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Abstract
The objective of this paper is to develop a computational model of the fission yeast (Schizosaccharomyces pombe) cell cycle 
using agent-based modeling (ABM), to study the sequence of states of the proteins and time of the cell cycle phases, under the 
action of proteins that regulate its cell cycle. The model relies only on the conceptual model of the yeast cell cycle regulatory 
network, where each protein has been represented as an agent with a property called activity that represents its biological 
function and a stochastic Brownian movement. The results indicate that the simulated phase time did have similar results 
in comparison with other models using mathematical approaches. Similarly, the correct sequence of states was achieved, 
and the model was run under different initial states to understand its emergent behaviors. The cell reached the G1 stationary 
state 94% of the times when running the model under biological initial conditions and 87% of the times when running the 
model through all the different combinations of initial states. Such results imply that the cell was capable to fix toward the 
biological expected phenomena. These results show that ABM is a suitable technique to study protein–protein interactions 
without using, often unavailable, kinetic parameters, or differential equations. This model sets as a base for further studies 
that involve the cell cycle of the fission yeast, with a special attention to studies and development of drug treatments for 
specific types of cancer.
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Introduction

The cell division cycle is a crucial process that occurs when 
the cell divides and reproduces. The cell cycle is a correct 
sequence of well-defined events. It starts with the duplica-
tion of the cell and its components and is followed by its 
division into two daughters with the same properties and 
capabilities as its mother. To complete the cell cycle, each 
cell has its own elaborate control and mechanisms that guar-
antee that the cell cycle is successful (Novak et al. 1998). 
In this paper, we use a computational approach to study 
the sequence of events and phase time duration of the fis-
sion yeast cell cycle without using kinetic parameters or 

differential equations, to develop a model that can be used 
as a base to further studies of the yeast cell cycle.

The sequence of events in eukaryotes is controlled by 
different proteins, whose interactions, concentrations, and 
molecular properties guide the cell to accomplish a cor-
rect full cell cycle (Csikász-Nagy et al. 2007). This cycle is 
divided into four phases: the Gap 1 (G1) phase, the Synthetic 
(S) phase, the Gap 2 (G2) phase, and the Mitotic (M) phase. 
In the G1 phase, the cell grows until reaching the necessary 
conditions to start the cell cycle, whereas in the S phase, 
deoxyribonucleic acid (DNA) is synthesized and the chro-
mosomes are replicated. Then, in G2, the other components 
necessary to move to the M phase are synthesized. Next, 
in the M phase, the cell enters mitosis and divides itself. 
After the M phase, the cell enters a G1 stationary state, thus 
completing one cycle and waiting to have a division again 
(Davidich and Bornholdt 2008).

One of the most important model organisms for the 
study of eukaryotic cellular processes is the fission yeast 
(i.e., Schizosaccharomyces pombe). It is a relatively simple 
fungus and has a common eukaryotic cell cycle with nuclear 
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mitotic divisions (Egel 2010). The fission yeast has been of 
great interest to scientists due to its cellular biology, sexual 
cycle, and the processes of growth and division that occur in 
its cell cycle (Egel 2010; Fantes and Hoffman 2016).

The study of the genetic control of cell division allowed 
to forge a very relevant fact within the cellular and molec-
ular biology, the conservation of proteins and their func-
tions through evolution. Where the genes that codify for the 
protein kinases, myosin or anthranilate synthases of newer 
organisms, are similar to the genes of those proteins in sim-
pler organisms. Although the molecular conservation of the 
proteins involved in cell cycle mechanisms is not maintained 
between eukaryotes and prokaryotes, among the eukaryotes 
themselves, the similarity is incredibly significant. The main 
organisms studied in relation with the conservation of pro-
teins within the cell cycle are Xenopus, S. pombe, and Sac-
charomyces cerevisiae, which have clear differences, but do 
resemble in that they code for the same dependent protein 
kinase on cyclins, one of the main molecules in the regula-
tion of the cell cycle (Hartwell 2005).

One approach proposed by Hartwell (2005) to identify 
drugs with therapeutic advantage to treat specific types of 
cancer in humans, taking advantage of to the similarity in 
cell cycle process in the fission yeast and humans, is by 
constructing genetically modified yeast cells with mutations 
to match the behavior of the cancer cell. Then, the mutated 
yeast and a normal yeast used as a control are treated with 
different drugs to see which one killed the mutated cell 
faster, thus identifying a treatment that is specific for that 
type of cancer (Hartwell 2005).

The fission yeast cycle is often modeled from differ-
ent perspectives and by considering multiple aspects. For 
instance, in their work, Novak et al. (1998) modeled the fis-
sion yeast cell cycle by considering cycle checkpoints, using 
differential equations, and protein kinetic parameters. Like-
wise, in Sveiczer et al. (2000), the authors developed a math-
ematical model and measured quantized cycle times with 
stochastic kinetic parameters. In addition, in Novak et al. 
(2001), the authors employed 14 differential and algebraic 
equations, whereas (Anbumathi et al. 2011) used differential 
equations to study the role of phosphatases in cell cycle reg-
ulation. Similarly, the budding yeast was modeled using sto-
chastic Petri nets in Mura and Csikász-Nagy (2008), whereas 
researchers in Davidich and Bornholdt (2008) proposed a 
Boolean network model to predict the cell cycle sequence 
of the fission yeast.

Even though mathematical approaches are effective tools 
for studying fission yeast biological processes, computa-
tional biology techniques are becoming increasingly use-
ful in the study and understanding of non-linear molecular 
mechanisms that gather complex protein-to-protein interac-
tion networks (Wang 2016). Agent-based modeling (ABM) 
is the representation of autonomous agents or entities that 

are capable of making their own decisions. The decision-
making process in ABM is defined by a set of rules for each 
agent. These rules are set according to the phenomenon that 
the agents represent. Then, the multiple interactions that 
occur between such agent rules enable to explore emergent 
phenomena and dynamics that cannot be studied using math-
ematical methods (Bonabeau 2002).

Agent-based modeling is a technique for studying bio-
logical systems. It can combine quantitative and qualita-
tive information in the same model. Agent-based models 
are thus more complete, since they combine behavior rules 
(qualitative information) with numerical or mathematical 
data (quantitative information) about the phenomena to be 
explored (Bayrak et al. 2016). As a result, ABM is widely 
employed across disciplines (Bauer et al. 2009; Bayrak et al. 
2016; Khataee et al. 2011; Manzanarez-Ozuna et al. 2015; 
Wang et al. 2015; Zhang et al. 2009). Furthermore, ABM 
assumes that everything can be modeled as long as there are 
agents, an environment, and interactions among agents and 
between agents and the environment (Wilensky and Rand 
2015). Under these premises, ABM is capable of modeling 
cell cycle processes correctly if the appropriate conceptual 
model is employed, and as long as the agents and their inter-
actions are properly defined.

This work develops a cell cycle agent-based model 
(CCABM) of the fission yeast and compares it in two ways. 
First, we compare our time results with those reported by 
Novak et al. (1998), as regards ideal phase times, and those 
reported in Novak et al. (2001) and Anbumathi et al. (2011), 
as regards phase time simulations. Then, the model behav-
iors under various circumstances are compared with the 
Boolean network model proposed in Davidich and Born-
holdt (2008). Similarly, the CCABM was developed using 
neither kinetic parameters nor protein concentrations in the 
cell. This approach reduces the complexity of the conceptual 
model as well as the behavior and interaction rules of the 
proteins. Moreover, we relied on the qualitative representa-
tion of protein interactions (phosphorylation/dephosphoryla-
tion, binding, inactivation, activation, degradation) and ran 
the model under multiple initial states, as in Davidich and 
Bornholdt (2008).

Methodology

The creation process of the CCABM was divided into 
design, build, and analysis, based on Chapter  4 (pages 
157–197) from Wilensky and Rand (2015).

Model design

The conceptual model of the CCABM was designed accord-
ing to the cell cycle regulatory network shown in Fig. 1 and 
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proposed by Davidich and Bornholdt (2008). Davidich and 
Bornholdt’s proposal was constructed gathering informa-
tion from Novak et al. (2001), Sveiczer et al. (2000), and 
Tyson et al. (2002). In that network, the nodes represent the 
regulatory proteins of a Boolean network, where each pro-
tein has two different states—0 (absent) or 1 (present)—that 
represent the capability of each protein to accomplish their 
biological function due to possible biological mechanisms, 
such as gene expression or protein phosphorylation. That 
network is capable to obtain the correct sequence of the cell 
cycle phases, but lacks in trying to measure phase times. To 
allow phases time calculation, the movement of the proteins 
was taken into account, where the proteins move with every 
time step, instead of only changing the states of the proteins 
according to the connection of the protein nodes.

Cdc2/Cdc13 and Cdc2/Cdc13* are two different states 
of a cyclin-dependent protein kinase complex, being Cdc2/
Cdc13 the primary protein involved in the control of the 
cell cycle. The remaining proteins are categorized into two 
groups. The positive regulators that include “Start” that 
works as a cell mass indicator: “Starter Kinases” (SK), 
which include proteins Cdc2/Cig1, Cdc2/Cig2, and Cdc2/
Puc1; and the Cdc25 phosphatases. On the other hand, the 
antagonists of Cdc2/Cdc13 that are Slp1, Rum1, Ste9, a pro-
tein phosphatase (PP), and Wee1 and Mik1. However, Wee1 
and Mik1 are grouped together as Wee1/Mik1, since they 
have the same function (Davidich and Bornholdt 2008). The 
initial states for the proteins were set as biological condi-
tions that are: “Start” (1), SK (0), Cdc2/Cdc13 (0), Ste9 (1), 
Rum (1), Slp1 (0), Cdc2/Cdc13* (0), Wee1/Mik1 (1), Cdc25 

(0), and PP (0). These initial states are the proteins’ states 
in the cell before the cell cycle starts. The cell has thus the 
necessary requirements to start and is waiting for the acti-
vation of SK by “Start”. Each protein or protein complex is 
represented by an agent in the model, where each of them is 
a different breed. Therefore, the model has a total of ten dif-
ferent agents (“Start”, SK, Cdc2/Cdc13, Ste9, Rum1, Slp1, 
Cdc2/Cdc13*, Wee1 Mik1, Cdc25, and PP) that coexist in 
the same environment: the inside of the cell.

Each agent has the property of being active (1) or inac-
tive (0), which implies that it could be available for the 
cell cycle’s biological function that is accomplished when 
the biomolecules are in the same space (Lavalette et al. 
2006), this is represented as Brownian dynamics, where the 
movement of two molecules is simulated as a succession 
of small stochastic displacements (Northrup and Erickson 
1992), reasoning for why the agents have a stochastic type 
of movement in the environment. In turn, this means that 
the proteins’ or agent’s intercellular movement is based on 
a random function that chooses one out of eight possible 
orientations to move forward in every time step of the simu-
lation. Agents can generate activation, inhibition, activation 
and inhibition, or self-degradation processes to other agents. 
An activation process will generate a change from 0 to 1 on 
another protein, whereas an inhibition process will generate 
a change from 1 to 0 on another protein. Finally, a self-
degradation process will generate a change from 1 to 0 on 
the same protein.

The cell cycle regulatory network from Davidich and 
Bornholdt (2008) depicts all the interactions among pro-
teins, molecules, or entities that regulate the cell cycle. In 
Fig. 1, the green arrows represent an activation process, the 
red arrows represent an inhibition process, and the yellow 
arrows represent an auto-inhibition process. In addition, 
notice that the model inputs are the states of each protein 
that is represented in the interface by binary selectors. 
These selectors define the initial inactivity (0) or activity 
(1) value of each protein (agent). As for the output, it will 
be the sequence of the cell cycle phases, the duration of each 
phase, and the final state of each protein.

Model construction

This step involved programming the CCABM according to 
the conceptual model defined in “Model design”. To this 
end, we relied on software NetLogo, version 6.1 (Wilensky 
1999). First, a “setup” environment was created to define 
all the agents with their respective characteristics and prop-
erties. Interactions were programmed in the “go” environ-
ment, where these interactions are activation and inactiva-
tion processes that occur between two connected proteins 
(e.g., SK with Rum1, PP with Ste9). They generate state 
changes when both proteins react in the same physical space. 

Fig. 1  Cell cycle regulatory network of the fission yeast
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To accomplish this, the “let” function was used, creating a 
local variable called “react” that represent the protein that 
is being affected (e.g., Rum1 when SK interacts with it). All 
the codes and NetLogo file of the model were uploaded to 
the CCABM’s GitHub repository https ://githu b.com/bioca 
stro/CCABM  (Castro 2018).

Figure 2 shows the NetLogo interface of the model. The 
selectors for the initial conditions of the proteins are located 
on the top of the world. Left of the world, there is a selector 
to choose if links are visible or not. The setup button is to 
set the model with the initial states selected in the selector 
for initial conditions. The “bio” button is to set the initial 
states the same as the initial biological conditions ignoring 
the values set in the selector for initial states. The “go once” 
button is used to run one-time step and the go button is used 
to run the model entirely until the simulation is finished. At 
the right of the world are three rows of monitors, the first 
row shows the current phase, where the cell cycle is, the 
second row shows the time in ticks for each phase, and the 
third row shows the percentage of duration for each phase 
as well. Under the world are monitors that show the current 
value of activity for each protein. In the figure, the CCABM 
reached the G1 stationary state.

Analyzing the model

Models with stochastic properties should be run multiple 
times, to eliminate the inherent variability, to properly iden-
tify their behavior. If a model is run only once, it will be dif-
ficult to determine whether the results from that run indicate 
normal behavior or an atypical case. Therefore, to check 
phase durations, 100 run simulations were performed with 
the above-mentioned initial states. We measured the time at 

each run and calculated the average for all the runs. Then, we 
calculated the percentage of duration of each phase to com-
pare our results with those reported by Sveiczer et al. (2000) 
and Novak et al. (2001), main references for the creation of 
the cell cycle regulatory network performed by Davidich and 
Bornholdt (2008), and with the findings of Novak and Tyson 
(1995) and Anbumathi et al. (2011).

To understand the behavior of the CCABM, three sets of 
experiments similar to Davidich and Bornholdt (2008) were 
run. The experiments were set and run using the Behavior 
Space tool from NetLogo, which allows a specific experi-
ment to be set by defining input values variation to run the 
model under the same conditions as many times as needed. 
For the first experiment, initial states were set as mentioned 
above. To discard anomalous behavior, 100 runs were per-
formed when checking the states of the proteins during the 
whole cell cycle simulations until reaching the G1 phase. 
In this phase, Ste9, Rum1, and Wee1/Mik1 have an activity 
value of 1, whereas the other proteins have an activity value 
of 0. When reaching the G1 phase, the cell is waiting for 
another cycle to start.

The second experiment was performed by running the 
model from the  210 = 1024 combinations or possible initial 
states of the proteins. The goal was to verify whether the dif-
ferent fixed points were reached (where the model stops) and 
to calculate the percentage of cases, where the G1 stationary 
state was attained. This allowed us to determine whether 
the cell was fixing toward the expected biological outcome. 
Finally, 512 more runs were performed, starting from those 
initial conditions, where “Start” was active again. The pur-
pose was to calculate the percentage of cases, where the 
cycle ended in the G1 stationary state. The goal of this third 
set of experiments was to analyze how the model behaves 

Fig. 2  NetLogo interface of the cell cycle agent-based model

https://github.com/biocastro/CCABM
https://github.com/biocastro/CCABM
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when the conditions are appropriate to start the cycle and the 
proteins are not in the initial expected conditions.

Results

The results of the first 100 runs are reported in Table 1 for 
each phase. The table also includes the results reported 
in the literature to provide a comparison. The runs were 

performed to measure phase time in an average of tick’s 
duration (computational time to finish one code iteration and 
the way NetLogo measures time progression). Minor differ-
ences between models are expected, nevertheless, all of them 
have a specific outcome, the G2 dominance over the other 
three phases, characteristic behavior of the fission yeast cell 
cycle as mentioned in Novak et al. (1998).

To make a direct comparison, we calculated the percent-
age of duration over the total time of the cell cycle for each 
phase. Figure 3 depicts the time duration percentage for the 
five models. When comparing the CCABM with the findings 
reported by Anbumathi et al. (2011), we found no significant 
difference in G1, S, and M phases. Similar to the results 
reported by Sveiczer et al. (2000) having no significant dif-
ference in G1 and G2 phases. Despite not having the exact 
same behavior between all phases, the CCABM showed 
similar behavior to that two models were G2 > G1 > M > S 
according to their prediction of phase time. On the other 
hand, when comparing the CCABM to the models proposed 
by Novak et al. (2001) and Novak and Tyson (1995), the dif-
ference in phase time was bigger, and also having a different 
overall behavior, where G2 > G1 > S > M phase time-related. 
Nevertheless, all models have a good approximation to the 
biological phenomenon of the fission yeast cell cycle.

Table 1  Time duration and percentage of duration of each phase

Model G1 S G2 M

Novak and Tyson 
(1995)

NE NE NE NE
14% 10% 68% 8%

Sveiczer et al. 
(2000)

38 min 17 min 78 min 17 min
25% 11% 52% 11%

Novak et al. (2001) 19 min 12 min 113 min 6 min
13% 8% 75% 4%

Anbumathi et al. 
(2011)

30 min 15 min 85 min 20 min
20% 10% 57% 13%

Castro  (2018) 6264 ticks 1833 ticks 11,239 ticks 4944 ticks
26% 8% 46% 20%

Fig. 3  Phase time duration comparison among fission yeast cell cycle models
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Table 2 reports the main course of events leading to a 
correct and normal cell cycle. As can be observed, the last 
state belongs to the fixed point of the G1 stationary state, 
which is the most important state for the cell to reach. In 
addition, the CCABM reached the G1 stationary state in 
94% of the cases. On the other hand, Table 2 reports the 
sequence of events throughout the four phases, starting in 
the G1 phase and finishing in the M phase, to enter the G1 
stationary state again. Notice that this outcome is based on 
the network’s connection and its conversion to the compu-
tational model, thereby rejecting any type of linearity due 
to model stochasticity.

To understand the different possible results and fixed 
points of the regulatory proteins at the end of the cycle, 
the model was run over 1024 possible initial states. Table 3 
shows all the different states obtained after running the 
above-mentioned experiments and the number of times it 
happened out of the 1024 runs. In this case, the G1 station-
ary state was reached 87% of the times. Similar results are 

reported in Davidich and Bornholdt (2008). Therefore, our 
findings indicate that the cell cycle will often move toward 
the G1 stationary state in the presence of perturbations 
affecting proteins, as it occurs in the biological cell cycle 
of the fission yeast.

Table 3 shows a fixed point, where all the proteins are 
inactive. Overall, it is the same state, where Cdc25 and PP 
are active. As the regulatory networks describe, PP inacti-
vates Cdc25, but it also inactivates itself. Therefore, the two 
proteins move from an active state to an inactive state really 
close in the sequence. This is caused by the stochastic nature 
of the ABM and does not represent a failure in the model. 
Finally, when running the model in the different initial 
states, where “Start” was active, 91% of the times the cycle 
reached the desired G1 stationary phase. This is reliable evi-
dence that the cell cycle will follow the correct sequence 
of events when the cell is ready to start the cycle. The fact 
that the model did not reach the desired state 100% of the 
times implies that the model has stochastic properties, thus 

Table 2  Sequence of states for 
the proteins in the cell cycle

Start SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/
Cdc13*

Wee1 Mik1 Cdc25 PP Phase

1 0 0 1 1 0 0 1 0 0 Start
0 1 0 1 1 0 0 1 0 0 G1
0 0 0 0 0 0 0 1 0 0 S
0 0 1 0 0 0 0 1 0 0 G2
0 0 1 0 0 0 0 0 1 0 G2
0 0 1 0 0 0 1 0 1 0 G2
0 0 1 0 0 1 1 0 1 0 G2
0 0 0 0 0 1 0 0 1 1 M
0 0 0 1 1 0 0 1 0 1 M
0 0 0 1 1 0 0 1 0 0 G1

Table 3  Final states reached in 
the CCABM

Start SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/
Cdc13*

Wee1 Mik1 Cdc25 PP Phase

0 0 0 1 1 0 0 1 0 0 892
0 0 0 0 0 0 0 0 0 0 27
0 0 0 1 0 0 0 0 1 0 22
0 0 0 1 0 0 0 0 0 0 19
0 0 0 1 0 0 0 1 0 0 14
0 0 0 1 1 0 0 0 0 0 13
0 0 0 1 0 0 0 1 1 0 12
0 0 0 1 1 0 0 1 1 0 9
0 0 0 1 1 0 0 0 1 0 9
0 0 0 0 1 0 0 0 0 0 2
0 0 0 0 1 0 0 1 1 0 2
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1
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resulting in a model that works with both network design 
and randomness, and not only through a strict set of rules 
that define the sequence of events.

Discussions

The results of the comparative analysis between the CCABM 
of the fission yeast and other phase time simulation models 
were highly promising. All the models report similar behav-
iors and phase duration period percentages with respect to 
the theoretical characteristic behavior of the fission yeast 
cell cycle. Such findings imply that the CCABM correctly 
simulates the phase times of the biological yeast cell cycle 
without relying on differential equations, kinetic parameters, 
or concentrations from proteins in the regulatory network of 
the cell cycle.

A comparison between two modeling techniques was 
performed to determine the feasibility of ABM in the study 
of the fission yeast’s cell cycle. Our results were similar to 
those reported by Davidich and Bornholdt (2008), whose 
model had a behavior similar to the biological phenomena, 
even when tested under different initial conditions. This 
means that the network interaction and programming are 
correct due to the flow of states reaching the G1 station-
ary state. It is important to notice the main advantage of 
the CCABM against the Boolean network model, where the 
latter lacks the ability to predict the time duration for each 
phase, contrary to the CCABM that can fully reproduce the 
sequence of states during the cell cycle and measure the 
duration of each phase.

As previously mentioned, the CCABM was developed 
without considering kinetic parameters for the molecular 
processes involved in the fission yeast cell cycle. This rep-
resents an advantage of ABM if compared to other math-
ematical models. Kinetic parameters are often not available 
in the literature, and their measurement tends to be time-
consuming and resource consuming. Another advantage 
of the CCABM is its ability to measure both phase times 
and sequence for the cell cycle. Therefore, ABM seems to 
be a viable approach to the study of the fission yeast’s cell 
cycle. Likewise, ABM might be able to model any other 
type of behavior that is represented by a network of mol-
ecules interacting with others within the same network (e.g., 
protein–protein interactions). In addition, both ABM and 
Boolean networks have an advantage over differential equa-
tions, as they focus only on the qualitative interaction of the 
proteins.

This research recommends the use of ABM, since it has 
a wide range of applications across disciplines. Moreover, 
researchers do not need to be software experts, and ABM 
can be easily performed thanks to the Behavior Space tool 
that allows performing a number of experiments to be run in 

different conditions. In addition, the CCABM can effectively 
support the study of the cellular process in the fission yeast, 
which is a useful biological model for cell cycle regulation.

The CCABM aims to be a base to further models that 
involve fission yeast cell cycle studies. One of its possible 
applications is in the development of specific treatments for 
different types of cancer. That can be achieved by changing 
the behavior of the regulatory network to match the behav-
ior of a specific type of tumor, and then adding an agent or 
set of agents that represent the anticancer treatment to see 
if that makes the yeast cell to die, thus, reducing time and 
materials used in the laboratory. The properties of ABM 
and NetLogo give scientist a breach to easily modify the 
CCABM to performed the changes mentioned above, being 
the only impediment the knowledge about the type of cancer 
to be studied and the properties of the drugs to be tested. 
Nevertheless, with the appropriate information of the fis-
sion yeast cell cycle, the behavior of the type of cancer and 
the molecular mechanisms involved in the success of the 
anticancer drug to be applied to the CCABM could create a 
successful model for that case study.

Conclusions

This work proposes an agent-based model for the fission 
yeast cell cycle. As its major contribution, the model is able 
to reproduce the sequence of events in the cell cycle and 
the duration of each cycle phase (i.e., G1, S, G2, and M) 
without taking into account differential equations or kinetic 
parameters. Therefore, the model paves the way for new 
resource-saving and time-saving approaches to the study of 
the cell cycle. Similarly, this research demonstrates that sys-
tems biology is an effective approach to analyze biological 
phenomena that are difficult or impossible to study in labo-
ratories. Hence, in the context of cellular and biochemical 
problems, systems biology, alongside ABM, is a promising 
field, not to replace in vivo experimentation but to enhance 
it and improve it with the help of in silico experiments.

The success of this model gives scientists a tool to 
develop other models to help in research involving fission 
yeast cell cycle studies.
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