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Abstract
Protein phosphorylation catalyzed by protein kinases is the major regulatory mechanism that controls many cellular processes. 
The regulatory mechanism of one protein kinase in different signals is distinguished, probably inducing multiple phenotypes. 
The Saccharomyces cerevisiae Snf1 protein kinase, a member of the AMP‑activated protein kinase family, plays important 
roles in the response to nutrition and environmental stresses. Glucose is an important nutrient for life activities of cells, but 
glucose repression and osmotic pressure could be produced at certain concentrations. To deeply understand the role of Snf1 
in the regulation of nutrient metabolism and stress response of S. cerevisiae cells, the role and the regulatory mechanism of 
Snf1 in glucose metabolism are discussed in different level of glucose: below 1% (glucose derepression status), in 2% (glucose 
repression status), and in 30% glucose (1.66 M, an osmotic equivalent to 0.83 M NaCl). In summary, Snf1 regulates glucose 
metabolism in a glucose-dependent manner, which is associated with the different regulation on activation, localization, and 
signal pathways of Snf1 by varied glucose. Exploring the regulatory mechanism of Snf1 in glucose metabolism in different 
concentrations of glucose can provide insights into the study of the global regulatory mechanism of Snf1 in yeast and can 
help to better understand the complexity of physiological response of cells to stresses.
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Introduction

Protein phosphorylation catalyzed by protein kinases is the 
major regulatory mechanism that controls many cellular pro‑
cesses. The regulatory mechanism of one protein kinase in 
different signals is changed, which is related to the multiple 
phenotypes of cells. Snf1 protein kinase is a conserved ser‑
ine/threonine kinase that exists in Saccharomyces cerevisiae 
(Hedbacker and Carlson 2008). Snf1 has vial important roles 
in the alleviation of glucose repression and the response of 
cells to various environmental stresses, ensuring nutrient 
availability and cell survival (Backhaus et al. 2013; Zhang 
et al. 2011). Glucose, an important nutrient for life activities 
of cells, is the preferred raw material component for many 
industrial productions. Glucose can serve as different signal 

molecules in varying concentrations. Here the role and the 
regulatory mechanism of S. cerevisiae Snf1 protein kinase 
in glucose metabolism in different concentrations of glucose 
are discussed to better understand the role of Snf1 in the 
regulation of nutrient metabolism and stress response of S. 
cerevisiae cells.

The role of Snf1 in the regulation of glucose 
metabolism in different concentrations 
of glucose

Snf1 is best known as the key enzyme in the alleviation of 
glucose repression, which controls the utilization of alternate 
carbon sources that are less preferred than glucose, such as 
sucrose, galactose, maltose, and ethanol (Hong and Carlson 
2007). In glucose limitation (at least below 1%), Snf1 is acti‑
vated and phosphorylates repressor Mig1, thereby abolishing 
the interaction of Mig1 with the co-repressors Ssn6-Tup1 
and promoting the transcription of downstream glucose 
repressed-genes (Östling and Ronne 1998; Papamichos-
Chronakis et al. 2004). Unphosphorylated Mig1 retains in 
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the nucleus and interacts with Ssn6-Tup1 when inactive Snf1 
exists in the repression of 2% glucose (Östling and Ronne 
1998; Papamichos-Chronakis et al. 2004). In this section, 
the recent studies on the roles of Snf1 in glucose metabolism 
below 1% (glucose derepression), in 2% (glucose repres‑
sion), and in 30% glucose (1.66 M, an osmotic equivalent 
to 0.83 M NaCl) are summarized. As shown in Table 1, the 
role of Snf1 in regulating glucose metabolism is different in 
varied glucose. Although Snf1 serves as a positive regulator 
on the utilization of non-preferred carbon sources, such as 
maltose, in a derepression state (Zhang et al. 2015), Snf1 has 
a neutral effect on glucose metabolism. The discrepancy of 
the role of Snf1 in glucose utilization in the glucose level 
ranged from 2 to 10% may be due to the differences in the 
medium and the test methods used.

The mechanism of Snf1 in the regulation 
of glucose metabolism in different 
concentrations of glucose

The activation of Snf1

Snf1 is phosphorylated and activated by increased cellu‑
lar AMP: ATP ratios and three upstream protein kinases 
Sak1, Tos3, and, Elm1 in glucose derepression (Hong et al. 
2003; Wilson et al. 1996). Although Sak1 appears to be the 
major one, any of the three kinases is sufficient to activate 
Snf1 (Liu et al. 2011). The cyclic AMP (cAMP)-dependent 
protein kinase A (PKA) pathway negatively regulates the 
activation of Snf1 via phosphorylation of Sak1 in glucose 
limitation; however, Sak1 is not the only target of cAMP-
PKA because Tos3 and Elm1 also have the PKA recognition 
domain (Barrett et al. 2012). Another way of the cAMP-PKA 

pathway affecting Snf1 is to regulate the localization of Sip1 
β subunit of the Snf1 complex (Shashkova et al. 2015). Snf1 
is also phosphorylated and activated in many environmen‑
tal stresses, such as alkaline pH, sodium ion, and oxidative 
stresses, but not in sorbitol and heat shock stresses (Hong 
and Carlson 2007). The SNF1 mutant of S. cerevisiae labo‑
ratory strain could resist sorbitol stress, but the homolog 
mutation of filamentous fungus Pestalotiopsis microspore 
exhibited hypersensitivity (Wang et al. 2018), suggesting 
that the role of Snf1 is different in various microorganisms 
and environments. Sorbitol did not active Snf1 of S. cerevi-
siae (Hong and Carlson 2007), whereas high osmolarity due 
to glucose activated Snf1 (Meng et al. 2020). This may be 
attributed to the discrepancy of strength of osmotic pressure 
and genetic background of yeast strains and the native attrib‑
ute of Snf1 in different signal molecules. The Elm1 protein 
kinase is likely to be the primary one regarding activating 
Snf1 in alkaline pH and multidrug stresses (Casamayor et al. 
2012; Souid et al. 2006). Accordingly, it could be speculated 
that the mode of activation of Snf1 in 30% glucose is dif‑
ferent from that in the glucose derepression condition. The 
specific activation pathways of Snf1 in 30% glucose need 
to be studied. Snf1 is unphosphorylated and inactivated in 
glucose repression, in which Snf1 is targeted to the protein 
phosphatase Glc7 by the regulatory subunits Reg1/Reg2 
(Ludin et al. 1998; Rubenstein et al. 2008). This process is 
regulated by glucose via the changed level of ATP, ADP, 
and AMP (Gowans and Hardie 2014; Gowans et al. 2013). 
In addition, Glc7-Reg1 is one of the targets of the cAMP-
PKA pathway in the control of Snf1 activity (Shashkova 
et al. 2015). SUMOylation is another way that can inhibit the 
activity and function of Snf1. SUMOylated Snf1 losts func‑
tionality via two ways: by interacting the SUMO anchored 
at lys549 with the SUMO-interacting domain near the active 
site of Snf1; by using the directed SUMO ubiquitin ligase to 
target Snf1 for inhibition. Snf1 is SUMOylated via Mms21, 
a small ubiquitin-like modifier protein SUMO (E3) ligase, 
in 2% glucose (Simpson-Lavy and Johnston 2013).

The valid Snf1 form in the light of β subunits

The β subunits, including Sip1, Sip2, and Gal83, are respon‑
sible for the linkage and intracellular localization of the Snf1 
protein kinase (Vincent et al. 2001). Gal83 is the major β 
subunit of the Snf1 complex of yeast in glucose and makes 
the greatest contribution to the activity of Snf1 in glucose 
limitation (Hedbacker et al. 2004). However, the glycogen 
binding domain (GBD) of Gal83 interacts with the γ regula‑
tory subunit Snf4 and consequently strengthens the glucose 
inhibition of Snf1 activity in glucose limitation (Momcilovic 
et al. 2008). GBD interacts with the Glc7-Reg1 phosphatase 
complex, leading to the Snf1 inactivation in high glucose 
condition (Momcilovic et al. 2008). Therefore, Gal83 plays 

Table 1   The role of Snf1 in the regulation of glucose metabolism in 
different concentrations of glucose

a Snf1 protein kinase is a complex that contains an α catalytic subunit 
Snf1, a γ regulatory subunit Snf4, and one of the three alternative β 
regulatory subunits Sip1, Sip2, or Gal83 (Daniel and Carling 2002). 
In this section, the recent studies on the role of the catalytic subunit 
Snf1 in the regulation of glucose metabolism in different concentra‑
tions of glucose is summarized

The concentra‑
tion of glucose

The regulation on glucose metabolisma

Below 1% Not obvious (Zhang et al. 2015)
1% Positive (Martinez‐Ortiz et al. 2019)
2% Not obvious (Meng et al. 2020; Nicastro et al. 2015)
5% Negative (Nicastro et al. 2015)
7% Not obvious (Meng et al. 2020)
10% Not obvious (Martinez‐Ortiz et al. 2019)
30% Positive (Meng et al. 2020)
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multiple roles in regulating Snf1 (Coccetti et al. 2018). In 
2% glucose, the Snf1 complex dominated by any of the three 
β subunits alone served as a negative contributor to glucose 
utilization. This could be attributed by the disturbance on 
yeast growth (Meng et al. 2020). Overexpression of SIP2 
or GAL83 could enhance the utilization of glucose in 30% 
glucose, suggesting that nonunique Sip1 isoform of Snf1 
participated in the regulation of glucose metabolism in high 
glucose stress (Meng et al. 2020).

The regulatory pathway of Snf1

Snf1 positively regulates the transcription of glucose-
repressed genes via controlling the phosphorylation status 
of the repressor Mig1 in glucose limitation (García-Sal‑
cedo et al. 2014). The SNF1 gene is necessary to maintain 
the glycolytic flux in 1% glucose, which could be related 
to the variation of NAD(P)H, HXK2 (encoding for hexoki‑
nase 1) expression level, and mitochondrial respiration 
(Martinez‐Ortiz et al. 2019). Overexpression of SNF1 up-
regulates the expression of genes involved in glycolysis 
without affecting the glucose transport and decomposition 
in 2% glucose (Meng et al. 2020). In other words, Snf1 
mediates the transcriptional adaptation of yeast cells to 
the metabolic re-arrangement with changed expression 
of glycolytic genes in an inhibited status (Nicastro et al. 
2015). Snf1 commonly regulates the transcription of hex‑
ose transporters via controlling the nuclear localization 
and phosphorylation of the key components of Rgt2/Snf3 
signaling pathway in high glucose (Pasula et al. 2007). 
This is not incompatible with the results of Meng et al. 

(2020), which could not exclude the possibility of changed 
expression of other hexose transporter genes except HXT1. 
Snf1 regulates the composition/proportion of fatty acids 
and the accumulation of amino acids, conferring tolerance 
of yeast cells to 30% glucose stress (Meng et al. 2020). 
Simultaneously, glucose transport and glycolysis improved 
in SNF1 overexpression through up-regulating the mRNA 
level of genes involved in these two processes when coping 
with 30% glucose (Meng et al. 2020).

In summary, Snf1 regulates glucose metabolism in a 
glucose-dependent manner, which is associated with the 
different regulation on activation, localization, and signal 
pathways of Snf1 by varied glucose (Fig. 1). With regard 
to the three aspects of regulation on Snf1 mentioned 
above, at least the following topics need to be studied: 
(1) the activator of Snf1 in high glucose (2) the intracel‑
lular localization, abundance, and signaling specificity of 
the β subunits in response to high glucose (3) the mecha‑
nism of Snf1 regulation on the metabolism of downstream 
cell protectants in high glucose. Exploring the regulatory 
mechanism of Snf1 in glucose metabolism in the varied 
level of glucose can help to deeply understand the role of 
Snf1 protein kinase in the regulation of nutrient metabo‑
lism and stress response of yeast, which provides insights 
into the study of the global regulatory mechanism of Snf1 
protein kinase in yeast.
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Fig. 1   Mechanism of Snf1 regulation on glucose utilization in varied glucose. Red arrow line: positive regulation. Red straight line: no obvious 
effect. Red flat end line: negative regulation
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