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Abstract
The eukaryotic ascomycete genus Fusarium comprises many species capable of producing secondary metabolites important 
for agriculture, health, and biotechnology. Filamentous fungi share common physiological features, but even within Fusarium, 
there are significant differences that affect the success of biotechnological methods used to unravel biosynthetic pathways. 
The aim of this review is to describe the different methods that have successfully been used throughout the genus Fusarium 
to identify the products of novel biosynthetic pathways. The results are presented in tables to give the reader an overview 
and thereby enable the selection of the most appropriate method to the problem, regarding both species and target products. 
Significant work has gone into characterization of the underlying molecular genetics of secondary metabolites, but still, the 
products of only 25–30% of predicted gene clusters have been identified. In this review, we highlight existing knowledge 
and encourage the development of new techniques and strategies to provide access to the many unknown polyketide and 
non-ribosomal peptide products that await discovery in Fusarium.
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Introduction

Soil-borne ascomycete fungi belonging to the genus Fusar-
ium have high impact on health and agriculture (Nucci and 
Anaissie 2007; Dean et al. 2012). Like other filamentous 
fungi, Fusarium has the ability to produce small-specialized 
compounds, secondary metabolites (SMs), not associated 
directly with growth or reproduction, although hypothesized 
to contribute to the fitness of the fungal producer (Brakhage 
2013; Ding et al. 2018). Major research achievements have 
provided an understanding of the biochemical and molecular 
machinery which controls the formation of these chemical 
compounds (Keller 2019). Specialized SMs may act as plant 
hormones or virulence factors, as mycotoxins dangerous 

to humans and animals, or even as weapons against other 
microbes (Desjardins and Proctor 2007; Brown et al. 2014). 
This makes characterization of the compounds and the 
underlying genetics an important priority. Here, we aim to 
highlight the technologies that have been used to unravel the 
secondary metabolism in Fusarium and encourage further 
initiatives to link biosynthetic gene clusters to their products.

Fusarium comprises more than 100–500 (Leslie and 
Summerell 2006) species capable of causing infection in 
plant, humans, and domesticated animals (Summerell et al. 
2010). Members of this genus are found in warm and tem-
perate ecosystems throughout the globe, often as plant path-
ogens contributing to major economic losses due to infected 
crops (Mcmullen et al. 1997; Windels 2000; Michielse and 
Rep 2009). Many species are harmless, but species such as 
F. graminearum and F. oxysporum infect cereals and pro-
duce high amounts of mycotoxins rendering entire harvests 
unfit for consumption (Windels 2000). The speciation of 
Fusarium has always posed a challenge to researchers due 
to the lack of distinguishing morphological features. Histori-
cally, the number of recognized species has varied between 
9 and  > 1000, depending on the implemented identifica-
tion scheme. Currently, many species concepts represent 
polyphyletic clades comprising several individual species 
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(Leslie and Summerell 2006; Watanabe et al. 2011). There-
fore, careful naming of strains is important for this genus. 
In some cases, the term forma specialis (f. sp.) has been 
introduced, e.g., categorizing strains of F. oxysporum after 
the plant they infect (Gordon and Martyn 1997).

Fusarium SMs exhibit an extreme diversity in function 
and chemical structures. They are usually formed by multi-
domain core synthases often cooperating with several deco-
rating enzymes in a pathway to generate the final product. 
The genes encoding these enzymes are co-regulated and 
commonly found as neighbors to the core-synthase-encoding 
gene, and together, they form a biosynthetic gene cluster 
(BGC) (Keller et al. 1997; Yu and Keller 2005). In addi-
tion, gene-encoding transcriptional regulators, transport 
proteins, and even product detoxification proteins can be 
encoded by BGCs. Unfortunately, many of these potential 
BGCs shows little to no expression when grown under the 
standard laboratory conditions (Gaffoor et al. 2005). There-
fore, the potential new SMs may not be produced at all or 
are present at levels too low to be detected by the standard 
chemical methods (Wiemann and Keller 2014). Although 
many molecules have been isolated and described, the full 
biochemical potential of the collected Fusarium secondary 
metabolome is yet to be explored. In this review, we cover 
techniques that have been successful in Fusarium to link 
gene clusters to biosynthetic compounds and pathways, and 
suggest new possibilities to be explored in future endeavors.

Classes of secondary metabolites

Secondary metabolites are synthesized from small metab-
olites such as short-chain carboxylic acids and amino 
acids from the primary metabolism. These precursors are 
polymerized by large synthase/synthetase enzymes such as 
iterative polyketide synthases (PKS, types I and III), non-
ribosomal peptide synthetases (NRPS), or terpene cyclases 
(TC). Fusarium species are capable of producing many ter-
penes (Brock et al. 2013; Burkhardt et al. 2016), some of 
which are important virulence factors, for example, niva-
lenol and deoxynivalenol (Marasas et al. 1979; Yoshida 
and Nakajima 2010; Yang et al. 2018) or plant hormones 
such as gibberellins (Bömke and Tudzynski 2009; Tron-
coso et al. 2010). However, the majority of character-
ized SMs belong to the chemical groups of polyketides 
(reduced and non-reduced), non-ribosomal peptides, 
or hybrid compounds (Sieber et al. 2014; Hoogendoorn 
et al. 2018) (Fig. 1). PKSs are large multi-domain enzymes 
that as a minimum contain beta-ketosynthase (KS), acyl-
transferase (AT), and acyl-carrier protein (ACP) domains 
which work together in an iterative manner to elongate a 
polyketide chain with one ketide unit at a time (McDaniel 

et al. 1994; Bentley and Bennett 1999). Fungal PKSs work 
in different ways to create structural diversity. Usually, the 
biosynthesis will start from an acetyl-CoA unit, which is 
then elongated with malonyl-CoA units through Claisen 
condensation performed by the KS domain. However, in 
some cases, the starter unit can stem from another PKS 
or a fatty acid synthase (Brown et al. 1996). In addition 
to the KS-AT-ACP domains, PKSs may contain tailoring 
domains which add to the chemical diversity, e.g., reduc-
tase, dehydrogenase, or methyltransferase domains (Meier 
and Burkart 2009). The PKS type I, which is most pre-
dominant in Fusarium (Brown and Proctor 2016), can be 
further subdivided into reducing or non-reducing PKSs, 
yielding either fatty acid like or aromatic products. Finally, 
the tailoring domains can skip an iteration as seen for zea-
ralenone, where only four out of five ketones are fully 
reduced (Gaffoor and Trail 2006). In addition, similar 
PKSs may produce different products. It is not surprising 
that the prediction of the final product based on amino-
acid sequence alone has proven impossible.

NRPSs are multi-modular assembly lines catalyzing the 
formation of small peptides from amino-acid monomers. 
A full NRPS module contains an adenylation (A), a pep-
tide acyl-carrier (T), and a condensation (C) domain. An 
NRPS is thus composed of one or more elongation mod-
ules (A–T–C) which catalyze the formation of a polypep-
tide chain. In addition, each module may contain tailoring 
domains, e.g., epimerization or N-methylation domains, 
that contribute to the chemical diversity of non-ribosomal 
peptides (Finking and Marahiel 2004). The compound is 
released from the synthetase by cyclization, reduction, 
or hydrolysis, and can be further modified by additional 
tailoring enzymes encoded by the gene cluster such as 
cytochrome P450 monooxygenases and dehydrogenases.

At least 500 different NRPS substrates have been 
reported in filamentous fungi, which comprise non-pro-
teinogenic amino acids, d and l forms, and even hydroxyl 
acids (Strieker et al. 2010). The A domain contains a bind-
ing pocket that recognizes a specific amino-acid substrate 
(Conti et al. 1997), and substrate prediction algorithms 
have been developed, first for bacterial NRPSs (Stachel-
haus et al. 1999; Challis et al. 2000) and further modified 
to include eukaryotic NRPSs (Rausch 2005; Bachmann 
and Ravel 2009; Röttig et al. 2011; Khayatt et al. 2013; 
Knudsen et al. 2016). The feasibility of using these tools 
to predict Fusarium NRPS substrate accurately remains to 
be demonstrated (Wollenberg et al. 2017).

In the case for both NRPS and PKS BGCs, the linking 
of biosynthetic metabolites to their respective genes relies 
on experimental evidence. In the following sections, we 
will cover the current pre-requisites for linking Fusarium 
metabolite–BGC pairs.
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Genomic resources

Knowledge of the genetic basis for SM biosynthesis is 
essential for genetic manipulation and genome-mining 

strategies. Genome sequencing has been carried out for 
several  species representative of the genus Fusarium 
(Cuomo et al. 2007; Ma et al. 2010, 2014; Al-Reedy et al. 
2012; Gardiner et al. 2012, 2014; Wiemann et al. 2013; 
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Fig. 1   Identified polyketide and non-ribosomal peptide metabolites from Fusarium 
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Moolhuijzen et al. 2013; Lysøe et al. 2014; King et al. 
2015; Vanheule et al. 2016; Brown and Proctor 2016; 
Ponts et al. 2018; Walkowiak et al. 2016), revealing a 
potential for SM production that exceeds the expected 
(Kroken et al. 2003; Sieber et al. 2014). Comparative 
analyses of biosynthetic genes show their distribution 
across the Fusarium metagenome and provide insight into 
the evolution of BGCs (Ma et al. 2010). Different species 
of Fusarium are able to produce structurally similar com-
pounds, e.g., fusarubins (PKS3), gibepyrone A (PKS8), 
and ferricrocin (NRPS2) (Wiemann et al. 2013; Hansen 
et al. 2015) and, therefore, carry alleles with high levels 
of homology. To detect BGCs in Fusarium genomes, dif-
ferent bioinformatic complementary tools are used. Pro-
tein prediction tools such as SMURF (Khaldi et al. 2010) 
can predict SM-related genes (Ma et al. 2010; Wiemann 
et  al. 2013) and InterPRO (Apweiler et  al. 2000) can 
determine the protein domain functions (Frandsen et al. 
2006). The BLASTP alignment-based algorithm (Altschul 
et al. 1990) has become a cornerstone in every genetics 
study and was used in the first Fusarium genetic analyses 
(Proctor et al. 1999; Linnemannstöns et al. 2002; Kim 
et al. 2005a; Malz et al. 2005; Varga et al. 2005). CASSIS 
(Wolf et al. 2016) was developed based on the hypothesis 

that BGC genes that are co-localized and co-expressed 
within the same cluster will contain common regulatory 
patterns in the cluster promoters. SMIPS/CASSIS has 
been used to identify cluster-specific promoter motifs 
(Sieber et al. 2014). Finally, the AntiSMASH (Blin et al. 
2017) platform combines some of the above methods and 
includes co-localization comparison analysis (cluster 
orthology) data to identify BGCs (Wiemann and Keller 
2014). These bioinformatic analyses can be combined and 
aligned with experimental data to form strong evidence 
in scientific studies.

Three recent studies have analyzed 31 available Fusarium 
genomes for the presence and distribution of BGCs (Hansen 
et al. 2012b, 2015; Brown and Proctor 2016; Hoogendoorn 
et al. 2018) (Fig. 2). Prediction of SM gene clusters (and 
pseudo-genes) has been carried out and a numbering nomen-
clature was introduced (Hansen et al. 2012b, 2015). This 
has been extended to provide a simple system to identify all 
the PKS and NRPS genes by a number (Brown and Proc-
tor 2016). So far, 67 PKS and 52 NRPS gene clusters have 
been identified distributed across the Fusarium metagenome. 
Only 16 out of 67 PKS and 13 out of 52 NRPS Fusarium 
genes have been linked to their respective biosynthetic prod-
uct (Table 1). 
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Fig. 2   Frequency of polyketide synthase gene clusters in 31 species of Fusarium 
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Table 1   Fusarium PKS and NRPS gene clusters linked to natural products

Key strategies applied to establish the original link between gene and compound are listed. Studies reporting the initial compound discovery are 
listed together with studies which have later contributed significantly to the knowledgebase for each pathway
OE overexpression in ectopic locus
a Metabolite assigned based on high-nucleotide similarity
b Nomenclature: KO; gene replacement ‘Knock-out’ by double-homologous cross-over

Gene cluster Product Methodb References

PKS3 Fusarubins Medium, KO Studt et al. (2012), Frandsen et al. (2016)
PKS4 + PKS13 Zearalenone Split-marker, gene disruption Kim et al. (2005b), Gaffoor and Trail (2006), 

Lysøe et al. (2006)
PKS6 + NRPS7 Fusaristatin KO Shiono et al. (2007), Sørensen et al. (2014a, b), Li 

et al. (2016)
PKS8 Gibepyrone KO of PKS and ABC transporter Janevska et al. (2016), Westphal et al. (2018a)
PKS9 Fusarelins OE-TF Sørensen et al. (2012a), Hemphill et al. (2017)
PKS10 Fusarins KO, gene disruption Song et al. (2004), Brown et al. (2012)
PKS12 Aurofusarin Gene disruption, Split marker of PKS and TF Gaffoor et al. (2005), Kim et al. (2005a), Malz 

et al. (2005), Frandsen et al. (2006)
PKS14 Orcinol OE-PKS Jørgensen et al. (2014)
PKS16 Bikaverin KO Linnemannstöns et al. (2002), Wiemann et al. 

(2009), Sørensen et al. (2012b)
PKS17a Depudecin Homology Brown and Proctor (2016)
PKS18 Equisetin OE of TF Kakule et al. (2015)
PKS21 Fusaric acid Split marker, OE-TF Brown et al. (2012), Niehaus et al. (2014b), Studt 

et al. (2016a)
PKS24 Fumonisins KO Proctor et al. (1999, 2008)
PKS35 (Pigment) Gene disruption Graziani et al. (2004)
PKS39 Fujikurins OE of PKS and TF Wiemann et al. (2013), Von Bargen et al. (2015)
PKS40 + NRPS32 W493 KO Nihei et al. (1998), Sørensen et al. (2014a)
PKS44a Solanapyrone Homology Brown and Proctor (2016)
PKS45a Tenellin Homology Brown and Proctor (2016)
PKS51 (Virulence) OE-TF Niehaus et al. (2017)
PKS52a Alternapyrone Homology Brown and Proctor (2016)
PKS54a 3-Methylorsellinic acid Homology Brown and Proctor (2016)
PKS55 + PKS64a Oxononal benzaldehyde Homology Brown and Proctor (2016)
PKS56a Mellein Homology Brown and Proctor (2016)
PKS69 Fusaridione OE-PKS (plasmid) Kakule et al. (2013)
NRPS1 Malonichrome Split marker Oide et al. (2014)
NRPS2 Ferricrocin KO, split marker Tobiasen et al. (2007), Oide et al. (2014)
NRPS4 (Hydrophobicity) OE-NRPS Hansen et al. (2012a)
NRPS6 Triacetylfusarinine Split marker Oide et al. (2006, 2014)
NRPS5 + NRPS9 Fusaoctaxin A OE-TF Jia et al. (2019), Westphal et al. (2019)
NRPS8 Gramillins KO Bahadoor et al. (2018)
NRPS14 Chrysogine OE-NRPS, KO Wollenberg et al. (2017)
NRPS22 Enniatin Anti-serum screening and sequencing Haese et al. (1993), Liuzzi et al. (2017)
NRPS30 Sansalvamide KO Romans-Fuertes et al. (2016)
NRPS31 Apicidins OE-TF, KO Jin et al. (2010), Niehaus et al. (2014a)
NRPS39 Ferrirhodin Heterologous expression Munawar et al. (2013)
NRPS42a Hexadehydro-astechrome Homology Hoogendoorn et al. (2018)
NRPS43a Fumarylalanine Homology Hansen et al. (2015)
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Some biosynthetic gene clusters are found in the major-
ity of species of Fusarium (PKS3, 7, 8), while others are 
restricted to a single phylogenetic clade, e.g., PKS29, 30, 31, 
32, 33, and 35 from the F. solani complex. The distribution 
of Fusarium BGCs does not always follow a strict phyloge-
netic pattern and evidence for horizontal gene transfer events 
has been reported (Oide et al. 2006; Ma et al. 2010; Gardiner 
et al. 2012; Sieber et al. 2014).

Activation through cultivation

Although Fusarium does produce many metabolites under 
cultivation, the majority of BGCs remain silent and their 
products cryptic. The nature and function of Fusarium SMs 
probably require specific physiochemical conditions to trig-
ger their activity (Brakhage 2013). To maximize chance of 
observing fungal metabolites, a popular strategy is to use 
different cultivation parameters (Bode et al. 2002; Hemphill 
et al. 2017). However, the activation of cryptic biosynthesis 
pathways is never guaranteed (Gaffoor et al. 2005). Proper-
ties such as pH and nitrogen source are important parameters 
to control for some metabolite pathways (Linnemannstöns 
et al. 2002; Kim et al. 2005b; Gomez-Gil et al. 2018). Sub-
stituting the nitrogen source glutamine with sodium nitrate 
in ICI medium leads to the formation of fusarubins instead 
of bikaverin pigmentation in F. fujikuroi (Studt et al. 2012), 
which emphasizes the importance of standardized growing 
medium recipes to strengthen reproducibility (Wiemann 
et al. 2009; Sørensen and Sondergaard 2014). Biological 
challenges in the form of co-cultivation with other micro-
organisms may activate silent biosynthetic pathways lead-
ing to an increased metabolite and mycotoxin production as 
well as changes in growth rate (Müller et al. 2012; Netzker 
et al. 2015). For instance, F. demicellulare shows enhanced 
production of fusaristatin A which inhibits the growth of its 
competitor (Li et al. 2016). The co-cultivation of F. tricinc-
tum and B. subtilis enhances the formation of enniatins and 
fusaristatin A drastically, and induces the formation of three 
novel compounds: macrocarpon C, 2-(carboxymethylamino)
benzoic acid and (−)-citreoisocoumarinol (Ola et al. 2013). 
This demonstrates the utility of this approach and confirms 
the role of SMs as competitive agents.

Transformation methods

The majority of studies mentioned in Table 1 have used 
genetic manipulation to create a link between genes and 
the formation of a specific biosynthetic metabolite. A pre-
requisite for the use of this approach in Fusarium metabo-
lomics was to develop transformation protocols and tools. 

Protoplast-mediated transformation (PMT) is the most com-
monly used transformation system in filamentous fungi. 
Freshly germinated hyphae (Fig. 3a) are treated with com-
mercially available enzymes to remove complex cell-wall 
components, resulting in the formation of protoplasts (Rodri-
guez-Iglesias and Schmoll 2015). The protoplasts are usually 
mixed in an osmotic stabilizing solution such as 1.2 M KCl 
or 1.2 M sorbitol containing CaCl2 (Fig. 3b). Protoplasts can 
be mixed with both circular plasmid or linearized double-
stranded DNA. Calcium ions are added to open channels in 
the cytomembrane and thus promote uptake of nucleotides 
(Olmedo-Monfil et al. 2004). Polyethylene glycol (PEG) is 
added to promote fusion between exogenous nucleotides and 
protoplasts (Fig. 3c) (Becker and Lundblad 2001). Trans-
formed protoplasts often require regeneration in osmotically 
stabilized medium before they are selected. PMT has been 
applied to transform several Fusarium species with high lev-
els of success (Table 2). PMT has been observed to result in 
multicopy and ectopic integration events for some species 
of filamentous fungi (de Groot et al. 1998; Meyer 2008). 
Indeed, ectopic integration events have been reported in 
transformants from F. verticillioides (Proctor et al. 1999) and 
F. fujikuroi (Tudzynski et al. 1996) protoplasts. However, the 
frequency of homologous recombination-guided integration 
events depends not only on the transformation host strain in 
question, but also on the transformation protocol applied 
(Fernández-Martín et al. 2000). 

The Gram-negative bacterium Agrobacterium tumefa-
ciens is known for its ability to infect plants and during this 
process transfer the transfer-DNA (T-DNA) region of the Ti 
plasmid to the genome of the colonized host. The T-DNA 
regions are bordered by two imperfect inverted repeats (left 
and right border), and it is possible to introduce exogenous 
DNA by inserting it between the two border sites (Citovsky 
et al. 2007). A. tumefaciens is also capable of infecting fila-
mentous fungi when induced by acetosyringone (Fig. 3d) 
(Idnurm et al. 2017), and a vast arsenal of binary vectors 
has been developed for this purpose (Frandsen 2011). The 
T-DNA is usually integrated in the fungal genome as a single 
copy by homologous recombination (Mullins et al. 2001; 
Michielse et al. 2005), and has been proven to be effective 
for targeted gene deletion mediated by homologous recom-
bination (Kistler and Benny 1988; Idnurm et al. 2017). The 
major bottlenecks in this technique include the preparation 
of binary vectors and testing of various technical parameters, 
as an optimized protocol has to be developed for every spe-
cies (de Groot et al. 1998; Utermark and Karlovsky 2008; 
Sørensen et al. 2014b). As for PMT, ATMT protocols have 
been developed for several representatives of Fusarium 
(Table 3).

Other less used transformation strategies for species of 
Fusarium include glass bead transformation (Singh and 
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Rajam 2013), electroporation (Liang et  al. 2014), and 
restriction enzyme-mediated integration (Linnemannstöns 
et al. 1999; Shim and Woloshuk 2001; Inoue et al. 2001; 

Han et al. 2004). For manipulation of novel strains, we rec-
ommend using or expanding the already developed vector 
systems and protocols reported in the literature.
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Fig. 3   Overview of protoplast-mediated transformation (a–c) and 
Agrobacterium tumefaciens-mediated transformation of Fusarium 
spp. (d). a Mycelial tissue comprising a thick cell wall. b Enzy-
matic treatment of mycelium releases protoplasts encapsulated by 
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ethylene glycol (PEG) can form a molecular bridge between cell and 
nucleotide. DNA uptake is possible through a porous membrane. d 
Overview of transfer-DNA delivery to the nucleus of Fusarium spp. 
conidia
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Low hanging fruits: known secondary 
metabolites produced under laboratory 
conditions, identified through knock‑out/
gene disruption

In this section, we will show how metabolites identified in 
laboratory cultures can be linked to their underlying genetic 
machinery. To identify biosynthetic genes, a simple but 
effective strategy has been to identify putative gene candi-
dates, deleting or disrupting the genes, and then determin-
ing the SM complement. The concept of gene replacement, 
sometimes referred to as knock-out, is based on genomic 
insertion of a DNA cassette guided by one or two border 
sequences homologous to the respective target gene or 
region. The amount of homologous nucleotides required for 
homologous recombination varies from species to species, 
but most Fusarium spp. can perform homologous recom-
bination between insert and genome if the segments are 
800–1500 bp long (Gaffoor et al. 2005; Oide et al. 2006; 
Frandsen et al. 2012; Wollenberg et al. 2017; Bahadoor et al. 
2018). However, heterologous or ectopic recombination is a 
common phenomenon (Proctor et al. 1999; Malz et al. 2005) 
and genetic validation is required to confirm the correct inte-
gration of the deletion cassette, e.g., via Southern blot or 
diagnostic PCR analyses.

Disruption vectors containing a single segment homolo-
gous to the target gene are rapidly prepared and introduced 
into the fungal genome by a single cross-over recombination 
event guided by either PMT (Gaffoor et al. 2005; Gaffoor 
and Trail 2006; Brown et al. 2012) or ATMT (Malz et al. 
2005) (Fig. 4a). Gaffoor et al. 2005 identified 15 PKS genes 
in F. graminearum and used RT-PCR to determine under 
what growth conditions 14 of the genes were expressed. The 
authors developed a single cross-over gene disruption vec-
tor system targeting 500–1750 bp downstream of the start 

Table 2   List of studies exemplifying development and application of 
protoplast-mediated protocols

Species References

F. solani f. sp pisi Soliday et al. (1989)
F. solani f. sp phaseoli Marek et al. (1989)
F. solani f. sp cucurbitae Crowhurst et al. (1992)
F. graminearum PH-1 Connolly et al. (2018)
F. graminearum A3/5 Wiebe et al. (1997)
F. fujikuroi Linnemannstöns et al. (2002)
F. semitectum Jin et al. (2010)
F. venenatum Song et al. (2004)
F. pseudograminearum Gardiner et al. (2012)
F. heterosporum Kakule et al. (2013)
F. verticilloides Brown et al. (2012)
F. pallidoroseum Naseema et al. (2008)
F. sambucinum Salch and Beremand (1993)

Table 3   List of studies exemplifying development and application of 
Agrobacterium tumefaciens-mediated transformation protocols

Species References

F. graminearum Frandsen et al. (2012)
F. culmorum Tobiasen et al. (2007)
F. pseudograminearum Tobiasen et al. (2007)
F. semitectum Jin et al. (2010)
F. solani Romans-Fuertes et al. (2016)
F. oxysporum f. sp. lycopersici Takken et al. (2004)
F. oxysporum O-685 Mullins et al. (2001)
F. avenaceum Sørensen et al. (2014b)
F. circinatum Covert et al. (2001)
F. venenatum de Groot et al. (1998)

PKS/NRPSPKS/NRPS

RB LB

Double homologous cross-over
PKS

Single homologous cross-over

hygBPKS’ ‘PKS

triple homologous cross-over

A CB

hygB hygB

hygBhygB

2/3 hygB

2/3 hygB

Fig. 4   Targeted disruption and gene replacement strategies. a Gene 
disruption by integration with targeting plasmid-containing segment 
homologous to part of biosynthetic gene. b Gene replacement by two 

homologous recombination events replacing the entire open-reading 
frame with an insertion cassette. c Split-marker gene replacement in 
protoplasts transformed with two nucleotide fragments
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codon of each PKS gene. The mutants provided evidence 
for PKS12 being responsible for the formation of the red 
mycelial pigment aurofusarin, PKS10 was responsible for 
the formation of fusarin C, and PKS3 provided the basis 
for perithecial pigments, later identified as the fusarubins 
(Studt et al. 2012) and bostrycoidin (Frandsen et al. 2016). 
PKS4 and PKS13 were shown to collectively synthesize the 
mycotoxin zearalenone (Gaffoor and Trail 2006; Lysøe et al. 
2006). However, the remaining 11 PKS genes could not be 
correlated with a phenotype or metabolite (Gaffoor et al. 
2005). Meanwhile, a similar approach was used for targeted 
gene disruption with a vector carrying a 833 bp fragment 
homologous to the KS domain of PKS12 in F. graminearum, 
which was introduced via ATMT with A. tumefaciens AGL1 
(Malz et al. 2005). The resulting FgΔPKS12 strain showed 
no PKS12 expression and had an albino phenotype. In addi-
tion, F. graminearum was disrupted in the promoter region 
of aurR1, which turned out to act as a transcriptional acti-
vator of several genes in the PKS12 cluster. Later, a simi-
lar disruption vector was prepared, linearized, and trans-
formed into protoplasts targeting the KS domain of PKS10 
in F. verticillioides (Brown et al. 2012). Disruption mutant 
FvΔPKS10 provided evidence that this PKS was responsible 
for formation of fusarin C.

A more popular disruption strategy is based on vectors 
containing two homologous segments to the target gene 
separated by a selection marker gene (Fig. 4b). This enables 
replacing a large portion or the entire biosynthetic gene with 
the selection marker. Gene replacement has been carried out 
in most Fusarium spp. guided by either PMT of F. fujikuroi 
and F. venenatum (Proctor et al. 1999; Song et al. 2004; 
Wiemann et al. 2009; Niehaus et al. 2014a; Janevska et al. 
2016; Studt et al. 2016a) or ATMT of F. graminearum, F. 
pseudograminearum, F. solani, F. avenaceum, and F. semi-
tectum (Frandsen et al. 2006, 2016; Tobiasen et al. 2007; Ma 
et al. 2010; Sørensen et al. 2014a, b; Romans-Fuertes et al. 
2016; Wollenberg et al. 2017; Bahadoor et al. 2018).

In a study of linking a biosynthetic gene to the formation 
of fusarin C, Song et al. 2004 produced a knock-out vector 
able to replace PKS10 from F. venenatum through a double 
cross-over recombination event. However, Southern blot 
analysis of the transformed mutants showed that four differ-
ent types of recombination events between circular plasmid 
and genome had occurred, all resulting in gene replacement 
or disruption and the inability to produce fusarin C (Song 
et al. 2004). The four recombination possibilities between 
genome and a vector carrying two segments homologous to 
target genes are: double cross-over leading to gene replace-
ment, integration of the plasmid in the 5′ end of the gene by 
a single cross-over, integration in the 3′ end of the gene by a 
single cross-over event, or plasmid integration in both ends 
of the gene. This agrees with studies in F. verticillioides, 
where different recombination events have been observed. 

In one study, only one out of 16 mutants displayed correct 
gene replacement through double recombination, while 
15 mutants had experienced integration of the entire vec-
tor in one or more copies, disrupting FvPKS24 (Proctor 
et al. 1999). Overall, 14% of screened F. pseudogramine-
arum protoplast mutants carried a deletion of the virulence-
related FpAH1 gene resulting from double cross-over events 
(Gardiner et al. 2012). Similarly, successful knock-outs of 
NRPS32 led to the identification of the novel lipopeptide 
W493 A and B (Sørensen et al. 2014a).

In contrast to transforming fungi with circular or line-
arized copies of knock-out vectors, some researchers choose 
to use the PCR-amplified knock-out cassette directly to mini-
mize the risk of ectopic integration of plasmid backbone 
elements. This PCR-based PMT approach was used to study 
the zearalenone gene cluster in F. graminearum (Kim et al. 
2005b) and the fusarubins BGC in F. fujikuroi (Studt et al. 
2012). Catlett et al. (2003) introduced the split-marker sys-
tem, where two PCR products each comprised a 3′ or 5′ 
homologous target region with each two-thirds of the selec-
tion marker, together capable of forming an intact deletion 
cassette when combined through homologous recombina-
tion (Fig. 4c) (Catlett et al. 2003; Chung and Lee 2015). 
Brown et al. (2012) demonstrated targeted gene replacement 
of FvPKS21 by split marker and PMT. This approach was 
utilized in the investigation of F. graminearum siderophore 
biosynthesis pathways (Oide et al. 2006, 2007, 2014) to 
create knock-outs of NRPS1, 2, and 6, and, furthermore, 
used for investigation of the aurofusarin pigmentation path-
way in F. graminearum (Kim et al. 2005a). Extensive work 
has been performed describing biosynthetic pathways in F. 
fujikuroi, and gene replacement experiments have been the 
key to establishing links between BGCs and the pigment 
bikaverin (Wiemann et al. 2009), the plant mycotoxin fusaric 
acid (Studt et al. 2016a), and the peptide drug lead apicidin 
F (Niehaus et al. 2014a). In one study, knock-out mutants 
combined with isotopically labeled precursors led to the 
identification of FfPKS8 as the progenitor of gibepyrone 
biosynthesis (Janevska et al. 2016).

ATMT with A. tumefaciens strain LBA4404 is used for 
gene replacement experiments in Fusarium spp. with great 
success (Idnurm et al. 2017). Based on the ATMT protocol 
developed by Malz et al. (2005), a vector system for targeted 
gene deletion was established for F. graminearum (Frand-
sen et al. 2006, 2008, 2012), allowing characterization of 
the aurofusarin (PKS12) and fusarubins (PKS3) pigment 
biosynthesis. Furthermore, ATMT and gene replacement 
in F. graminearum enabled characterization of ferricrocin 
(NRPS2), fusaristatin (PKS6-NRPS7), chrysogine (NRPS14), 
and recently gramillins biosynthesis (NRPS8) (Tobiasen 
et al. 2007; Sørensen et al. 2014a; Wollenberg et al. 2017; 
Bahadoor et al. 2018). The F. graminearum ATMT pro-
tocol was adapted for F. avenaceum by testing different 
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transformation parameters to identify optimal concentration 
of spores, co-inoculation time, and incubation temperature. 
Both F. graminearum and F. avenaceum displayed a high 
gene-targeting efficiency guided by homologous recombina-
tion between T-DNA and the gene of interest. In rare cases 
(1–10%), the T-DNA integrated ectopically in the recipient 
genome through non-homologous end-joining (Frandsen 
et al. 2012; Sørensen et al. 2014b). For gene disruption in 
F. solani and F. semitectum, ATMT protocols are available 
relying on the A. tumefaciens AGL-1 strain (Jin et al. 2010; 
Romans-Fuertes et al. 2016).

To cement the function of a gene, complementation can 
be carried out by reintroduction of the target gene into the 
disrupted or replaced gene mutant strains (Proctor et al. 
2008; Studt et al. 2016a). Complementation of fumonisin 
production was carried out by transforming a deficient F. 
verticillioides strain with a gDNA cosmid library clone car-
rying PKS24, yielding mutants producing wild-type titers 
of fumonisins (Proctor et al. 1999). A feasible complemen-
tation technique for F. graminearum and F. semitectum 
has been to PCR amplify a wild-type gene allele including 
native promoter and terminator sequence in a single frag-
ment which can be co-transformed into protoplasts together 
with a plasmid containing a selection marker different to 
what was used to disrupt the target gene originally (Kim 
et al. 2005a, b; Jin et al. 2010).

Gene replacement is a powerful tool to link genes to func-
tion and entire pathways can be resolved in this way. Not 
only the core synthase can be identified, but the contribution 
of the other genes in the same cluster to the final product 
can be determined (Frandsen et al. 2006, 2016; Wiemann 
et al. 2009; Studt et al. 2012, 2016a; Kakule et al. 2013). 
However, it is important to bear in mind that for a successful 
outcome of this strategy, the fungus must produce the target 
compound under the cultivation conditions used.

Targeted activation

With the introduction of sequencing, the identification of 
gene clusters has become trivial—but their silence is still a 
challenge. In consequence, targeted gene activation is used to 
discover new biosynthetic pathways in Fusarium spp. Core-
synthase genes such as PKS and NRPS genes make ideal 
targets for targeted gene activation. A vector is prepared 
containing a constitutive promoter and a selection marker 
between two segments for targeted integration upstream of 
the biosynthetic gene in question (Fig. 5a). USER cloning 
has been demonstrated to enable quick assembly of such 
vectors for targeted promoter replacement in F. gramine-
arum (Frandsen et al. 2008). The pRF-HU2E vector can 
be easily equipped with suitable homologous sequences 
upstream from the target gene, enabling promoter swapping 

to the constitutive A. nidulans PgdpA in front of PKSs and 
NRPSs. This activated production of gibepyrones A, B, D, 
and G and polypyrone B (PKS8) (Westphal et al. 2018a), 
chrysogine (NRPS14) (Wollenberg et al. 2017), orsellinic 
acid and orcinol (PKS14) (Jørgensen et al. 2014), and three 
novel bostrycoidin anthrones (PKS3) (Frandsen et al. 2016). 
Overexpression of FgNRPS4 leads to an increase in surface 
hydrophobicity, but no specific SM responsible for this phe-
notype could be identified by chemical analyses (Hansen 
et  al. 2012a). Comparison of knock-out mutants to the 
wild type in the F. heterosporum PKS69 pathway failed to 
identify differences in the SM profile on different growing 
media. However, fusing a copy of the fsdS (PKS69) gene 
with the constitutive equisetin synthase (PKS18) promoter 
in a mutant construct resulted in formation of fusaridione 
A, which is likely the first intermediate in the biosynthetic 
pathway (Kakule et al. 2013).

Targeted activation can also aim to activate transcrip-
tional regulator genes. Biosynthesis gene clusters often 
contain a Zn(II)2Cys6-domain gene that acts as a cluster-
specific transcription factor (Brown et al. 2007; Brakhage 
2013). Examples are the Gip2, Bik5, and Fsr6 transcription 
factors controlling pigment biosynthesis in F. graminearum 
and F. fujikuroi (Kim et al. 2006; Studt et al. 2012; Wie-
mann et al. 2013). Exchanging the native promoter of puta-
tive transcription factor APS2 for the β-tubulin promoter in 
F. semitectum resulted in upregulation of NRPS31 cluster 
genes and increased formation of apicidin (Jin et al. 2010). 
Likewise, overexpression of the fusaric acid cluster intrinsic 
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Zn(II)2Cys6 transcription factor Fub10 upregulated gene 
expression of all cluster proteins including PKS21 (Fub1) 
and the NRPS-like enzyme Fub8, resulting in product for-
mation. Deletion of the second cluster-specific transcription 
factor gene FUB12 abolished product derivatization (Studt 
et al. 2016a). Analysis of BGC promoter regions with the 
Regulatory Sequence Analysis Tool (RSAT) can reveal con-
served transcription factor binding motifs, suggesting that 
expression is regulated by a single Zn(II)2Cys6 binuclear 
transcription factor (van Helden et al. 2000; Sørensen et al. 
2012a; Sieber et al. 2014; Frandsen et al. 2016).

To ease the process of identifying overexpression 
mutants, one method has been to amplify the transcription 
factor genes including the native terminator and fusing it 
to the pRF-HUEA expression cassette with homologous 
targeting segments in the F. graminearum PKS12 locus, 
resulting in albino mutants (Fig. 5b) (Frandsen et al. 2008, 
2016). This system was used to overexpress the putative 
transcription factor Fsr7, resulting in increased formation 
of three novel toxins: fusarielins F, G, and H (Sørensen 
et al. 2012a). To ensure high expression, targeted integra-
tion into a non-coding locus adjacent to the β-tubulin gene 
in F. graminearum (Josefsen et al. 2012) has been used for 
AurR1 overexpression, enabling overproduction of aurofusa-
rin biosynthesis metabolites including novel putative shunt 
products (Westphal et al. 2018b). Combined overexpression 
of PKS39 and the cluster-specific transcription factor gave a 
tenfold increase in metabolite production and enabled char-
acterization of a novel group of metabolites: fujikurins B, 
C, and D (Wiemann et al. 2013; Von Bargen et al. 2015). 
Fungal metabolites and their intermediates can be toxic to 
the producer and it may be necessary to use an inducible 
expression system. In F. fujikuroi, controlled overproduc-
tion of the silent trichosetin gene cluster was obtained by 
placing the cluster-specific transcription factor gene TF22 
under regulation of the inducible, tetracycline-dependent 
tet-on promoter (Janevska et al. 2017). A novel strategy for 
production of silent SM genes was developed with elements 
of the highly producing equisetin polyketide BGC in F. het-
erosporum. The equisetin synthase eqxS is under regula-
tion of the cluster-specific transcription factor eqxR. eqxR 
was fused with the inducible/leaky alcA promoter, and the 
bidirectional promoter peqxS was fused to lovB and lovC 
from the A. terrus lovastatin nonaketide biosynthesis cluster. 
Transformation of F. heterosporum with this multi-gene vec-
tor construct succeeded in production of the expected lov-
astatin precursor metabolites. This approach was similarly 
used to express an uncharacterized biosynthetic pathway in 
the endophytic fungus NRRL 50135, resulting in the iso-
lation of the anti-tuberculosis agents pyrrolocins A and C 
(Kakule et al. 2015).

Activation through global regulators 
and histone modification

The secondary metabolism of filamentous fungi is controlled 
by complex regulatory network of proteins responding to 
environmental conditions such as substrate, pH, light and 
temperature, excellently reviewed by Axel A. Brakhage 
(2013). In contrast to cluster-specific transcriptional regu-
lator proteins activating a small number of genes, global 
regulatory proteins control expression of secondary metabo-
lism on higher level (Wiemann and Keller 2014). In approxi-
mately 40% of fungal gene clusters, there are no identifi-
able TF present (Brakhage 2013), and therefore, targeted 
activation strategies cannot be performed. In such cases, 
alternative strategies can be used such as manipulation of 
histone-modifying enzymes or global transcriptional regula-
tor genes (Bok and Keller 2004; Butchko et al. 2012; Giese 
et al. 2013).

Deletion of the COMPASS protein Ccl1 in F. gramine-
arum and F. fujikuroi significantly altered secondary 
metabolism (Studt et al. 2017). In both species, SMs pro-
duced by genes localized near telomeres were upregulated. 
These chromosomal regions often have low gene expression 
mediated by trimethylation of the H3K4 (H3K4me3) and 
proteins from the COMPASS complex (Palmer and Keller 
2010; Zhao et al. 2014). Disruption of the heterochromatin 
methyltransferase Kmt6 led to transcriptional activation of 
four novel putative BGCs in F. fujikuroi, leading to isolation 
of a novel sesquiterpene (Studt et al. 2016b). Likewise, F. 
graminearum Δkmt6 displayed a drastic change in secondary 
metabolism profile (Connolly et al. 2013). In F. fujikuroi, the 
global regulator protein Sge1 is responsible for activation 
of a number of SM pathways including gibberellic acids, 
bikaverin, fumonisins, apicidin F, fusarins, and fusaric acid 
(Michielse et al. 2014, 2015; Studt et al. 2016a). Bikaverin 
biosynthesis is repressed in nitrogen-rich and ambient pH 
conditions. Expression of bik genes was repressed by pH-
related transcription factor PacC, and a knock-out mutant 
ΔpacC displayed significant increase in expression of 
bikaverin cluster genes in comparison with wild-type F. fuji-
kuroi (Wiemann et al. 2009). In addition, the overexpression 
of the global nitrogen regulator AreA in F. fujikuroi resulted 
in higher titers of bikaverin, even under repressing condi-
tions (Linnemannstöns et al. 2002). However, global regu-
lators do not result in activation of all biosynthetic genes. 
In the hunt for the FgNRPS5-NRPS9 product, the overex-
pression of the known regulator of secondary metabolism 
FgLaeA did not results in activation of the BGC. Instead, 
Jia et al. 2019 showed that the overexpression of the cluster-
specific transcription factor fgm4 ectopically was required 
for the formation of the novel virulence factor fusaoctaxin 
A (Jia et al. 2019). Global regulators may suppress activated 
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gene clusters, but probably cannot in themselves activate 
clusters. To ensure effectiveness, both types of activation 
are probably required for a successful outcome.

Chemical analysis

Identification of changes to the secondary metabolome by 
the aforementioned approaches relies on robust and accurate 
chemical analyses. High-performance liquid chromatogra-
phy (HPLC) is often a chosen chemical separation of polyke-
tides and non-ribosomal peptides due to their chemical prop-
erties, although gas chromatography was recently used in 
linking PKS8 to gibepyrones in F. fujikuroi (Janevska et al. 
2016). Through the advances in high-resolution mass spec-
trometry (HRMS), several automated methods have been 
developed, which have become very helpful in deciphering 
which fungal SMs are produced (Nielsen et al. 2010). The 
identification of novel compounds from a complex fungal 
extract can be accelerated by fast and accurate identification 
of already known and characterized compounds. This can be 
achieved through dereplication, where chromatographic and 
spectroscopic methods are coupled with searches in exist-
ing databases (Nielsen et al. 2011). The usefulness of this 
approach was demonstrated by Klitgaard et al. (2014), who 
developed a method for automated identification of up to 
3000 fungal secondary metabolites (Klitgaard et al. 2014).

Although dereplication holds great potential for working 
with SM discovery, it has not been widely adapted to studies 
of Fusarium. MS-based dereplication was used to determine 
the SM profiles among selected strains from F. solani spe-
cies complex isolated from human infections (Short et al. 
2013). This study led to the identification of several SMs, 
including citreoisocoumarin, YCM1008A, and lucilactaene, 
which had not been reported from members of the species 
complex before. NMR-based dereplication has been used 
on Fusarium strains isolated from the rhizosphere of Senna 
spectabilis in which fusaric acid and beauvericin were dis-
covered in F. oxysporum and the depsipeptide HA23 in F. 
solani (Selegato et al. 2016).

The advances in chemical analyses have also enabled 
increased use of stable isotopes for elucidation of biosyn-
thetic pathways. A feeding experiment in A. niger with fully 
labeled 13C8 6-methylsalicylic acid (6-MSA) was used to 
propose a biosynthetic route ending with yanuthone D as the 
end product (Holm et al. 2014). A similar approach was used 
in F. avenaceum, which was fed with 13C14-YWA1 (Klitgaard 
et al. 2015), the first stable intermediate formed during bio-
synthesis of aurofusarin. The feeding experiment in F. ave-
naceum showed that aurofusarin was derived from YWA1, 
but more interestingly, antibiotic Y (avenacein Y) was also 
identified as being derived from YWA1. This compound is 
well known from F. avenaceum, but had not been linked to a 

biosynthetic pathway. Subsequent genome analyses showed 
that F. avenaceum contains a gene (aurE, FAVG1_08663) 
located centrally in the aurofusarin gene cluster, which is 
not present in the aurofusarin gene cluster in F. gramine-
arum. This gene is predicted to encode an epoxide hydrolase, 
which could be involved in antibiotic Y biosynthesis.

Outlook

This review has summarized the recent advances in deci-
phering biosynthetic pathways in Fusarium. The quest is far 
from finished, as the products are currently unknown for the 
majority of gene clusters. Ongoing global gene-expression 
analyses will offer further insight into the biosynthesis of 
SMs through identification of co-regulated genes (Brown 
et al. 2012; Jørgensen et al. 2014). Proteomics may sup-
plement this data, as shown in an analysis of an overex-
pression mutant in F. graminearum (Westphal et al. 2018b). 
The majority of metabolites are now identified through 
gene orthology rather than chemical isolation and analy-
sis (Brown and Proctor 2016; Hoogendoorn et al. 2018). 
Gene homology analyses are now an inherent part of modern 
metabolomics research due to the strength and swift appli-
cation of tools such as BLASTP (Altschul et al. 1990) and 
AntiSMASH (Blin et al. 2017), and resource collections, 
e.g., the Minimum Information about a Biosynthetic Gene 
cluster (MIBiG) repository (Epstein et al. 2018). Bioinfor-
matic approaches have helped researchers to predict the 
product of a Fusarium BGC (Varga et al. 2005) before it 
was experimentally deduced (Tobiasen et al. 2007; Oide 
et al. 2014). Currently, a handful of putative metabolites has 
been assigned to species of Fusarium based on homology 
(Gaffoor et al. 2005; Hansen et al. 2012b, 2015; Wiemann 
et al. 2013; Brown and Proctor 2016; Hoogendoorn et al. 
2018; Janevska and Tudzynski 2018). Metabolites assigned 
to Fusarium spp. through homology comprise: depudecin 
(PKS17), solanapyrone (PKS44), tenellin/fumosorinone 
(PKS45), alternapyrone (PKS52), 3-methylorsellinic acid 
(PKS54), oxononal benzaldehyde (PKS55-PKS64), mellein 
(PKS56), hexadehydro-astechrome (NRPS42), and fumary-
lalanine (NRPS43) (Hansen et al. 2015; Brown and Proc-
tor 2016; Hoogendoorn et al. 2018). Although prediction 
tools have proven reliable, many of the predicted metabolites 
remain to be detected in the fungal organism by chemical 
analyses. Gene comparisons may be useful in risk assess-
ment as exemplified by the observation of a putative myco-
toxin producing synthase in the genome of the biological 
control strain F. oxysporum Fo47 (Hoogendoorn et al. 2018).

Looking ahead, the majority of detected Fusarium PKS 
and NRPS BGCs remain to be characterized (Hansen et al. 
2015) and their product pathways elucidated. Deletion of 
biosynthetic gene-producing unwanted metabolites may 
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increase the flux of precursors to a target pathway, resulting 
in higher yields of the desired compounds (Chiang et al. 
2013). Elimination of endogenous biosynthesis pathways 
may also decrease metabolic background noise in LC–MS, 
and ease purification of novel products. To control the regu-
lation of endogenous metabolism, two recent studies report 
novel Cre-loxP-based systems for F. graminearum enabling 
rapid and effective gene-targeting strategies and selection 
marker recycling (Connolly et al. 2018; Twaruschek et al. 
2018). Major efforts have until now focused on key species 
such as F. graminearum and F. fujikuroi. The genomes of 
F. solani and F. avenaceum comprise several untapped PKS 
and NRPS BGCs not found elsewhere in the metagenome. 
With the introduction of optimized ATMT protocols for both 
(Sørensen et al. 2014b; Romans-Fuertes et al. 2016), we 
expect to contribute new information on SM products to 
the collected Fusarium metabolome. In addition, we expect 
that expression in a non-natural host (Munawar et al. 2013; 
Rugbjerg et al. 2013) will contribute to assessment of enzy-
matic function.

We hope that this review has shown that data and molecu-
lar tools are now available to get insight into the vast number 
of SMs in Fusarium and evaluate their potential as leads in 
the biomedical sciences and their impact in the environment.
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