the number of steps taken by the Markov 
process until first reaching state XTij

= j , given that the 
process initiates with state X0 = i , then the first passage 
probability from state i to state j in t  steps will be as 
follows:

We used this equation to predict the dynamics of the prob-
abilities of the first transition between subsequent phases of the 
cell cycle during the process. As depicted in Fig. 7, these prob-
abilities have maximum values in the first step and decrease 
with increasing steps.

Figure 8a–c shows the mean, standard deviation, and 
corresponding p values of significant PRCCs for three 
replications of GSA. The p values shown in Fig.  8c are 
the maximum p values among the three replications of 
the GSA analysis. As depicted in Fig. 8a, the probability 
Pr(G2(132) → G2(130)) among all 25 interactions has only 
a positive correlation with w65 ( Cdc2∕Cdc13∗ → Slp1 ); 
the probability Pr(G2(130) → G2∕S(138)) also has a posi-
tive correlation with w86 ( Cdc25 → Cdc2∕Cdc13∗ ). The 
probability Pr(G2∕S(138) → G2∕S(154)) has a positive 
correlation with w27 ( Cdc2∕Cdc13 − |Wee1∕Mik1 ) and 
w86. The probability Pr(G2∕S(154) → M(19)) inversely 
correlated with w55 ( Slp1 − | Slp1 ) and w86 , while hav-
ing a positive correlation with w65 ( Cdc2∕Cdc13∗ → Slp1 ) 
and w56 (  Slp1 − | Cdc2∕Cdc13∗ ) .  The probability 
Pr(M(101) → SG1(100)) inversely correlated with w99 

(4)

ht
ij
= P

(
Tij = t

)
= P

(
Xt = j,Xt−1 ≠ j,… ,X1 ≠ j|X0 = i

)

h
(1)

ij
= pij, h

t
ij
=

∑

k∈S−{j}

pik × h
(t−1)

kj
ift ≥ 2

Table 1   Temporal evolution of protein/protein complex states of the fission yeast cell cycle (Davidich and Bornholdt 2008)

Time step SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/
Cdc13*

Wee1/Mik1 Cdc25 PP Phase Decimal State

1 0 0 1 1 0 0 1 0 0 Start 100
2 1 0 1 1 0 0 1 0 0 G1 356
3 0 0 0 0 0 0 1 0 0 G1/S 4
4 0 1 0 0 0 0 1 0 0 G2 132
5 0 1 0 0 0 0 0 1 0 G2 130
6 0 1 0 0 0 1 0 1 0 G2/M 138
7 0 1 0 0 1 1 0 1 0 G2/M 154
8 0 0 0 0 1 0 0 1 1 M 19
9 0 0 1 1 0 0 1 0 1 M 101
10 0 0 1 1 0 0 1 0 0 G1 100
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( PP − | PP ), w55 , and w86 , while having a positive correlation 
with w59 ( Slp1 → PP ), w65, and w56 . The steady-state prob-
ability of the SG1 state Pr(all states → SG1(100)) inversely 
correlated with w55 , while having a positive correlation with 
w52 ( Slp1 − | Cdc2∕Cdc13 ) and w65

Discussion and conclusion

The primary goal of this study was to quantify the effect 
of intrinsic noise on transition probability between phases 
of the cell cycle. We were curious to know how the uncer-
tainty in protein interactions changes the fate of a cell. 
To this end, we developed a Markov model of the fission 

yeast cell cycle network to simulate uncertain protein–pro-
tein interactions that control cell cycle transitions between 
subsequent phases. Previously, we showed that the weight 
of protein–protein interactions in the budding yeast cell 
cycle network could be optimized to make the cell cycle 
structure more stable (increase the basin size of stationary 
G1 as the biggest attractor) and increase the probability of 
the cell cycle pathway ( Pr(G1 → S → G2 → M → SG1) ) 
(Shafiekhani et al. 2020). In this study, we used GSA to 
assess the relationship between the weights of protein–pro-
tein interactions in the fission yeast cell cycle network 
and the dynamics of transition probabilities derived by 
the Markov model. Data derived from in silico assess-
ment of the fission yeast cell cycle in GSA analysis match 

A B C

D E F

G H I

Fig. 4   The average of transition probabilities (10 repli-
cations) between two consecutive phases of the fission 
yeast cell cycle in the presence of different levels of noise 
( � ∈ [3 ∶ 1 ∶ 6] and � ∈ [1 ∶ 1 ∶ 10] ). a Pr(G1(356) → G1∕S(4)) , 
b Pr(G1∕S(4) → G2(132)) , c Pr (G2(132) → G2(130)) , d 

Pr(G2(130) → G2∕M(138)) , e Pr(G2∕M(138) → G2∕M(154)) , f 
Pr(G2∕M(154) → M(19)) , g Pr(M(19) → M(101)) , h M (101) to SG1 
(100), i Pr(all states → SG1(100)) in one step. As the values of α and 
β increase (decreasing noise), the transition probability between these 
two consecutive phases increases
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with experimental findings. The results of GSA reveal 
that progression through the G2/M phase positively cor-
relates with the activity of Cdc25 ( w86 ), which is consist-
ent with the known fact that Cdc25 phosphatase controls 
G2/M and is a key DNA damage checkpoint regulator. If 
DNA replication is not completed, cell cycle progression 
will be halted. Progression through the M phase positively 
correlates with the activity of Slp1, which is involved in 
(a) the spindle assembly checkpoint and (b) degradation 
of Cdc13 by the anaphase-promoting complex and, thus, 
exits from the M phase and cell division. Notably, progres-
sion through the G1 phase does not correlate with any 

reactions, while, intuitively, we would expect it to have 
some correlation with the activity of Ste9 and Rum1.

Using GSA, we can test hypotheses about the relation-
ship between the weight of different interactions in the fis-
sion yeast cell cycle network and the transition probabilities 
between subsequent phases of the cell cycle. We aimed to 
answer the question as to what intervention of the protein 
interactions (increasing/decreasing the weight of protein 
interactions) effectively affected the transition probabilities 
between subsequent phases of the fission yeast cell cycle 
and the steady-state probability of SG1. For instance, sup-
pose we aimed to identify the best intervention for protein 

A B C

D E F

G H I

Fig. 5   The median of transition probabilities (10 repli-
cations) between two consecutive phases of the fission 
yeast cell cycle in the presence of different levels of noise 
( � ∈ [3 ∶ 1 ∶ 6] and � ∈ [1 ∶ 1 ∶ 10] ). a Pr(G1(356) → G1∕S(4)) , 
b Pr(G1∕S(4) → G2(132)) , c Pr (G2(132) → G2(130)) , d 

Pr(G2(130) → G2∕M(138)) , e Pr(G2∕M(138) → G2∕M(154)) , f 
Pr(G2∕M(154) → M(19)) , g Pr(M(19) → M(101)) , h M (101) to SG1 
(100), (I) Pr(all states → SG1(100)) in one step. As the values of α 
and β increase (decreasing noise), the transition probability between 
these two consecutive phases increases
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interactions in the cell cycle process to reduce the prob-
ability of cell proliferation. In cancer, malfunctions of the 
checkpoints of the cell cycle cause some cells with abnormal 
genetic factors to proliferate in an uncontrollable manner. 
Thus, identifying a specific intervention for protein inter-
actions to reduce the probability of proliferation can help 
biologists/immunologists to control tumor growth and eradi-
cate it. We, therefore, designed the GSA. Due to the special 
importance of changing the cell state from the G2 phase to 
the M phase, a G2 → M checkpoint prevents the entry of 
cells with DNA damage or cells in which DNA replication 
has not been properly performed. We identified interventions 
of the protein interactions in the fission yeast cell cycle that 
reduce the probability Pr (G2 → M) . Our simulation results 
showed that one intervention for reducing this probability is 
to reduce the interaction rate between Cdc25 and the Cdc2/
Cdc13* proteins. As shown in Fig. 9, decreasing the weight 

of the Cdc25–Cdc2/Cdc13* interaction causes G2 arrest in 
the fission yeast cell cycle. This result is supported by data 
in Elder et al. (2001) showing that inhibition of phosphoryla-
tion of tyrosine 15 on Cdc2 prevents transition from the G2 
phase to the M phase and induces G2 arrest in fission yeast. 
We also predicted that suppression of Slp1 activity induces 
cell cycle arrest in the M phase. As shown in Fig. 9, the 
transition probability from G2/M → M is close to zero when 
Slp1 self-inhibition is high ( w55 = 2) or if Slp1 activation 
( w65 = 0.5) or activity ( w56 = 0.5) is low. Slp1 is known to be 
important for mitotic progression (Matsumoto 1997), which 
is in agreement with our model prediction.

Many computational models have been developed for 
dynamical analysis of biochemical networks that control 
yeast cell cycle progression, including ordinary differen-
tial equation models (Novak et al. 2001), Boolean network 
models (Davidich and Bornholdt 2008; Li et  al. 2004), 
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G H I

Fig. 6   The standard deviation of transition probabilities 
(10 replications) between two consecutive phases of the fis-
sion yeast cell cycle in the presence of different levels of noise 
( � ∈ [3 ∶ 1 ∶ 6] and � ∈ [1 ∶ 1 ∶ 10] ). a Pr(G1(356) → G1∕S(4)) , 

b Pr(G1∕S(4) → G2(132)) , c Pr (G2(132) → G2(130)) , d 
Pr(G2(130) → G2∕M(138)) , e Pr(G2∕M(138) → G2∕M(154)) , f 
Pr(G2∕M(154) → M(19)) , g Pr(M(19) → M(101)) , h M (101) to SG1 
(100), i Pr(all states → SG1(100)) in one step
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probabilistic Boolean network models (Hashimoto et al. 
2009), Petri net models (Mura and Csikász-Nagy 2008), 
Markov models (Zhang et al. 2006), and, recently, agent-
based models (Castro et al. 2019). The ODE model needs 
numerous kinetic parameters to simulate the dynamics of 
gene activity levels/protein concentrations, while the BN 
model, using simple logical rules (qualitative description of 
gene/protein interactions) and only using network structure 
parameters, can simulate the sequence of cell cycle phases, 
robust behavior of the cell during the cell cycle process, 
and possible pathways for the cell in the transition from one 
state to another. The complexity of the BN model is less than 
that of ODE models, and both models can be used to study 
the effect of different interventions on protein/gene interac-
tions on cell cycle behavior. On the other hand, these models 
are deterministic and are not able to simulate the stochastic 
behaviors of interacting proteins in the cell cycle network. 
However, probabilistic models, such as the stochastic Petri 
net, probabilistic BN, Markov model, and agent-based model 

are capable of simulating stochastic aspects of the cell cycle 
network.

Castro et al. (2019) presented an agent-based model for 
simulating the fission yeast cell cycle network that pre-
dicted the time duration of different cell cycle phases. The 
ABM revealed that the time duration of cell cycle phases is 
similar to that predicted by a previous ODE model (Novak 
et al. 2001). In another study, Zhang et al. (2006) proposed 
a stochastic Markov model of the budding yeast cell cycle 
and examined the robustness of the cell cycle network in 
the presence of noise. Their simulations revealed that the 
steady-state probability of transition from all states to the 
stationary G1 state (the biggest attractor in the budding yeast 
cell cycle network is SG1) in the presence of noise is sig-
nificant (0.7); therefore, they proved the robustness of the 
cell cycle network of budding yeast. Their Markov model 
focused on the computation of the probability of SG1 and the 
robustness of the cell cycle of budding yeast. In the present 
study, we extended their Markov model to simulate the cell 

Fig. 7   The probabilities of first passage from one state to another 
(two subsequent states of the cell cycle) in the presence of a 
low level of noise ( � = 5, � = 4 ). a Pr(G1(356) → G1∕S(4)) , 
b Pr(G1∕S(4) → G2(132)) , c Pr (G2(132) → G2(130)) , d 
Pr(G2(130) → G2∕M(138)) , e Pr(G2∕M(138) → G2∕M(154)) , 

f Pr(G2∕M(154) → M(19)) , g Pr(M(19) → M(101)) , h 
( Pr(M(101) → SG1(100)) in one step. As the values of α and β 
increase (decreasing noise), the transition probability between these 
two consecutive phases increases
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cycle network of fission yeast to capture the dynamics of cell 
transitions between different cell cycle phases. We used our 
extended Markov model to investigate the correlation of tran-
sition probabilities between subsequent phases of the fission 
yeast cell cycle network and the weight of protein–protein 

interactions. Our simulation results are consistent with pub-
lished experimental findings. Moreover, they provide test-
able hypotheses so that we can increase our understanding of 
the cell cycle process by model development and refinement 
through an iterative in vitro-in vivo/in silico process.

A

B

C

Fig. 8   GSA analysis. a Statistically significant PRCC values (p 
value < 0.05) for transition probabilities between subsequent phases 
of the fission yeast cell cycle and the steady-state probability of 
the SG1 state. The mean of the PRCC values for three replications 
of PRCC analysis (300 runs) is depicted in each pixel. Black pixels 
(‘NaN’) show ‘not a number’ and represent no significant correlation 

between outcome measures (probabilities, elements in the vertical 
axis) and the weight of protein interactions of the model (elements 
in the horizontal axis). b The standard deviation of significant PRCC 
values (p value < 0.05) for three replications of PRCC analyses (300 
runs). c The maximum of p values for three replications of PRCC 
analyses (300 runs)
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For future work, this model can be extended by adding 
the messenger RNAs, which are the main source of intrinsic 
noise in the cell cycle. Also, we can assign fuzzy uncertain 
numbers instead of crisp values for the weights of protein 
interactions to capture parametric uncertainty and assess 
uncertainty in the band of transition probabilities between 
subsequent cell cycle phases.

Additional Information

MATLAB codes for model simulation will be available by 
reasonable request to the corresponding author.
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