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Abstract
DNA replication is essential to cellular proliferation. The cellular-scale organization of the replication machinery (replisome) 
and the replicating chromosome has remained controversial. Two competing models describe the replication process: In the 
track model, the replisomes translocate along the DNA like a train on a track. Alternately, in the factory model, the replisomes 
form a stationary complex through which the DNA is pulled. We summarize the evidence for each model and discuss a num-
ber of confounding aspects that complicate interpretation of the observations. We advocate a factory-like model for bacterial 
replication where the replisomes form a relatively stationary and weakly associated complex that can transiently separate.
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Introduction

The essential process of DNA replication underlies cellu-
lar proliferation. In all organisms, multi-protein replication 
complexes assemble at specific DNA sequences (origins) 
and proceed to replicate the genome by a semi-conservative 
process (Meselson and Stahl 1958). Although functional 
replication complexes have been reconstituted in vitro from 
purified bacterial proteins (Zechner et al. 1992; Sanders 

et al. 2010), many interesting questions remain about the 
replication process and its regulation in the context of the 
cell (Mangiameli et al. 2017; Frimodt-Møller et al. 2017). 
In particular, the in vivo cellular-scale organization of the 
replication machinery (replisome) and the replicating chro-
mosome has remained controversial in bacteria. Do repli-
somes translocate along the DNA molecule, or is the DNA 
molecule pulled through the replisomes? We refer to the first 
model as a track model and the latter as a factory model. 
Cell-biology experiments have provided evidence for both 
models in the bacterial cell.

The factory model was first established in eukaryotic 
cells (Dingman 1974), where DNA synthesis is localized to 
a number of puncta, called replication factories, distributed 
throughout the nucleus (Newport and Yan 1996; Frouin et al. 
2003). The number of puncta is much smaller than the num-
ber of origins, implying that many replisomes co-localize 
to each factory. Each replication factory consists of roughly 
five clustered and synchronously activated origins (Ma et al. 
1998; Jackson and Pombo 1998). Early evidence for repli-
cation factories included the visualization of punctate foci 
formed by the co-localization of newly synthesized DNA 
with replication proteins by immunofluorescence (P. Hozák 
et al. 1993). More recent imaging studies have demonstrated 
the spatiotemporal stability of replication factories in living 
cells based on the sub-nuclear positioning of a fluorescent 
fusion of the processivity clamp (PCNA), and have hypoth-
esized the existence of a physical linker anchoring the fac-
tory in the nucleus (Leonhardt et al. 2000). However, the 
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analysis of replication in eukaryotic cells is confounded by 
the large number of replication origins distributed through-
out the genome, making it difficult to study the dynamics of 
individual replisomes (Fig. 1).

Bacterial DNA replication is comparatively simple: Most 
bacteria possess only a single circular chromosome that is 
replicated bi-directionally from a single origin of replication. 
Two replisomes initiate at the origin and process DNA in 
opposite directions, each replicating one arm of the chro-
mosome before meeting in the terminus region. Because 
replication proteins are highly conserved across all organ-
isms (Baker and Bell 1998), sequence conservation might be 
expected to result in a common organization of the replica-
tion process between bacteria and eukaryotes. However, it 
has remained unclear whether factory-like organization is 
conserved in bacteria.

Although published evidence generally supports the fac-
tory model in the model organisms Caulobacter crescentus 
(Jensen et al. 2001) and Bacillus subtilis (Lemon and Gross-
man 1998, 2000; Berkmen and Grossman 2006; Mangiameli 
et al. 2017), a number of recent reports suggest prolonged 
separation of replication fork pairs Escherichia coli (Bates 
and Kleckner 2005; Reyes-Lamothe et al. 2008; Hiraga et al. 
2000; Kongsuwan et al. 2002). We have recently published a 
comparative study of the organization of replication process 
in E. coli and B. subtilis (Mangiameli et al. 2017) where we 
observed unexpected similarities between the organization in 
these two highly divergent species (Mangiameli et al. 2017). 
The study, which used fluorescence microscopy to track 
replisome components over complete cell cycles, provided 
a natural explanation for the contradictory reports: There 
are two different scenarios that can result in two optically 
resolvable replication foci: (1) track-like organization con-
sisting of individually resolvable replisomes acting on a sin-
gle chromosome and (2) factory-like organization consisting 
unresolved replisome pairs at the quarter-cell positions after 

replication re-initiation (i.e., re-initiation at the origins of 
two separate chromosomes). As a result, analysis dependent 
on counting the number of observed replication foci using 
single images cannot distinguish between these two popula-
tions and, therefore, is not a reliable method for determining 
replisome organization (Mangiameli et al. 2017).

Models for the organization of replication

To discuss the evidence for the competing models, it is 
necessary to describe these models precisely. In all mod-
els, replisome pairs are coincident during and shortly after 
initiation. Subsequently, in the track model, the replisomes 
translocate in opposite directions along a (relatively) station-
ary DNA track, leading to sustained separation of replisome 
pairs as they follow chromosomal structure (Fig. 2). Since 
the replisomes translocate along the chromosome, the spe-
cific replisome localization predicted by the track model is 
dependent on nucleoid structure. For example, in C. cres-
centus, the chromosome is organized, such that oriC and ter 
are positioned at opposite cell poles (Jensen et al. 2001) (see 
Fig. 2b); therefore, the track model would predict end-to-end 
displacement of the replisomes along the DNA molecule. 
Due to the circular topology of the chromosome, replisome 
pairs may co-localize again at the terminus, but this is not 
necessary. If one member of a replisome pair arrives in the 
terminus region earlier, it may release the template DNA 
before the other arrives.

In the factory model, DNA is pulled or spooled through 
the replication complex. From a mechanistic perspective, 
this model may include a factor that anchors the replisomes 
to the cell, or to one another, but it may not. Generically 
speaking, the sub-cellular localization of the replisomes may 
change, as long as the movement is driven by chromosomal 

Fig. 1  Eukaryotic and bacte-
rial replication factories. a A 
eukaryotic replication factory 
(gray) resulting from simulta-
neous activation of five origin 
sequences (black dots). Replica-
tion complexes (blue) duplicate 
the DNA bi-directionally from 
the origins. Red arrows indicate 
that the direction DNA is pulled 
into the complex. Adapted 
from Frouin et al. (2003). b 
A bacterial replication fac-
tory would involve only two 
replication complexes working 
bi-directionally from a single 
origin. Red arrows indicate the 
direction DNA is pulled into the 
complex
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re-arrangements rather than motion of the replisomes along 
the DNA.

The visualization of replisome dynamics

The most direct approach to characterizing the cellular 
organization of the replication process is by time-lapse imag-
ing throughout the cell cycle. We have characterized the full-
cell-cycle dynamics of the replisome in both B. subtilis and 
E. coli cells (Mangiameli et al. 2017). The first challenge in 
these experiments is finding a replisome-associated protein 
with sufficiently high stoichiometry to observe throughout 
the cell cycle. In both organisms, we imaged a fluorescent 
fusion to the processivity clamp (DnaN), expressed from the 
endogenous locus, as a proxy for the replisome localization. 
These fusions do not lead to a detectable defect in replica-
tion or growth. Furthermore, cells were propagated using a 
slow growth rate to avoid the complications of multi-fork 
replication.

Contrary to the previous reports, E. coli and B. subtilis 
showed virtually indistinguishable replisome dynamics, 
summarized as follows: (1) A single midcell focus appears 
shortly before or after the beginning of the cell cycle. Cells 
born with a focus initiated replication before the beginning 
of the cell cycle. We infer that this single focus represents a 
pair of replisomes that cannot be optically resolved. (2) The 

midcell focus subsequently exhibits confined random motion 
(as observed previously Migocki et al. 2004), and is occa-
sionally observed to reversibly separate, such that individual 
replisomes are optically resolvable (>250 nm separation). 
Importantly, the focus separation is both small (a fifth of a 
cell length on average) and transient. (3) The midcell focus 
disappears before the end of the cell cycle. We infer that 
this replisome disassembly corresponds to the termination 
of replication. (4) In roughly 45% of cells, foci re-appear at 
the quarter-cell positions. We infer that these quarter-cell 
foci result from re-initiation of replication prior to cell divi-
sion as they persist through cell division and are unable to 
form in an initiation-deficient conditional mutant. Therefore, 
these observed quarter-cell loci represent replisome pairs. In 
agreement with one of the oldest studies of replisome locali-
zation in B. subtilis (Lemon and Grossman 1998), we find 
that replisome pair separation is diffraction-limited roughly 
80% of the time (Mangiameli et al. 2017) (see Fig. 3).

Throughout the majority of the replication cycle, a fac-
tory-like organization is observed in both B. subtilis and 
E. coli. Consistent with the factory model, replisome pairs 
operate in close proximity for the majority ( ≈ 80% ) of the 
replication cycle. Although the two replisomes are usually 

Fig. 2  Comparison of chromosome structure in model organisms. 
a Schematic diagrams for the factory and track models. Most bac-
teria have a single circular chromosome (left), with a single origin 
(red dot), positioned roughly opposite the terminus (green dot). The 
left and right arms of the chromosome are colored pink and green, 
respectively. In the factory model (center), DNA is pulled through the 
replisomes (black dots) in the direction indicated by the red arrows. 
In the track model (right), replisomes translocate along the template 
DNA. Red arrows indicate the direction of replisome motion. b Fac-
tory model is shown for the chromosomal organizations of three 
model organisms. Decondensed DNA is represented by lines. Note 
that the E.  coli chromosomal structure reflects the experimental 
observations in Cass et al. (2016)

Fig. 3  Replisome dynamics in B. subtilis and E. coli based on time-
lapse imaging. Schematic diagram showing full replication cycles in 
two individual example cells. Green spots represent diffraction-lim-
ited replisome foci, while black dots indicate the inferred number of 
constituent replisomes. Gray vertical lines indicate mid- and quarter-
cell positions
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not optically resolvable, they do not appear to be strongly 
associated since transient separation events do occur. 
Although these transient separation events could be con-
sistent with the track model, this is unlikely the case. The 
previous reports have also noted this dynamic (Migocki et al. 
2004; Berkmen and Grossman 2006), and demonstrated that 
these splitting and merging events continue even when the 
replisomes are chemically stalled (and are, therefore, not a 
consequence of replisome movement along the DNA) (Berk-
men and Grossman 2006).

Even the time-lapse approach to studying replisome 
organization suffers from a number of potential shortcom-
ings: time-lapse imaging is especially challenging in the cur-
rent context due to the low stoichiometry of many replisome 
components (Reyes-Lamothe et al. 2010), which severely 
limits the number of images that can be captured before pro-
tein bleaching. We have, therefore, focused on characterizing 
DnaN as a proxy for the replisome, rather than character-
izing each replisome protein in time-lapse image analysis. 
Snap-shot images of other components are consistent with 
our model, but the replisome has only been extensively visu-
alized one component at a time. Studies generally find self-
consistency when using different markers for the replisome; 
however, from the existing data, it is hard to exclude the 
possibility that replisome components may not be co-local-
ized throughout the replication process. Finally, fluorescent 
proteins are known to form aggregates which could lead to 
anomalous protein localization (Swulius and Jensen 2012; 
Landgraf et al. 2012).

The interpretation of snap‑shot images

Although the time-lapse data from DnaN seem to strongly 
support a stationary factory model, there are reports sup-
porting both the factory and track models in E. coli (Koppes 
et al. 1999; Molina and Skarstad 2004; Hiraga et al. 2000; 
Kongsuwan et al. 2002; Adachi et al. 2005; Bates and Kleck-
ner 2005; Den Blaauwen et al. 2006; Reyes-Lamothe et al. 
2008; Mangiameli et al. 2017). Many of these investigations 
have analyzed the organization of the replisome or the newly 
replicated DNA (by fluorescence microscopy) using snap-
shot imaging (i.e., single images). To reconstruct replisome 
dynamics from the snap-shot data, asynchronous popula-
tions of cells are analyzed by length, a proxy for cell age. 
Alternatively, a sub-culture of a synchronous population can 
be fixed and visualized at many time points throughout the 
cell cycle (Bates and Kleckner 2005). Changes in the sub-
cellular focus localization organization are analyzed relative 
to cell length.

In sufficiently slow growth conditions, such that only a 
single ongoing round of replication is expected, younger 
cells have a single focus, while older cells often have pairs 

of foci localized to the quarter-cell positions. Two narrowly 
separated foci are also reported to occur in intermediate aged 
cells. In retrospect, it is clear that these data are consistent 
with both the factory and track model, since this approach 
cannot differentiate replisome splitting from re-initiation, as 
observed in the time-lapse data. We note that, in some cases, 
flow cytometry has been used as an elegant method to infer 
the presence of overlapping replication cycles (e.g. Molina 
and Skarstad 2004). This has particular importance in fast 
growth conditions where multiple ongoing replication cycles 
further complicate the interpretation of replication foci.

A shortcoming of snap-shot imaging is that populations 
of genetically identical cells have a wide distribution of 
cell cycle lengths, even under the same growth conditions 
(Wallden et al. 2016). Furthermore, there is a significant 
variation in cell length at birth and division. As a result, it is 
impossible to use the cell length as a precise measure of cell 
age (Cass et al. 2017), further complicating the snap-shot 
analysis. Although it is more challenging to interpret, we 
have demonstrated that the factory-like localization pattern 
can be inferred directly from snap-shot data (Mangiameli 
et al. 2017), providing an additional support to the factory 
model from protein foci that are too dim to track throughout 
the cell cycle. In addition to inherent cell-to-cell variation, 
the studies conducted to date have used a variety of growth 
conditions and background strains, making it difficult to 
make any direct comparisons across studies.

A translocating factory model

A number of more complicated models have been proposed 
for replisome localization. For instance, in the translocat-
ing factory model, replisome pairs are localized to midcell 
for roughly half the replication cycle, before abruptly tran-
sitioning to the quarter-cell positions where they remain 
for the rest of the cell cycle (Hiraga et al. 2000; Yamazoe 
et al. 2004; Onogi et al. 2002; Sunako et al. 2002). We note 
that studies citing results consistent with the translocating 
factory model argue that quarter-cell foci represent single 
replication forks; however, our time-lapse imaging and 
experiments strongly argue that these foci correspond to 
re-initiated pairs of replisomes (Mangiameli et al. 2017). 
Specifically, when replication initiation is blocked using a 
temperature-sensitive version of the helicase-loader protein 
(dnaC2 allele), quarter-cell foci do not appear.

Coupling or anchoring of the replisomes?

The observed transient separation of replisome pairs sug-
gests that the forks are only weakly associated. If a direct 
link between replication fork pairs existed, it would need to 
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frequently disassemble, or be of sufficient length to accom-
modate significant separations. Although it has not been 
excluded that the replisomes are directly linked (to each 
other or the cell), emerging evidence suggests that no func-
tional dependence between the replisomes exists (Breier 
et al. 2005; Reyes-Lamothe et al. 2008).

One attractive feature of an anchoring mechanism is that 
it would immobilize the replisome, preventing it from spiral-
ing along the DNA helix and intertwining the newly repli-
cated DNA strands (precatenane formation). Furthermore, 
extrusion of the newly replicated DNA towards opposite 
poles of the cell could prevent mixing, further facilitating 
segregation (Lemon and Grossman 2001; Sawitzke and Aus-
tin 2001). However, examination of replication intermedi-
ates by two-dimensional gel electrophoresis suggests that 
precatenane formation does occur (J. Cebrián et al. 2015). 
This intermixing of the newly replicated DNA strands is 
consistent with the many reports citing a cohesion period 
before the segregation of chromosomal loci (e.g., Bates and 
Kleckner 2005; Bermejo et al. 2008; Joshi et al. 2013; Lest-
erlin et al. 2012; Wang et al. 2008). Taken together, these 
studies argue against an anchoring mechanism that would 
prevent rotation of the replisome, and imply that segregation 
occurs separately from replication, following demixing of 
the sister DNA strands by the action of TopoIV.

Mechanisms of indirect coupling

The weak association between replisome pairs is, perhaps, 
best explained by an indirect mechanism. One possibility 
is that protein complexes bridge the nascent DNA strands 
behind replication fork pairs, causing the replisomes to 
appear loosely tethered. For example, in E. coli, SeqA forms 
large complexes hundreds of nanometers behind the repli-
some that function to organize sister DNA strands (Fossum-
Raunehaug et al. 2014; Helgesen et al. 2015). Fluorescence 
microscopy indicates that SeqA complexes trailing behind 
opposing replication forks generally co-localize to a sin-
gle complex (Molina and Skarstad 2004). This interaction 
between SeqA complexes could, in-turn, influence the locali-
zation of the replisome. It has also been suggested CrfC, a 
dynamin homolog in E. coli, helps to maintain the proximity 
of the replisomes through its interaction with the processiv-
ity clamp (Ozaki et al. 2013).

Recent work on the mechanism of chromosome structure 
and segregation in B. subtilis is also difficult to reconcile 
with the track model. It has been proposed that ring-shaped 
assemblies of SMC are loaded at the origin and slide down 
the left and right arms of the chromosome to ter, drawing 
the arms together (Wang et al. 2017). After replication initia-
tion, this model would act to pull the replisomes together as 
a consequence of the close proximity between chromosome 

arms. Since this mechanism of colocalizing the replisome is 
indirect, it could give rise to the weak association observed 
in experiments visualizing the replisome.

More generally, the proteins and processes that dynami-
cally remodel the chromosome during replication and segre-
gation could play a central role in replisome positioning. For 
example, nucleoid-associated proteins serve to structure and 
organize the chromosome. E. coli cells lacking the structural 
protein H-NS show anomalous replisome localization, indi-
cating that replisome positioning is affected by changes in 
chromosome architecture (Helgesen et al. 2016). In addition 
to nucleoid-associated proteins, topoisomerases also play a 
central role in chromosome compaction and structure (Wang 
et al. 2013) and likely also affect replisome positioning.

Chromosome dynamics and the factory 
model

Recent studies of chromosome structure and dynamics also 
have important implications for the organization of the 
replication process. We recently analyzed the cell cycle of 
dynamics of loci from different regions of the E. coli chro-
mosome (Cass et al. 2016). The factory model makes two 
closely related predictions about the locus dynamics: (1) loci 
should move towards midcell (replisome location) before 
replication and (2) loci should begin segregation from mid-
cell. In the track model, loci are stationary and then segre-
gate from their pre-replication positions. Both factory model 
predictions (1) and (2) are strongly supported by a statistical 
analysis of locus trajectories from hundreds of cells. On the 
other hand, the predicted locus translocation is not obvious 
from the inspection of a single cell due to fluctuations in the 
nucleoid structure (Cass et al. 2016). Under rapid growth 
conditions, the structure of the newly replicated nucleoids 
also is consistent with a centrally located factory complex 
(Youngren et al. 2014).

Although C. crescentus replication is also factory-like, 
the replisome dynamics are altered due to differences in 
nucleoid structure. Particularly, the origin of replication 
is proximal to the pole, rather than midcell, at the start of 
replication (Jensen et al. 2001). The replication factory is 
displaced towards midcell during replication, consistent with 
the motion being driven by the buildup of newly replicated 
DNA at the origin-proximal pole.

Concluding remarks

Although analysis of the replisome dynamics is compli-
cated by differences in the chromosome structure between 
organisms, almost all observations appear to be consist-
ent with DNA loci moving to, and splitting from, a pair 
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of co-localized replisomes, as described by the replication 
factory model. Although replisome pairs are typically co-
localized to the diffraction limit, they appear to be weakly 
associated, since they can transiently separate. These tran-
sient separation events are inconsistent with the most rigor-
ous interpretation of the factory model which requires that 
the replisomes remain strictly immobile. Furthermore, we 
note that the resolution limit of fluorescence microscopy 
(roughly 250 nm) is large in comparison to the size scale 
of individual proteins or nucleotides. Although the existing 
evidence cannot exclude the possibility that the replisomes 
(at least in part) translocate along the DNA, we conclude 
that the replisomes are confined within a small volume in 
comparison to the size of the nucleoid, consistent with a 
factory-like model.

We propose that the conflicting reports on replication 
organization are the result of the misinterpretation of pairs 
of replisomes that re-initiate at the quarter-cell position. 
The inconsistencies between reports speak to the generic 
importance of both performing time-lapse imaging and the 
analysis of a large number of cells over complete cell cycles.

Although much has been learned about in vivo replisome 
structure, many important questions remain. For instance, 
it is unclear whether there is any direct interaction between 
replisomes when they appear co-localized to the diffraction 
limit. Super-resolution imaging could provide interesting 
insights into this question. Furthermore, although it has long 
been assumed that core replisome components remain stably 
bound and co-localized throughout the replication process, 
this model is being challenged experimentally. Recent work 
indicates that many replisome components turnover on the 
time scale of seconds (Liao et al. 2016; Beattie et al. 2017; 
Lewis et al. 2017), and that replisome disassembly and 
restart occurs multiple times per cell cycle due to encounters 
with the transcription machinery (Mangiameli et al. 2017). 
There is great potential for future work to offer new and 
fundamental insights into replication and related process 
(Redder 2016) in the bacterial cell.
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