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Abstract
In response to various environmental stimuli and stressors, the budding yeast Saccharomyces cerevisiae can initiate a striking 
morphological transition from its classic growth mode as isolated single cells to a filamentous form in which elongated cells 
remain connected post-cytokinesis in multi-cellular pseudohyphae. The formation of pseudohyphal filaments is regulated 
through an expansive signaling network, encompassing well studied and highly conserved pathways enabling changes in 
cell polarity, budding, cytoskeletal organization, and cell adhesion; however, changes in metabolite levels underlying the 
pseudohyphal growth transition are less well understood. We have recently identified a function for second messenger ino-
sitol polyphosphates (InsPs) in regulating pseudohyphal growth. InsPs are formed through the cleavage of membrane-bound 
phosphatidylinositol 4,5-bisphosphate  (PIP2), and these soluble compounds are now being appreciated as important regulators 
of diverse processes, from phosphate homeostasis to cell migration. We find that kinases in the InsP pathway are required for 
wild-type pseudohyphal growth, and that InsP species exhibit characteristic profiles under conditions promoting filamentation. 
Ratios of the doubly phosphorylated  InsP7 isoforms 5PP-InsP5 to 1PP-InsP5 are elevated in mutants exhibiting exaggerated 
pseudohyphal growth. Interestingly, S. cerevisiae mutants deleted of the mitogen-activated protein kinases (MAPKs) Kss1p 
or Fus3p or the AMP-activated kinase (AMPK) family member Snf1p display mutant InsP profiles, suggesting that these 
signaling pathways may contribute to the regulatory mechanism controlling InsP levels. Consequently, analyses of yeast 
pseudohyphal growth may be informative in identifying mechanisms regulating InsPs, while indicating a new function for 
these conserved second messengers in modulating cell stress responses and morphogenesis.
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As is true of many fungi, the budding yeast Saccharomy-
ces cerevisiae can exist in more than one morphological 
type, and the transition between these morphological states 
is accomplished through a controlled and precise interplay 
between hundreds of genes enabling dramatic changes in 
most aspects of cell function (Gimeno et al. 1992; Cul-
len and Sprague 2012). Under conditions of nitrogen or 

glucose limitation, certain strains of S. cerevisiae (e.g., 
Σ1278b) can undergo a transition from the typical budding 
yeast-like growth form to one in which cells elongate and 
remain connected following cell division, forming multi-
cellular filaments termed pseudohyphae for their superficial 
resemblance to multinucleate hyphal tubes (Fig. 1) (Gimeno 
et al. 1992; Cullen and Sprague 2000). Pseudohyphal fila-
ments can be seen spreading outward from a colony over a 
solid surface substrate and/or invading the surface below the 
colony. Pseudohyphal growth is thought to be a scavenging 
mechanism, enabling non-motile yeast to spread out over a 
greater surface area in search of regions with more readily 
available nutrients. Pseudohyphal filamentation has been 
studied extensively over the years, as the process closely 
resembles pseudohyphal and hyphal growth transitions that 
are required for virulence in the related opportunistic human 
fungal pathogen Candida albicans (Braun and Johnson 
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1997; Lo et al. 1997; Mitchell 1998). Further, the signaling 
pathways that enable pseudohyphal growth in S. cerevisiae 
are conserved, with orthologous signaling systems regu-
lating cell growth and responses to nutrient availability in 
metazoans (Cook et al. 1996; Erdman et al. 1998; Liu et al. 
1993; Madhani and Fink 1997; Mosch et al. 1996; Pan and 
Heitman 1999).

Systematic screens for genes contributing to wild-type 
pseudohyphal growth have identified over 500 genes either 
required for pseudohyphal growth or that yield pseudo-
hyphal growth phenotypes upon overexpression (Jin et al. 
2008; Ryan et al. 2012; Shively et al. 2013). This collec-
tive gene set is broad, and the elucidation of pathways and 
mechanisms involving these genes warrants significant atten-
tion from the biological community, encompassing both 
ongoing and future studies. Much current and past research 
into yeast pseudohyphal growth has centered upon key and 
highly conserved signaling pathways required for wild-type 
filamentation. Pioneering research into the genetic basis 
of pseudohyphal growth identified the MAPK cascade of 
Ste11p, Ste7p, and the MAPK Kss1p (Cook et al. 1997; Liu 
et al. 1993; Madhani et al. 1997; Roberts and Fink 1994). 
Among its functions, phosphorylated Kss1p activates pseu-
dohyphal growth through the transcription factors Ste12p 
and Tec1p, which form a complex that can recognize fila-
mentation-responsive elements (FREs) in the promoters of 
target genes (Bardwell et al. 1998; Madhani and Fink 1997; 
Madhani et al. 1997). The mating pathway MAPK Fus3p 
inhibits pseudohyphal growth by phosphorylating Tec1p in 
response to pheromone, targeting Tec1p for degradation by 
the proteasome (Bao et al. 2004). The rat sarcoma (RAS)/
protein kinase A pathway regulates pseudohyphal growth 
through several mechanisms, including phosphorylation 
of the pseudohyphal growth transcription factor Flo8p by 
Tpk2p, a catalytic subunit of protein kinase A (Pan and Heit-
man 1999; Robertson and Fink 1998; Iyer and Bhat 2017). 
The highly conserved nutrient-sensing target of rapamycin 
(TOR) pathway regulates pseudohyphal growth through 
the transcription factor Gcn4p, which in turn regulates 

expression of the flocculin Flo11p (Boeckstaens et al. 2008; 
Braus et al. 2003). The AMPK ortholog Snf1p functions 
in a glucose-sensing and regulatory pathway [reviewed in 
Simpson-Lavy and Kupiec (2018)], contributing to the con-
trol of filamentation by regulating the pseudohyphal growth 
repressors Nrg1p and Nrg2p at the FLO11 promoter (Kuchin 
et al. 2002; Lo and Dranginis 1998; Vyas et al. 2003). The 
FLO11 gene contains an unusually large promoter that is 
targeted by transcriptional regulators downstream of the 
MAPK, RAS/protein kinase A, TOR, and Snf1p signaling 
pathways (Rupp et al. 1999).

The brief overview above highlights a few critical pseu-
dohyphal growth signaling pathways that contribute to broad 
and striking cellular changes in polarity, budding, cytoskel-
etal organization, cell cycle progression, and cell–cell adhe-
sion. During pseudohyphal growth, yeast cells exhibit an 
increase in polarized apical growth occurring at the cell 
tip. Accordingly, the actin cytoskeleton in cells undergoing 
pseudohyphal growth is highly polarized, and the polarisome 
machinery, encompassing the formin Bni1p and the polarity 
control GTPase Cdc42p, is required for polarized growth 
during filamentation (Evangelista et al. 1997; Gladfelter 
et al. 2005). Under nutrient-limiting conditions that induce 
pseudohyphal growth, both haploid and diploid cells of fila-
mentation-competent strains exhibit distal-unipolar budding, 
with buds forming predominantly at the distal pole (Gimeno 
et al. 1992). The distal marker Bud8p is required for unipolar 
budding during filamentation and is the preferential polar 
landmark over other positional cues in filamentous cells 
(Cullen and Sprague 2002; Harkins et al. 2001). Perspectives 
regarding budding and septin assembly in non-filamentous 
yeast are presented in Kang and Lew (2017). Cell elongation 
during pseudohyphal growth is also achieved through a delay 
in progression through G2/M, extending a period of directed 
apical growth, relative to uniform isotropic growth spread 
around the cell cortex (Kron et al. 1994). Filament forma-
tion requires enhanced adhesion between cells, and Flo11p 
is the principal expressed flocculin, with other FLO gene 
family members located subtelomerically in transcriptionally 

Fig. 1  Morphological changes in S. cerevisiae pseudohyphal growth. 
Images of yeast cells and colonies grown in media with limited 
ammonium sulfate as a nitrogen source (low nitrogen media) or 
in media with normal nutrient availability. Quantification of cell 
elongation is indicated as the percentage of cells exhibiting a cell 

length:width ratio of greater than two. Arrowheads indicate elongated 
cells typical of pseudohyphal growth. Colony images are shown from 
a culture spread on an agar plate after 3 days growth. Scale bar for 
cells, 3 µm; scale bars for colony images are each 2 mm
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repressed chromosomal regions (Guo et al. 2000; Lambre-
chts et al. 1996; Lo and Dranginis 1996). As suggested by 
its complex transcriptional regulation, alterations in Flo11p 
levels significantly impact cell adhesion (Fidalgo et al. 2006; 
Karunanithi et al. 2010). Interestingly, FLO11 expression is 
regulated epigenetically and can be subject to rapid change, 
yielding yeast cell populations with heterogeneous adhesion 
properties (Halme et al. 2004; Verstrepen et al. 2005).

Although much still remains to be understood regarding 
the changes in cellular properties, signaling pathways, and 
proteins underlying the pseudohyphal growth transition, 
even less is known with respect to the changes in metabo-
lites associated with filamentation. Short-chain alcohols, 
such as 1-butanol, can induce pseudohyphal growth, and 
these alcohols are now recognized as part of a quorum-
sensing mechanism in S. cerevisiae (Chen and Fink 2006; 
Lorenz et al. 2000). Yeast cells secrete alcohol, such that 
corresponding alcohol levels roughly gauge cell density and 
population (Chen and Fink 2006). Tetrahydrofolate (vitamin 
B9) also induces pseudohyphal growth through uncharac-
terized mechanisms that impact FLO11 expression levels 
(Guldener et al. 2004). The phytohormone indole-3-acetic 
acid is produced in yeasts and is known to induce pseudo-
hyphal filamentation (Rao et al. 2010); its mechanism of 
action is unclear.

Our studies of pseudohyphal growth signaling pathways 
inadvertently led us to consider the role of another metab-
olite, inositol polyphosphate, in the yeast pseudohyphal 
growth transition. Using quantitative phosphoproteomics to 
profile changes in protein phosphorylation dependent upon 
a set of eight kinases required for wild-type pseudohyphal 
growth (Ste20p, Ste11p, Ste7p, Kss1p, Fus3p, Tpk2p, Snf1p, 
and Elm1p), we observed differences in the phosphorylation 
state of several kinases in the InsP biosynthetic pathway 
(Shively et al. 2015). InsPs are a ubiquitous class of second 
messengers with an increasingly recognized role in a diverse 
array of cellular processes.

Soluble InsPs are derived from membrane-bound phos-
phatidylinositol 4,5-bisphosphate  (PIP2) through the action 

of phospholipase C (Flick and Thorner 1993), which cleaves 
 InsP3 from  PIP2. The inositol polyphosphate  InsP3 is a 6-car-
bon cyclic alcohol with phosphate groups at the carbon-1, 
carbon-4, and carbon-5 positions. A variety of InsP species 
with additional phosphate groups are derived from  InsP3 
through a sequentially acting set of InsP kinases and phos-
phatases [reviewed in Monserrate and York (2010)]. Arg82p, 
the S. cerevisiae ortholog of human IMPK, generates  InsP5 
from  InsP3 through reactions that sequentially add phosphate 
groups to the carbon-6 and then carbon-3 positions of  InsP3 
(Hatch and York 2010; Saiardi et al. 1999). The InsP kinase 
Ipk1p can convert  InsP5 to  InsP6 (York et al. 1999). Both 
 InsP5 and  InsP6 can be pyrophosphorylated, acquiring two 
phosphate groups at a single carbon position. In S. cerevi-
siae, the kinases Kcs1p and Vip1p are capable of pyrophos-
phorylating InsPs (Mulugu et al. 2007). Pyrophosphorylated 
isoforms of  InsP7 and  InsP8, as well as the kinases catalyz-
ing the respective reactions, are summarized in Fig. 2. InsP 
phosphorylation is balanced by dephosphorylation through 
the phosphatases Siw14p, Ddp1p, and Vip1p, with the latter 
exhibiting both kinase and phosphatase activity (Pohlmann 
et al. 2014; Steidle et al. 2016; Wundenberg et al. 2014). 
The actions of these kinases and phosphatases generate 
dynamic changes in the cellular abundance and availability 
of different InsP isoforms, making them strong candidates 
to act as signal transducers in response to environmental 
perturbations.

InsPs have indeed come to be recognized as secondary 
messengers for cellular signal transduction. Perhaps most 
famously,  InsP3 binds to calcium channel receptors, regulat-
ing intracellular calcium release; however, this regulatory 
effect is not observed in S. cerevisiae, being restricted to 
higher eukaryotes (Michell et al. 1981). InsPs and inositol 
pyrophosphates have been shown to regulate a broad range 
of processes, including phosphate sensing, insulin secre-
tion, viral particle release, glycolysis, ribosome synthesis, 
telomere length, cellular energy dynamics, dynein-driven 
transport, prion propagation, and amino acid signaling 
(Azevedo et al. 2009; Chakraborty et al. 2010; Chanduri 

Fig. 2  Diagram of the inositol polyphosphate biosynthetic pathway. 
The boat conformation for  InsP3 is indicated beneath a diagrammatic 
representation of inositol with the 1 and 6 positions indicated. InsP 

kinase and phosphatase activities are shown; respective proteins cata-
lyzing each reaction are boxed
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et al. 2016; Kim et al. 2011; Lee et al. 2007; Saiardi et al. 
2005; Szijgyarto et al. 2011; Thota et al. 2015; Wickner et al. 
2017, 2018; Wild et al. 2016). Although it has been sug-
gested that  InsP3 is the only true second messenger among 
the InsP species (Shears et al. 2012), there is no doubt that 
inositol pyrophosphates are important for cellular signaling, 
particularly since they contain high-energy phosphate bonds 
(Bennett et al. 2006; Chakraborty et al. 2011). Two mecha-
nisms have been proposed for the actions of pyrophosphates 
in cell signaling. First, inositol pyrophosphates may bind to 
proteins allosterically, changing their conformation, locali-
zation, and activity (Wu et al. 2016). Secondly, InsPs may 
regulate signaling through the transfer of a phosphate group 
to previously phosphorylated serine residues, generating 
pyrophosphorylated proteins (Bhandari et al. 2007; Saiardi 
2016). In the pathogenic fungus Cryptococcus neoformans, 
 InsP7 was found to be crucial for metabolic adaptation to 
host environment and virulence (Lev et al. 2015). Asp1p, an 
ortholog of Vip1p in S. pombe, regulates polarized growth 
and the dimorphic switch (Pohlmann and Fleig 2010). 
Hence, like membrane constituent phospholipids (Rao et al. 
2018), soluble InsPs can regulate physiological responses to 
various environmental stimuli in yeast.

Building on our observation that InsP pathway kinases 
are differentially phosphorylated in pseudohyphal growth 
kinase mutants, recent work from our laboratory indicates 
that InsP signaling regulates pseudohyphal growth (Norman 
et al. 2018). Genes encoding kinases and phosphatases in the 
InsP biosynthetic pathway are required for wild-type pseu-
dohyphal growth under conditions of nitrogen limitation. 
Under these conditions, two isoforms of  InsP7, 5PP-InsP5 
and 1PP-InsP5, can be distinguished, and elevated ratios 
of 5PP-InsP5 to 1PP-InsP5 are diagnostic of mutant strains 
exhibiting exaggerated pseudohyphal filamentation. Over-
expression of KCS1, promoting elevated levels of the 5PP-
InsP5 isoform of  InsP7, is sufficient to drive pseudohyphal 
filamentation under otherwise non-inducing conditions.

The studies described above indicate a role for inositol 
polyphosphate signaling in pseudohyphal growth, but the 
findings also raise an open question as to the signaling path-
ways and networks that regulate inositol polyphosphate lev-
els. Currently, relatively little is known regarding the regu-
lation of inositol polyphosphate signaling in yeast or other 
eukaryotes. We find that InsP profiles are perturbed under 
conditions of nitrogen limitation in S. cerevisiae mutants 
of the filamentous Σ1278b background singly deleted of 
the pseudohyphal growth regulatory genes KSS1, FUS3, 
or SNF1 (Norman et al. 2018). While we lack a regulatory 
mechanism by which these encoded kinases may modulate 
InsP kinase phosphorylation, the potential exists for con-
trol of the InsP biosynthetic pathway in yeast by the corre-
sponding Kss1p and Fus3p MAPK cascades, as well as by 
the glucose-responsive AMPK Snf1p pathway. Prior to this 

work, Arg82p, Ksp1p, and Vip1p were independently identi-
fied in proteomic studies as phosphoproteins (Swaney et al. 
2013), and VIP1 may be subject to transcriptional regulation 
under conditions of heat stress by global regulators, such as 
Xbp1p, as assessed through large-scale chromatin immu-
noprecipitation analysis (Venters et al. 2011). It is certainly 
feasible, if not likely, that the InsP pathway is subject to 
significant regulatory control, both at the level of transcrip-
tion and translation.

In sum, InsP signaling continues to emerge as a promi-
nent second messenger system. The broad scope of pro-
cesses impacted by InsP signaling likely reflects the diverse 
set of proteins bound by various InsP and pyrophosphate 
species, with the relative levels of particular species affect-
ing substrate protein activity and cellular processes. Inosi-
tol pyrophosphates, in particular, may fill important regula-
tory roles, as their levels have been observed to increase in 
response to some conditions of stress and nutrient limitation 
(Dubois et al. 2002; Gibney et al. 2013; Worley et al. 2013). 
Additional work will be needed to identify and dissect the 
signaling pathways that act upstream of the InsP biosyn-
thetic pathway. Given the diversity of cell processes affected 
by InsP signaling, it seems most likely that multiple signal-
ing pathways act in parallel or in a convergent pattern to 
precisely modulate the respective activities of kinases and 
phosphatases in the InsP pathway. In that respect, the AMPK 
and MAPK nutrient/stress-responsive pathways may be part 
of a larger network affecting InsP levels in response to given 
cellular states and environmental conditions. On a broader 
level, analyses of InsP signaling highlight the need to con-
sider the functions and changes associated with other cell 
metabolites, as ongoing and future metabolite profiling stud-
ies across single-cell eukaryotic and metazoan systems hold 
tremendous promise for the discovery of new and important 
biology.
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