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Abstract
Condensin is a multi-subunit protein complex that belongs to the family of structural maintenance of chromosomes (SMC) 
complexes. Condensins regulate chromosome structure in a wide range of processes including chromosome segregation, 
gene regulation, DNA repair and recombination. Recent research defined the structural features and molecular activities of 
condensins, but it is unclear how these activities are connected to the multitude of phenotypes and functions attributed to 
condensins. In this review, we briefly discuss the different molecular mechanisms by which condensins may regulate global 
chromosome compaction, organization of topologically associated domains, clustering of specific loci such as tRNA genes, 
rDNA segregation, and gene regulation.
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Chromosome remodeling by condensin

The major molecular activity of condensins is forming chro-
mosomal loops through their conserved SMC ring structure 
(Cuylen et al. 2011; van Ruiten and Rowland 2018). SMC 
complexes are thought to form such loops by loop extrusion, 
a process in which DNA is pushed through the SMC ring 
in an ATPase dependent manner (Nasmyth 2001; Golob-
orodko et al. 2016a). Loop extrusion by condensin is well 
supported by in vitro experiments using DNA curtains (Ter-
akawa et al. 2017) and by single-molecule imaging (Ganji 
et al. 2018). In vivo evidence of loop extrusion stems mostly 
from the Bacillus subtilis SMC complex, which functions 
to juxtapose the two arms of the bacterial chromosome. By 
measuring the speed of this juxtaposition, the speed of B. 
subtilis SMC complex movement along the chromosome 

was estimated to be ~ 0.8 kb/s (Wang et al. 2017b). Yeast 
condensin extruded DNA at a similar rate in vitro, with 
speeds up to 1.5 kb/s depending on the concentration of 
ATP (Terakawa et al. 2017; Ganji et al. 2018). Accordingly, 
mutations that affect the ATPase activity changed the speed 
of the B. subtilis SMC complex (Wang et al. 2018b). In addi-
tion, the speed of extrusion was affected by transcription in 
B. subtilis (Wang et al. 2017b), suggesting that obstacles on 
the DNA, including chromatin in eukaryotes, may regulate 
condensin processivity.

Condensins regulate chromosome 
compaction for cell division

The major function of condensins in all eukaryotes is their 
essential role in chromosome assembly and segregation dur-
ing mitosis and meiosis (Chan et al. 2004; Cuylen and Haer-
ing 2011; Houlard et al. 2015; Kinoshita and Hirano 2017; 
Kakui and Uhlmann 2018). In preparation for cell division, 
chromosomes assume a highly compacted structure, char-
acterized by extensive looping of the chromatin fiber. Fol-
lowing condensin inactivation, loop formation and compac-
tion are severely disrupted as indicated by global mapping 
of chromosomal interactions within mitotic chromosomes 
(Kakui et al. 2017; Schalbetter et al. 2017; Gibcus et al. 
2018). Loop extrusion is likely one of the central drivers 
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of chromosome compaction, and models based on loop 
extrusion can explain the formation of chromosomal loops 
in mitotic chromosomes (Fig. 1ai, ii) (Goloborodko et al. 
2016a, b; Gibcus et al. 2018; Kakui and Uhlmann 2018). 
Interestingly, the range of loops mediated by condensin dif-
fers among organisms (Kakui and Uhlmann 2018). Unlike 

yeast, where there is a single condensin, metazoans con-
tain two condensin types, named condensin I and II (Hirano 
2016). Specific knockout experiments and imaging of the 
two condensin complexes suggest that condensin II mediates 
longer loops and sets up the axis of mitotic chromosomes, 
while condensin I mediates shorter loops thickening the 

A

B

Fig. 1  Condensin-mediated genome organization: a Mitotic structure 
of chromosomes in yeast (i) and metazoans (ii). (i) In yeast, conden-
sin compacts the rDNA and tethers the rDNA to the centromere. The 
centromere-proximal side of the rDNA is enriched for condensin, 
which compacts chromosomes through loop extrusion. (ii) In meta-
zoans, there are two condensin complexes, which function on differ-
ent scales (condensin I: shorter loops, condensin II: longer loops). 
Together, condensin I and II compact chromosomes through loop 

extrusion, forming nested loop structures. b Interphase structure of 
chromosomes in yeast (i) and metazoans (ii). (i) In yeast, condensin 
compacts chromosomes through loop extrusion and aids clustering 
of tRNAs and transposons by promoting long-range interactions. (ii) 
In metazoans, condensin compacts chromosomes through loop extru-
sion, clusters transposons and enhancer–promoter pairs by promoting 
long-range interactions, and aids the formation of TADs
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mitotic chromosomes (Fig. 1aii) (Hirota et al. 2004; Green 
et al. 2012; Kinoshita and Hirano 2017; Walther et al. 2018).

The role of condensins in interphase 
genome organization

In addition to compacting the chromosomes in preparation 
for segregation, condensin function is required for interphase 
structures (Albritton and Ercan 2018; Yuen and Gerton 
2018). In Drosophila melanogaster, condensin II promotes 
axial compaction of chromosomes to form chromosomal 
territories (Bauer et al. 2012; Smith et al. 2013; George 
et al. 2014; Rosin et al. 2018). In Caenorhabditis elegans, 
an X-chromosome specific condensin (condensin DC) is 
responsible for a ~ 40% reduction in the volume of the X 
chromosomes compared to the autosomes (Lau et al. 2014). 
In this context, condensin DC mediates shorter scale chro-
mosomal interactions as well as specific long-range interac-
tions on the X (Crane et al. 2015). Condensin depletion also 
caused decompaction of interphase nuclei in mouse embry-
onic stem cells (Fig. 1bi, ii) (Fazzio and Panning 2010).

Interphase organization of the eukaryotic nucleus 
involves chromatin fibers that fold into nested interaction 
domains termed topologically associated domains (TADs) 
(Sexton et al. 2012; Rao et al. 2014). It is hypothesized that 
TADs function to restrict the search space for enhancer–pro-
moter interactions, allowing coherent and correct expression 
of genes (Lupianez et al. 2015). Establishment of TADs has 
primarily been linked to the function of cohesin, another 
SMC complex, but condensin has recently emerged as 
additional TAD regulator (Yuen and Gerton 2018). Insula-
tor proteins, such as CTCF, block SMC complex movement 
to delimit TAD boundaries (Fudenberg et al. 2016). Con-
densins colocalize with cohesin at the CTCF sites found at 
the strongest TAD boundaries in mouse (Van Bortle et al. 
2014), and were shown to regulate TAD organization in D. 
melanogaster and C. elegans (Fig. 1bii) (Van Bortle et al. 
2014; Crane et al. 2015; Li et al. 2015a). However, in dif-
ferentiated mouse hepatocytes condensin II depletion did not 
affect TADs, suggesting that condensins may be involved in 
establishment rather than maintenance of genome organiza-
tion during interphase (Abdennur et al. 2018). Developing 
an understanding of TAD organization and the role of con-
densin in this process is an important next step in the field.

The role of condensins in regulating rDNA 
structure and organization

In addition to general roles in chromosome organization, 
condensins also play important roles in the organization 
of specific genomic elements. One of the best-understood 

examples in this context is the function of condensin in regu-
lating compaction and segregation of the ribosomal DNA 
(rDNA). The rDNA is one of the most difficult regions of 
the genome to segregate during cell division (Freeman et al. 
2000; D’Ambrosio et al. 2008a). The segregation problems 
are likely due to the high level of repetition, active transcrip-
tion, and late replication (Bhalla et al. 2002; D’Ambrosio 
et al. 2008a). In S. cerevisiae, where most of these analyses 
were conducted, the rDNA is segregated by gradual exten-
sion and unzipping of the rDNA repeats followed by axial 
compaction (Machín et al. 2005; D’Ambrosio et al. 2008a). 
This multi-step process is essential, as triggering prema-
ture rDNA compaction delays segregation (de los Santos-
Velázquez et al. 2017).

In addition to helping compact the rDNA array, condensin 
also mediates a specific long-range interaction between the 
rDNA and the centromere of the rDNA-carrying chromo-
some (Paul et al. 2018). The centromere-rDNA interaction 
peaks during anaphase, matching the timing of segregation 
(Lazar-Stefanita et al. 2017). rDNA unzipping during seg-
regation initiates on the centromere-proximal side (Machín 
et al. 2005), where condensin binding is enriched (Paul et al. 
2018), raising the possibility that condensin-mediated prox-
imity of the rDNA to the centromere may play a role in 
rDNA segregation (Fig. 1ai). This mechanism may involve 
a direct centromere tether to the rDNA that helps facilitate 
segregation. Alternatively, the enrichment of condensin 
between the centromere and the rDNA may either allow 
more efficient decoupling of sister rDNA arrays or may 
help protect the DNA between the rDNA and centromere 
from the high tension generated by the pulling of the spindle 
against the entangled rDNA.

In S. cerevisiae, condensin is also essential for regulat-
ing the rDNA upon nutrient starvation (Tsang et al. 2007a; 
Xue and Acar 2018). rDNA compaction in response to both 
starvation and segregation, is accompanied by the exodus of 
RNA polymerase I from the nucleolus (Tsang et al. 2003; 
Machín et al. 2006). Thus, active transcription at the rDNA 
appears to have an antagonistic relationship with condensin, 
which is opposite to what is found in the rest of the genome 
(Robellet et al. 2017). There is a modest increase in interac-
tion between the rDNA and the centromere proximal side 
of the rDNA during starvation, indicating that chromosome 
segregation and quiescence trigger a similar pattern of con-
densin-dependent compaction (Swygert et al. 2018). How-
ever, the mechanism of condensin regulation likely differs 
between the two processes. Condensin recruitment during 
segregation requires the replication fork barrier protein Fob1 
(Johzuka et al. 2006) and inactivation of rDNA transcription 
by the cell-cycle phosphatase Cdc14 (D’Amours et al. 2004; 
Wang et al. 2006; Machín et al. 2006; Dulev et al. 2008; 
Clemente-Blanco et al. 2009; Matos-Perdomo and Machín 
2018), whereas recruitment during starvation is initiated by 
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Rpd3-dependent histone deacetylation (Tsang et al. 2007a). 
Condensin binding to the rDNA helps maintain rDNA sta-
bility during starvation stress (Tsang et al. 2007b; Tsang 
and Zheng 2009), possibly in part by helping establish a 
position-dependent structure within the rDNA, that limits 
activity of RNA polymerase II to a few border repeats and 
allows protection of the silent majority of the rDNA (Wang 
et al. 2016).

rDNA is fundamental to cell physiology, and the few 
available studies in other organisms suggest a conservation 
for condensin function in rDNA regulation. In human cells, 
condensin knockdown resulted in increased rDNA expres-
sion, suggesting the antagonistic relationship between rDNA 
transcription and condensin may be conserved (Huang et al. 
2013). In chicken cells, condensin I is enriched at the rDNA, 
and depletion of condensin I results in rDNA decompaction 
(Zhang et al. 2016). During meiosis, condensin contributes 
to rDNA compaction in A. thaliana and prevents crosso-
vers at the rDNA by suppressing programmed double strand 
breaks in S. cerevisiae (Li et al. 2014; Smith et al. 2014). 
Similarly, the human rDNA is unstable in the absence of 
condensin (Samoshkin et al. 2012).

Condensin‑mediated clustering of specific 
genomic loci including tRNA genes

Condensin also drives specific interactions between dis-
tant loci. Condensin is enriched at the tRNA genes in many 
organisms, including S. cerevisiae, S. pombe, D. mela-
nogaster, C. elegans, mouse and human (D’Ambrosio et al. 
2008b; Kranz et al. 2013; Van Bortle et al. 2014; Iwasaki 
et al. 2015; Yuen et al. 2017). In S. pombe, the TATA-bind-
ing protein TBP recruits condensin to tRNA genes, while in 
S. cerevisiae, the TFIIIC complex was shown to be capable 
of recruiting condensin (D’Ambrosio et al. 2008b; Iwasaki 
et al. 2015). Furthermore, condensin binds to RNA polymer-
ase III specific subunits including TFIIIB, TFIIIC, RPC82, 
RPC25 (Haeusler et al. 2008; Iwasaki et al. 2010). In yeasts, 
condensin is required to cluster tRNA genes (Haeusler et al. 
2008; Iwasaki et al. 2010; Paul et al. 2018). Interestingly, in 
S. cerevisiae this clustering is specific for a family of tRNA 
genes, suggesting a possible regulatory function (Paul et al. 
2018). It is important to note that the tRNA genes clustered 
by condensins are located on different chromosomes. Thus, a 
model of loop extrusion is insufficient to explain these trans 
interactions. Supporting the ability of condensins to make 
trans connections (Fig. 1Bi), S. cerevisiae condensin was 
shown to be able to hold two separate DNA pieces together 
in vitro (Terakawa et al. 2017), and interactions between dif-
ferent condensin molecules were needed in a computational 
model for the formation of the mitotic chromosome (Sakai 
et al. 2018).

It is possible that condensin-mediated clustering estab-
lishes structures much like ‘transcription factories’, in which 
co-regulated genes are clustered together to allow enrich-
ment of regulators in one place (Branco and Pombo 2006; 
Du and Bai 2017). In S. pombe, reduction in tRNA gene 
clustering resulted in increased transcription (Iwasaki et al. 
2010). Given the fact that RNA polymerase III recruits con-
densin, this would suggest that there is some form of nega-
tive feedback in the system. In S. cerevisiae, tRNA genes 
that clustered in a condensin dependent manner were bound 
by RNA polymerase III at a slightly higher level, suggesting 
a positive effect for condensin in their transcription (Paul 
et al. 2018). Condensin effects on clustering are not limited 
to interactions among tRNA genes. tRNA genes also cluster 
with other genomic features, including the rDNA in S. cer-
evisiae, and centromeres and cell-cycle regulated genes in 
S. pombe (Haeusler et al. 2008; Kim et al. 2016; Paul et al. 
2018). Moreover, condensins also drive the association of 
other dispersed genomic loci. One example is centromere 
clustering, which is required for the repression of retrotrans-
posons in S. pombe (Fig. 1bi) (Tanaka et al. 2012). Indeed, 
this function may be conserved in humans, Arabidopsis thal-
iana and D. melanogaster, where condensin was required to 
repress transposon expression (Fig. 1bii) (Wang et al. 2011, 
2017a; Schuster et al. 2013). Together, these observations 
imply that condensin not only acts by loop-extrusion but 
also provides an important mechanism to selectively regulate 
chromatin interactions in trans.

Condensin function in gene regulation

A clear paradigm of condensin-mediated gene regulation is 
the C. elegans condensin DC complex, which represses both 
X chromosomes by a factor of two in XX hermaphrodites 
to equalize X chromosomal transcript levels to that of XO 
males. The mechanisms by which condensin DC regulates 
transcription has been reviewed recently (Albritton and 
Ercan 2018). Briefly, condensin DC specifically binds to 
promoters in a gene-activity dependent manner and, in turn, 
reduces RNA polymerase II binding to promoters, result-
ing in transcriptional repression. Condensin DC shares four 
subunits with canonical condensin I and differs from it by a 
single SMC4 subunit that duplicated and diverged in Caeno-
rhabditis (Csankovszki et al. 2009). Evolution of SMC subu-
nits for new functions is also evident in mammals, where an 
SMC variant named SMCHD1, which makes homodimers 
like prokaryotic condensins (Brideau et al. 2015), is involved 
in X inactivation by regulating chromosomal interactions 
on the inactivated X (Nozawa et al. 2013; Chen et al. 2015; 
Wang et al. 2018a; Jansz et al. 2018) and in Hox clusters 
(Jansz et al. 2018). A recent study identified an SMC like 
protein, SMCL1 that regulates condensin binding in C. 
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elegans (Chao et al. 2017). Therefore, future work should 
focus on the evolution of SMC variants in regulating canoni-
cal SMC complex functions.

Whether and how canonical condensins directly or indi-
rectly regulate transcription remains unclear. Two recent 
analyses in S. cerevisiae showed that yeast condensin does 
not directly regulate transcription (Paul et al. 2018; Hoc-
quet et al. 2018). Similarly, condensin II depletion in post-
mitotic mouse hepatocyte cells and condensin II mutations 
in T cell leukemia did not affect mRNA expression in mouse 
(Woodward et al. 2016; Abdennur et al. 2018). In yeast, 
chronic perturbation of condensin resulted in increased 
mRNA levels (Swygert et al. 2018; Paul et al. 2018). Some 
of these effects may be indirect, because in S. pombe and S. 
cerevisiae, increased mRNA levels upon condensin deple-
tion were linked to chromosome segregation defects of the 
rDNA. These defects were linked to missegregation of the 
RNA exosome, leading to mRNA increase in the daughter 
cells (Hocquet et al. 2018). Therefore, canonical conden-
sin function in gene regulation may be coupled to its role 
in cell division, such that condensin-mediated assembly of 
mitotic chromosome structure may regulate establishment 
of genome organization and gene expression patterns dur-
ing interphase.

Condensin action on chromosomes 
and transcription

Condensin binding is enriched at the promoters and gene 
regulatory regions in C. elegans (Kranz et al. 2013), D. mel-
anogaster (Wallace et al. 2015), chicken (Kim et al. 2013), 
and mouse (Yuen et al. 2017), and condensin knockdown 
and mutations have been shown to affect gene expression in 
several of these organisms (Longworth et al. 2012; Kranz 
et al. 2013; Lau and Csankovszki 2015; Schuster et al. 2015; 
Li et al. 2015b; Swygert et al. 2018). However, the link 
between widespread enrichment of canonical condensins at 
gene regulatory sites and transcription remains unclear. Sim-
ilar to cohesin, condensin was implicated in specific long-
range interaction between several enhancers and promoters 
in human cell lines to promote gene expression (Fig. 1bii) 
(Dowen et al. 2013; Li et al. 2015b). Interestingly, some of 
these enhancers use phase separation to mediate gene regula-
tion (Sabari et al. 2018). One of the first nuclear bodies that 
was shown to undergo phase-separation was the nucleolus, 
a focus of condensin enrichment (Feric et al. 2016; Sawyer 
et al. 2018). It is conceivable that condensin binding affects 
establishment of liquid phase dynamics of the nucleolus and 
enhancer–promoter interactions.

A highly specific function of condensins in regulating 
chromosomal interactions for gene regulation occurs dur-
ing transvection in D. melanogaster. Here, sister chromatids 

remain paired during interphase, allowing enhancers to act 
in trans to regulate promoters (Mellert and Truman 2012). 
Condensin antagonizes transvection, presumably by creating 
discrete chromosomes through loop extrusion as in mitosis 
(Hartl et al. 2008; Smith et al. 2013). A similar observation 
was made in mouse neural stem cells, where condensin II 
antagonizes pericentric heterochromatin clustering at chro-
mocenters (Nishide and Hirano 2014). The involvement of 
condensin in both transcription activation through promoter-
enhancer interactions and repression through antagonizing 
transvection suggests that the activity of condensins may 
result in different outcomes depending on the mechanism 
of gene regulation.

In addition to regulating chromosomal interactions, the 
action of condensin motors, with a ~ 50 nm ring sliding along 
the chromatin fiber, may create conflict with large transcrip-
tion complexes (Terakawa et al. 2017). During mitosis, when 
condensin activity is at its highest level, transcribing RNA 
polymerase II complexes are removed from chromatin (Mar-
tínez-Balbás et al. 1995; Segil et al. 1996; Gottesfeld and 
Forbes 1997; Ginno et al. 2018), and mitotic bookmarking 
requires dissociation of condensin from specific loci (Xing 
et al. 2005, 2008). In addition to condensin ring sliding, 
introduction of positive supercoils to mitotic DNA in the 
presence of topoisomerase II (Hirano et al. 1997; Hagstrom 
et al. 2002; Stray and Lindsley 2003) or reannealing of sin-
gle stranded DNA may help condensins repress transcription 
of mitotic chromosomes (Sutani et al. 2015). In S. pombe, 
inhibition of transcription partly suppressed condensin 
mutant phenotypes in cell division (Sutani et al. 2015), sug-
gesting that condensin-mediated transcriptional silencing 
of mitotic chromosomes may be important for chromosome 
segregation.

Indirect effects of condensins on gene 
regulation

Beyond condensin’s direct action on DNA, condensin may 
regulate transcription through histone modifications. In D. 
melanogaster, the condensin II subunit Barren interacts 
with polycomb proteins to repress homeotic gene expres-
sion (Lupo et al. 2001). Likewise in C. elegans, condensin 
DC interacts with a H4K20me2 demethylase, DPY-21 (Brejc 
et  al. 2017). The demethylation product is H4K20me1, 
which is enriched on the X chromosome and contributes to 
dosage compensation (Wells et al. 2012; Vielle et al. 2012; 
Kramer et al. 2015; Bian et al. 2017). In A. thaliana con-
densin meditates silencing of specific transposon families in 
conjunction with CG methylation by MET1, CHG methyla-
tion by CMT3, the chromatin remodeler DDM1 and H3K27 
monomethylation (Wang et al. 2017a). In D. melanogaster, 
retrotransposon expression is blocked by condensin II 
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mediated regulation of H3K9me3 localization (Schuster 
et al. 2013). Thus, it is possible that condensin also serves 
as a binding platform to recruit additional regulatory activi-
ties for controlling gene expression.

Finally, condensin II was reported to bind LINE-1 RNAs 
with Gamma-Interferon Activated Inhibitor of Translation 
(GAIT) in human cells (Ward et al. 2017). Together these 
protein complexes repressed translation of LINE-1 RNA by 
stopping the formation of the translation initiation complex. 
Additional examples of condensin interaction with RNA 
have yet to be found, but condensin has high affinity for 
RNAs in vitro (Akai et al. 2011).

Summary: condensins are integrated 
into fundamental chromosomal functions

Condensins were identified, because they drive the compac-
tion of chromosome into discrete bodies that are easy to seg-
regate (Hirano et al. 1986; Saka et al. 1994). In the absence 
of condensin complexes, cells fail to segregate chromosomes 
faithfully and daughter cells die. As a result, condensins are 
essential for proper growth and division in all domains of 
life (Hirano 2016). How then do hypomorphic mutations in 
condensins trigger tissue-specific problems in cell divisions 
leading to T-cell lymphoma or microcephaly (Martin et al. 
2016; Woodward et al. 2016)? It is possible that the myriad 
of additional condensin functions that link cell division to 
cell physiology (e.g., rDNA, RNA exosome segregation, 
regulation of TADs or tRNA clustering) are in play. There-
fore, future insights into interaction of condensins with basic 
nuclear processes will be important to understand condensin 
function and phenotypes in disease.
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