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Abstract
Bacterial cell division is a highly controlled process regulated accurately by a diverse array of proteins spatially and tem-
porally working together. Among these proteins, FtsZ is recognized as a cytoskeleton protein because it can assemble into 
a ring-like structure called Z-ring at midcell. Z-ring recruits downstream proteins, thus forming a multiprotein complex 
termed the divisome. When the Z-ring scaffold is established and the divisome matures, peptidoglycan (PG) biosynthesis 
and chromosome segregation are triggered. In this review, we focus on multiple interactions between FtsZ and its acces-
sory proteins in bacterial cell cytokinesis, including FtsZ localization, Z-ring formation and stabilization, PG biosynthesis, 
and chromosome segregation. Understanding the interactions among these proteins may help discover superior targets on 
treating bacterial infectious diseases.
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Introduction

Most bacteria divide and proliferate through binary fission 
by splitting into two new daughter cells with equal sizes. 
A large protein complex called divisome is substantially 
formed at the future division site. The core component of 
divisome is the conserved tubulin homologue FtsZ, which 
regulates bacterial cytokinesis mainly with the help of 
a series of accessory proteins appearing in a hierarchical 
manner.

The Min and nucleoid occlusion (NO) system proteins 
inhibit FtsZ assembly in other places except midcell and 
localize this protein to the nascent division plane (Fig. 1) 
to ensure that two progeny cells are equal in size (Shih and 
Zheng 2013; Schumacher and Zeng 2016). FtsZ monomers 
then polymerize into single protofilament and form a ring-
like structure (Z-ring) at midcell (Fig. 1). Zap proteins sta-
bilize lateral interactions among FtsZ protofilaments and 

promote FtsZ assembly into an integrated Z-ring (Galli 
and Gerdes 2010; Durand-Heredia et al. 2011; Roach et al. 
2016). This ring is also stabilized by anchor proteins FtsA 
and ZipA, which tether FtsZ to the inner face of the plasma 
membrane. Z-ring also acts as a dynamic scaffold to recruit 
downstream proteins with critical regulatory functions of 
cytokinesis, such as peptidoglycan (PG) remodeling and 
chromosome segregation (den Blaauwen et al. 2017).

The function of FtsZ and its accessory proteins has 
been clarified, but their coordinated roles must be further 
explored. In this review, we summarize the potential prop-
erties of FtsZ and its accessory proteins and their multiple 
interactions to help discover possible targets for the develop-
ment of novel antimicrobials.

FtsZ localization

FtsZ shares high structural similarity to tubulin because of 
their ancestral homology. The structure of FtsZ consists of 
an N-terminal domain (NTD) and C-terminal domain (CTD) 
linked by central core H7 helices. A globular structure exists 
within the NTD, which contains the nucleotide-binding site 
(Ortiz et al. 2016). Following the H7 helices is the cata-
lytic T7 loop at the base of the CTD. The CTD can also be 
divided into an intrinsically disordered C-terminal linker and 
a C-terminal conserved peptide, which play vital roles in 
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recognizing several FtsZ accessory proteins, such as FtsA, 
ZipA, SlmA, MinC and ZapD (Schumacher and Zeng 2016; 
Sundararajan and Goley 2017; Vega and Margolin 2019; 
Blasios et al. 2013; Huang et al. 2016). When the T7 loop 
of an FtsZ monomer inserts into the nucleotide-binding site 
of another FtsZ monomer, the GTPase-active site for GTP 
hydrolysis is formed at the junction of two FtsZ monomers 
(Matsui et al. 2014). Linear protofilaments are created when 
GTP binds to the globular domains of FtsZ monomers.

Min system

MinC and MinD synergistically suppress Z-ring assembly 
at both polar sites. Considering the roles of these proteins, 
MinD may function as trucks, whereas MinC serve as car-
gos. MinC is a critical effector protein in the Min system 
with two different functional domains. The NTDs of MinC 
can inhibit the assembly of FtsZ monomers into protofila-
ments, and the CTDs can weaken the association among 
FtsZ protofilaments (LaBreck et al. 2019; Park et al. 2018). 
MinD is tethered to the membrane when bound to ATP, 
forming a polar zone at one side of the two cell poles. MinC 
then attaches to ATP–MinD through its CTD, forming a 
MinCD complex that binds to the CTD of FtsZ (Conti et al. 
2015). In this case, the concentration of MinCD is suffi-
ciently high at one cell pole, eventually preventing a divi-
sion septum from forming at the polar site. In this process, 
MinD may interfere with cell division by acting as a MinC 
propeller.

MinE is designated as a restriction factor against the 
MinCD complex, which guarantees that MinCD only func-
tions at both cell poles. In Escherichia coli (E. coli), the 

MinD and MinE proteins self-organize into a pole-to-pole 
standing wave oscillator on the membrane to facilitate divi-
sion initiation at midcell (Conti et al. 2015; Park et al. 2017). 
At the polar zone, MinC outcompetes MinE for binding with 
MinD because of its strong binding activity. Thus, MinC can 
maintain the inhibition of FtsZ assembly at the polar site. 
When the polar zone covers half of the cell, MinE assembles 
into an E-ring, which inhibits zone extension, and moves 
towards the polar site. During this movement, MinE acti-
vates the ATPase activity of MinD, which then separates 
from the membrane. When the polar zone is completely dis-
assembled, the E-ring also dissociates (Loose et al. 2011). 
Subsequently, MinC, MinD and MinE appear at the opposite 
pole again and conduct the same procedure. Thus, the old 
zone disappears at one site, and a new zone develops at the 
other site. This periodicity of oscillatory behaviour aver-
ages approximately 20–50 s. In brief, the MinDE complex is 
suggested to serve as a reaction–diffusion device that drives 
oscillation, whereas MinC is like a passenger in this oscil-
lation process (Mizuuchi and Vecchiarelli 2018). Given the 
pole-to-pole oscillation activity of these Min proteins, the 
MinC concentration is regulated to be high at polar sites but 
low at the midcell by the MinDE complex, which ensures 
the assembly of FtsZ at the midcell.

NO system

In E. coli, the NO system is mediated by the SlmA protein, 
an FtsZ antagonist and DNA-binding protein. SlmA binds 
to the specific SlmA-binding sequences (SBSs) dispersed 
on the chromosome, except for the terminus-containing 
(Ter) region stretched along the cell’s short axis (Fig. 1) 

Fig. 1   Schematic model of Min 
system, nucleoid occlusion 
(NO) system, and Z-ring. Min 
system forms bipolar gradients 
that suppress FtsZ (red spheres) 
polymerization at both polar 
sites. As an important protein 
of NO system, SlmA (green) 
stretches along the non-termi-
nus-containing (Ter) region of 
chromosome (black) to inhibit 
FtsZ assembly. Min and NO 
systems drive FtsZ monomers 
to assemble into Z-ring at 
midcell where Ter region (blue) 
is located
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(Schumacher and Zeng 2016; Tonthat et al. 2013). Given 
that the Ter region is the last chromosomal region to split, 
only FtsZ is allowed to polymerize at the midcell. The acti-
vated SlmA–SBS complex can bind to the CTD of FtsZ 
without affecting its GTPase activity. However, by stimu-
lating FtsZ–GDP formation, SlmA–SBSs promote the disas-
sembly of preassembled FtsZ polymers (Tonthat et al. 2013; 
Cabre et al. 2015; Cho et al. 2011). After SlmA binds with 
DNA, its conformational change and its antagonistic activity 
are enhanced by the SBSs. In Bacillus subtilis (B. subtilis) 
and Staphylococcus aureus, the Noc proteins act as SlmA 
and participate in the NO system (Pang et al. 2017).

Z‑ring formation and stabilization

Early in cytokinesis, FtsZ polymers migrate to the midcell 
and then assemble into a highly dynamic Z-ring at the divi-
sion site (Fig. 1). The Z-ring may contain a cluster of short 
and overlapping filaments that are roughly perpendicular to 
the long axis of the cell (Huecas et al. 2017). These single-
stranded filaments can assemble laterally and form bundles 
or sheets with the help of other regulatory proteins, such as 
ZipA, ZapA and ZapC (Guan et al. 2018; Ruiz-Martinez 
et al. 2018; Bhattacharya et al. 2015). Before cell division is 
initiated, FtsZ filaments on the inner membrane are arranged 
loosely and are not completely aligned. The Z-ring also 
exhibits a loose helical structure rather than a closed ring. 
However, when division begins, FtsZ filaments condense, 
and the Z-ring becomes a tight structure (Viola et al. 2017; 
Wang and Wingreen 2013).

ZapA

ZapA consists of an N-terminal globular head domain and 
a C-terminal coiled-coil domain in B. subtilis, E. coli and 
Pseudomonas aeruginosa (Galli and Gerdes 2010; Nogueira 
et al. 2015). The amino acid residue K42 within the N-termi-
nal globular domain of ZapA is required to interact directly 
with residues K51 and K66, which are close to the GTP-
binding site of FtsZ (Roseboom et al. 2018). The tetramer 
of ZapA cross-links adjacent FtsZ protofilaments and pro-
motes Z-ring stability by inhibiting GTPase activity (Ruiz-
Martinez et al. 2018; Low et al. 2004). However, GTPase 
activity is not affected after ZapA directly binds to FtsZ in 
Caulobacter crescentus, indicating that the interaction site 
of ZapA and FtsZ varies across different bacterial species 
(Woldemeskel et al. 2017).

ZapB

ZapB exists as a dimer that contains a 100% coiled-coil 
domain. High-resolution 3D reconstruction images indicate 

that ZapB forms a highly ordered structure concentric to the 
Z-ring (Soderstrom and Daley 2017). ZapB indirectly binds 
to FtsZ via ZapA, the N terminus of which is responsible for 
its interaction with ZapA. The dimers of ZapB cross-link 
ZapA molecules between two FtsZ protofilaments, which 
further stabilize Z-ring assembly (Buss et al. 2017; Galli 
and Gerdes 2012). ZapB directly connects with the MatP 
protein, which binds to the Ter region of the chromosomes. 
MatP, ZapB and ZapA interact with one another in a sequen-
tial order and form a MatP–ZapB–ZapA structure, which 
anchors the Ter region of the chromosomes to the Z-ring 
(Mannik et al. 2016; Espeli et al. 2012). ZapB serves as a 
linker to stabilize the Z-ring and coordinate chromosome 
segregation between the chromosome and Z-ring within this 
structure.

ZapC

ZapC is a small cytoplasmic monomeric protein. It does not 
share any sequence identity to ZapA or ZapB but exhibits 
similar phenotypic and functional characteristics to other 
Zap proteins (Durand-Heredia et al. 2011; Schumacher et al. 
2016). As an early divisome protein, ZapC co-localizes with 
FtsZ at the midcell in an FtsZ-dependent manner. Both the 
N- and C-domains of ZapC possess hydrophobic cavities 
that serve as FtsZ-binding sites. ZapC binds close to the 
GTPase globular core of FtsZ with high affinity through 
its hydrophobic pockets. ZapC can bind and stabilize FtsZ 
protofilaments by inhibiting GTPase activity of full-length 
FtsZ polymers. Superfluous ZapC leads to lethal filamentous 
morphology or cell division block (Bhattacharya et al. 2015; 
Ortiz et al. 2015; Hale et al. 2011).

ZapD

ZapD forms a symmetrical dimeric structure that consists 
of an α-helical domain and β-strand domain in E. coli. Resi-
dues R116, R221 and R225 in ZapD are critical for form-
ing a positively charged binding pocket, which is required 
for bundling FtsZ protofilaments (Roach et al. 2016; Schu-
macher et al. 2017). As a molecular cross-linking reagent, 
ZapD binds to the CTD of FtsZ with a set of ZapD arginine 
residues. Similar to ZapC, FtsZ is also required for ZapD to 
localize at the midcell and inhibit GTPase activity. ZapD is 
also believed to participate in the condensation of loose FtsZ 
filaments (Roach et al. 2016; Huang et al. 2016; Choi et al. 
2016). ZapD overexpression causes the separation of FtsZ 
away from the midcell, leading to elongated cells.

FtsA and ZipA

In many bacterial species, FtsZ filaments are tethered to 
the cytoplasmic membrane by interacting with the anchor 
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proteins FtsA and ZipA, forming a functional cytokinetic 
ring. FtsA is an actin-related protein that can insert itself 
into the bacterial membrane through its C-terminal amphi-
pathic helix. ZipA, a bitopic membrane protein restricted 
to Gammaproteobacteria, integrates into the membrane 
through its N-terminal transmembrane domain (Krupka 
et al. 2019; Pichoff and Lutkenhaus 2005). Cross-linking 
data show that FtsA and ZipA interact directly with each 
other through the exposed surface of the FtsA helix 7 
(Vega and Margolin 2019). Both FtsA and ZipA bind to 
the conserved CTD of FtsZ.

The conformation of the FtsA protein can affect the for-
mation of the Z-ring and the process of bacterial division. 
Purified E. coli FtsA protein can be assembled into a mini-
ring structure to inhibit FtsZ bundling and ring formation 
(Krupka and Margolin 2018; Krupka et al. 2017). The 
gain-of-function variant protein FtsA* cannot be normally 
polymerized, and a mini-ring structure cannot be formed 
on the lipid monolayer, thereby suppressing the inhibition 
of the FtsZ bundling process. The monomeric FtsA protein 
can promote FtsZ bundling and recruitment of downstream 
division proteins into the Z-ring. In normal bacteria, ZipA 
can prevent the FtsA protein from polymerizing to main-
tain monomeric forms or oligomers (Schoenemann et al. 
2018; Pichoff et al. 2012). The E. coli FtsA protein can 
remodel the bacterial membrane structure and is essential 
for membrane division. Given that the C-terminal amphi-
pathic helix of FtsA can be inserted into membrane phos-
pholipids, FtsA protein conformation changes when FtsA 
binds to ATP; this change causes cell membrane deforma-
tion, which eventually leads to contraction of the middle 
membrane (Conti et al. 2018).

Cytokinesis after divisome assembly

The Z-ring functions as a scaffold and recruits another set 
of conserved proteins in a hierarchical and roughly tempo-
ral order when Z-ring is assembled at the division site with 
the help of the aforementioned FtsZ localization and sta-
bilization proteins (Fig. 2). This large protein complex is 
defined as a divisome or division machine, which is not a 
static structure. FtsZ filaments within the Z-ring bind with 
PG synthases, treadmill on the inner face of the cell mem-
brane and promote PG synthesis (Bisson-Filho et al. 2017; 
Ramirez-Diaz et al. 2018). Besides, the ring indirectly binds 
to chromosomes and participates in its segregation.

PG biosynthesis

PG is one of the main components of the bacterial cell wall. 
During cell division, PG biosynthesis occurs at the midcell 
mainly under the control of the downstream proteins FtsW, 
FtsI, FtsQLB, FtsN and FtsEX (Soderstrom et al. 2019). 
FtsW is an integral membrane protein that belongs to the 
shape, elongation, division and sporulation (SEDS) family. 
FtsW facilitates the transport of cytoplasmic lipid II, the PG 
precursor, into the existing cell wall for PG synthesis. FtsW 
also acts as a PG polymerase, which polymerizes lipid II into 
PG (Taguchi 2019; Perez et al. 2019). FtsI is a penicillin-
binding protein (PBP3) with monofunctional transpeptidase 
activity. In E. coli, FtsI is required for septal PG synthe-
sis in coordination with PBP1b, which demonstrates both 
transglycosylase and transpeptidase activities. FtsW directly 
interacts with FtsI and PBP1b, forming a PBP1b–FtsW–FtsI 

Fig. 2   Overview of the appara-
tus of divisome. Z-ring, which 
is composed of FtsZ protofila-
ments, is anchored to the mem-
brane by FtsA and ZipA within 
the divisome. Peptidoglycan 
(PG) synthase (PBP1b–FtsW–
FtsI subcomplex) is linked to 
the Z-ring by FtsQLB subcom-
plex, dominating PG synthe-
sis. PG synthesis will not be 
initiated until FtsN appears and 
relieves the inhibition of PG 
synthase by FtsQLB. Trans-
membrane FtsEX is responsible 
for septal PG hydrolysis when 
the cell wall needs to split. 
FtsKc and MatP–ZapB–ZapA 
bind to the Ter region and par-
ticipate in chromosome segrega-
tion. The Fts family proteins are 
represented by capital letters
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synthase subcomplex within the divisome (Boes et al. 2019; 
Fraipont et al. 2011; Wissel and Weiss 2004). FtsQ, FtsL 
and FtsB are all bitopic membrane proteins that assemble 
into an FtsQLB subcomplex. Without enzymatic activity, 
FtsQLB appears to serve as a link between the Z-ring and 
PG synthase (Condon et al. 2018; Kureisaite-Ciziene et al. 
2018; Villanelo et al. 2011). FtsQLB also inhibits the gly-
cosyltransferase activity of PBP1b and the transpeptidase 
domain of PBP3 and eventually suppresses PG synthesis. 
FtsN is the last protein that arrives at the division site, which 
is believed to trigger cell constriction. When FtsN accumula-
tion at the midcell relieves the inhibition of PBP1b and FtsI 
by FtsQLB, PG synthesis starts (Weiss 2015; Liu et al. 2015; 
Pichoff et al. 2018).

FtsE (a cytoplasmic ATPase) and FtsX (an integral 
membrane protein) form a widely conserved ATP-binding 
cassette transporter-like complex, which functions as trans-
membrane regulator for septal PG hydrolysis. When PG syn-
thesis is complete, the newly synthesized cell wall must be 
equally split into two daughter cells by hydrolytic enzymes 
called amidases (Arends et al. 2009; Yang et al. 2011). In E. 
coli, the amidases AmiA, AmiB and AmiC are responsible 
for cleaving bonds between stem peptides and glycan strands 
at the septum. To hydrolyse PG efficiently, these amidases 
must be activated by EnvC (for AmiA and AmiC) and by 
NlpD (for AmiC), both of which contain the critical LytM 
domains for cell separation. EnvC is recruited to the division 
site by FtsEX (Ercoli et al. 2015; Rued et al. 2019; Dubey 
and Priyadarshini 2018).

Chromosome segregation

DNA replication and chromosome segregation are crucial for 
bacterial reproduction. Several proteins are associated with 
this process, such as the aforementioned SlmA and MatP. 
During cytokinesis, FtsK is another key protein respon-
sible for chromosome segregation. FtsK is a membrane-
bound DNA translocase that belongs to the FtsK/SpoIIIE/
Tra family. The multifunctional FtsK coordinates chromo-
some unlinking, segregation and cytokinesis. The structure 
of FtsK is mainly divided into three domains, namely the 
N-terminal domain (FtsKN), linker domain (FtsKL) and CTD 
(FtsKC) (Grainge 2010; Berezuk et al. 2018). FtsKN is a 
membrane anchor domain with four transmembrane helices 
and is involved in septum constriction. FtsKL is poorly con-
served with various length sequences among species and 
is required for the recruitment of FtsI. FtsKC is an ATP-
dependent DNA translocase and facilitates the disassembly 
of chromosome dimers in coordination with the XerCD/dif 
resolvase system (Sherratt et al. 2010; Misra et al. 2018). 
The dif sites are located in the Ter region of the chromo-
some, which is close to the midcell. Upon stimulation by 
FtsK, the tyrosine recombinases XerC and XerD resolve the 

dimeric chromosomes into monomers at the dif sites. The 
chromosome monomers can then be segregated into daugh-
ter cells (Kennedy et al. 2008; Galli et al. 2017).

Conclusions and perspectives

Cytokinesis is important to living organisms because any 
aberrant fission leads to abnormal cell morphology or even 
cell death. Bacterial cell division is a sophisticated process, 
in which the emergence of proteins is strictly ordered, and 
the amount of proteins is precisely regulated. FtsZ plays a 
major role during cytokinesis by recruiting other accessory 
proteins to immobilize and stabilize the Z-ring and then 
accurately triggering and regulating bacterial cytokinesis.

The position of Z-ring needs to be limited precisely at the 
future division site by the Min system and NO system. The 
Min system proteins, namely MinC, MinD and MinE, and 
the NO system protein SlmA are responsible for directing 
FtsZ localization to midcell. FtsZ cannot function alone dur-
ing bacterial cytokinesis. A diverse array of accessory pro-
teins appears in a hierarchical manner and binds to FtsZ. Zap 
proteins, namely ZapA, ZapB, ZapC and ZapD, stabilize 
lateral interactions among FtsZ protofilaments and facili-
tate the Z-ring formation. The Z-ring, tethered on the inner 
membrane by FtsA and ZipA, acts as a dynamic scaffold for 
recruiting downstream proteins with regulatory functions 
of cytokinesis, forming a multiprotein machine termed the 
divisome. When the divisome matures, it dominates sep-
tum PG synthesis, chromosome segregation, and triggers 
the constrictive force for cell division.

This review focuses on the potential properties of FtsZ 
and its accessory proteins, as well as their multiple interac-
tions. Investigating this problem may help reveal bacterial 
binary fission in depth and develop novel cytokinesis inhibi-
tors in the future.
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