
Vol.:(0123456789)1 3

Current Genetics (2018) 64:901–905 
https://doi.org/10.1007/s00294-018-0808-x

ORIGINAL ARTICLE

STEEx, a boundary between the world of quiescence 
and the vegetative cycle

Laetitia Maestroni1 · Vincent Géli1 · Stéphane Coulon1 

Received: 22 January 2018 / Revised: 24 January 2018 / Accepted: 27 January 2018 / Published online: 1 February 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Telomere maintenance mechanism is poorly studied in quiescence, a reversible non-proliferative state. We previously 
described in fission yeast a new mode of repair of telomeres named STEEx, that specifically operates in post-mitotic cells 
harboring eroded telomeres. This mechanism, promoted by transcription-induced telomeric recombination, prevents cells 
to exit properly from quiescence, suggesting that STEEx act as an anti-proliferative barrier. Here, we further showed that 
STEEx are genetically controlled by the  Tel1ATM- and  Rad3ATR - dependent DDR pathways. We discussed the possibility 
that STEEx represent a boundary between quiescence and vegetative cycle.
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Introduction

Telomeres consist of tandem repeats of short DNA sequence 
(TTA GGG ) ended by a 3′ single-stranded overhang that is 
bound by a telomere associated complex, called Shelterin 
(Xin et  al. 2008). The Shelterin protects chromosomes 
ends from degradation and end-fusion, and prevents the 
DNA damage response (DDR) to be activated if telomeres 
are deprotected (de Lange 2005). Telomeres progressively 
shorten at each replication because of the end replication 
problem and the 5′-end resection, required to generate the 
3′-overhang (Lingner et al. 1995; Gilson and Géli 2007). The 
Shelterin counteracts telomere erosion by recruiting a spe-
cialized reverse transcriptase, called telomerase, that uses its 
associated RNA to template the addition of telomeric repeats 
at the 3′ end of chromosomes (Blackburn 2000). In addi-
tion, the action of telomerase is thought to limit replication 

stress induced damaged that occurs at telomeres, known as 
difficult regions to replicate (Simon et al. 2016; Maestroni 
et al. 2017b).

Telomere attrition leads to telomere deprotection and 
activation of the ataxia telangiectasia mutated (ATM) kinase 
pathway (Arnoult and Karlseder 2015). Tumor suppressor 
p53 activation by ATM induces a G1 cell cycle arrest via the 
cyclin-dependent kinase inhibitor p21, leading to replicative 
senescence (Roake and Artandi 2017). Cellular senescence 
is defined as a state of irreversible cell cycle arrest despite 
supply of growth factors, nutrients and oxygen (Campisi 
and d’Adda di Fagagna 2007). Induction of senescence by 
telomeres erosion participates to cellular aging by limit-
ing the proliferative capacity of most cells in an organism 
(van Deursen 2014). When p53 and retinoblastoma protein 
(Rb) are mutated, cells bypass replicative senescence and 
continue to grow. Then, fully uncapped telomeres undergo 
fusions with other telomeric or non-telomeric loci. This 
stage, named crisis, is characterized by an extreme genome 
instability and an extensive death of cells among a popula-
tion (Hayashi et al. 2015).

In contrast to senescence, cellular quiescence is a revers-
ible growth arrest state. Under defined extracellular signals, 
quiescent adult stem cells are able of restarting proliferation 
for tissue homeostasis. Indeed, the ability of stem cells to 
enter and exit quiescence is required to respond to tissue 
damage resulting from life-threatening challenges (Coller 
2011). Contrary to embryonic stem cells, most of adult stem 
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cells exhibit no or low telomerase activity (Hiyama and Hiy-
ama 2007). Thus, in adult stem cells, telomere shortening 
also occurs during aging, likely at a slower rate than that in 
normal somatic cells (Saeed and Iqtedar 2013). The conse-
quences of telomeres shortening in adult stem cells may alter 
their function (Ye et al. 2014).

Eroded telomeres are rearranged 
in quiescent fission yeast cells

While the mechanisms of telomere maintenance have been 
investigated in dividing cells, little is known about the sta-
bility of telomeres in quiescent cells and how dysfunctional 
telomeres are processed in non-proliferating cells. We have 
recently examined the stability of telomeres in quiescent 
cells using fission yeast as a model (Maestroni et al. 2017a). 
Schizosaccharomyces pombe is a key model organism since 
it has a high level of conservation of telomeric proteins with 
mammalian cells (Miyoshi et al. 2008). Moreover, cells can 
be easily maintained in quiescence state by nitrogen star-
vation (Yanagida 2009). As in mammals, telomeres from 
dividing yeast cells without telomerase activity progres-
sively shorten with each cell division. At late time-point of 
senescence, most of the cells die or remain arrested.

While we observed that wild-type telomeres are stable in 
quiescence, we discovered that eroded telomeres were highly 
rearranged during quiescence in the absence of telomerase 
(Maestroni et al. 2017a). These rearrangements correspond 
to the duplication of a subtelomeric region adjacent to telom-
eric repeats, named STEEx for STE1-Expansion. These telo-
meric rearrangements depend on homologous recombination 
(HR), which is initiated at homologous repeated sequence 
(HRS) within subtelomeres. Furthermore, we established 
that telomeric transcription, including TERRA, increases 
in post-mitotic cells with short telomeres and correlates with 
telomere rearrangements. Importantly, we observed that the 
HRS contains TERRA transcription start site. Thus, in the 
absence of DNA replication, we hypothesized that transcrip-
tion could promote telomeric recombination in quiescence. 
We demonstrated that, in the absence of Rnase H enzymes 
that favor the accumulation of RNA-DNA hybrids, STEEx 
formation was promoted in quiescence, thereby support-
ing our assumption that telomeric transcription initiates 
subtelomeric rearrangements. Our results highlighted how 
non-dividing cells that harbor eroded and unprotected tel-
omeres may circumvent the lack of telomerase. In parallel, 
we established that rearranged telomeres prevent cells to 
exit properly from quiescence. Indeed, cells with STEEx 
either died, failed to re-enter the cell cycle (enlarged cells) or 
became arrested after they re-entered the cell cycle (micro-
colonies). We thus uncovered, in fission yeast, a new mode 
of telomere repair mechanism, different from previously 

described (Lue and Yu 2017), specific to post-mitotic cells 
that is likely promoted by transcription.

In the same way as the Styx forms a boundary between 
Earth and the Underworld in the Greek mythology, this new 
“STEEx river” may represent a barrier between quiescence 
and vegetative cycle when telomeres are critically short. 
Indeed, subtelomeric rearrangements at eroded telomere 
may limit the capacity of post-mitotic cells to proliferate, 
although environmental conditions allow it. Thus, a parallel 
can be drawn between STEEx in quiescence and replicative 
senescence. In both cases, the eroded telomeres appear as an 
anti-proliferative barrier (Fig. 1). As senescence and crisis, 
we may then consider the STEEx as a structural barrier that 
prevents cell division. Because stem cells alternate phase of 
proliferation and quiescence, if a similar mechanism exists 
in multicellular cells organism, the telomeric rearrangements 
may restrain the capacity of stem cells to exit quiescence. 
Consequently, they may participate to organismal aging by 
limiting the proper tissue renewal and regeneration.

Subtelomeric duplication in quiescence may 
be controlled by checkpoint response

Because the senescence is a biological process that is trig-
gered by DDR, we wondered whether subtelomeric dupli-
cations in quiescence are also controlled by checkpoint 
response.  Tel1ATM and  Rad3ATR  were previously reported 
to induce an apoptotic-like response in fission yeast qui-
escent cells. Caffeine treatment, a known inhibitor of the 
phosphoinositide 3-kinase-like kinases abrogates this phe-
nomenon (Ben Hassine and Arcangioli 2009; Arcangioli 
and Ben Hassine 2009). Based on these results, we treated 
telomerase minus cells (deleted for the telomerase RNA, 
TER1) with 2 mM caffeine in quiescence and monitored 
STEEx formation. The Fig. 2a shows an uncropped ver-
sion of a southern blot presented in Fig. 1d of our main 
manuscript (Maestroni et al. 2017a), including an addi-
tional caffeine treatment in quiescence (after 5 and 7 days 
of senescence). Comparison of STEEx signals, with or 
without caffeine, at a same day of senescence, showed that 
caffeine treatment decreases the accumulation of STEEx 
in quiescence. This observation was further confirmed by 
dotblot quantification (Fig. 2b). We thus concluded that 
STEEx formation in quiescence is likely controlled, either 
by  Tel1ATM or  Rad3ATR  (or both) checkpoint dependent 
pathways. Next, we monitored the capacity of quiescent 
cells, either treated with caffeine or untreated, to exit qui-
escence by micromanipulating these cells on rich medium 
agar plates. We observed that in presence or absence of 
caffeine, the percentage of telomerase-minus cells that 
were not able to form a colony, after 1, 4 or 8 days in 
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quiescence, was similar (Fig. 2C). Among cells that were 
unable to form a colony, we distinguished cells that tried 
to exit from quiescence (enlarged cells or micro-colonies) 
from those that were blocked in quiescence (round cells). 
We observed that after 8 days of quiescence, the num-
ber of round cells was lower in caffeine treated cells than 
untreated cells. Accordingly, the number of cells that 
exit quiescence as enlarged cells and micro-colonies was 
increased. Overall, our observations suggest that in the 
absence of telomerase, the DDR pathway promotes STEEx 
formation and prevents cells to exit from quiescence.

Conclusions

We previously showed that subtelomeric rearrangements 
occurred at eroded telomeres in post-mitotic fission yeast 
cells and limited the capacity of cells to exit properly from 
quiescence. Here, we further show that these telomeric 
recombination events are likely controlled by the  Tel1ATM- 
and  Rad3ATR - dependent DDR pathways. Collectively, 
our results suggest that STEEx formation and DDR acti-
vation cascade are correlated and both contribute to the 
fate of a quiescent cell. In a same way as short telomeres 
trigger senescence in dividing cells, STEEx may define a 
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Fig. 1  Telomeric rearrangements are an anti-proliferative boundary in 
quiescence. Fission yeast can be maintained in quiescence by nitro-
gen starvation, a reversible non-proliferative state. When a source of 
nitrogen is provided, cells resume division. In the absence of telom-
erase, successive cell divisions lead to a progressive telomeres attri-
tion (replicative senescence), until telomeres become critically short 
(red arrow), triggering replicative senescence which is an irreversible 
non-proliferative state. In contrast, quiescence is a reversible growth 

arrest state. Post-mitotic fission yeast cells with eroded telomeres (red 
arrow) undergo telomeric rearrangements in quiescence (Maestroni 
et al. 2017a). These recombination events, named STEEx, correspond 
to the duplications of subtelomeric regions that are promoted by telo-
meric transcription. Rearranged telomeres prevent cells to exit prop-
erly from quiescence suggesting that STEEx may represent an anti-
proliferative barrier in quiescence that limit cell capacity to divide 
when telomere are too short
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non-proliferative mark of post-mitotic cells. Whether short-
ening of telomeres occur during quiescence is under investi-
gation. Attrition of telomeres has been observed in brain or 
skeletal muscle cells regardless of their replicative activity 
(Daniali et al. 2013; Mamdani et al. 2016) suggesting that 
other factors than replication, such as oxidative stress, may 

provoke telomere attrition. Indeed, accumulation of oxida-
tive damage over time may alter the binding of telomeric 
proteins, trigger DNA repair and cause telomere shortening 
(Kosmadaki and Gilchrest 2004; Fouquerel et al. 2016; Aeby 
et al. 2016) representing an active area of research for the 
next years.
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