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of transacting factor genes in response to actual ribosome 
assembly performance. Regulation of ribosome biogenesis 
manages situations of imbalanced ribosome production or 
misassembled ribosomal precursors and subunits, which 
have been closely linked to distinct human diseases.

Keywords Ribosome biogenesis · Ribosome assembly · 
Feedback regulation · Transcription elongation · 
Saccharomyces cerevisiae

Regulation of ribosome biogenesis

Ribosomes are highly complex ubiquitous ribonucleoprotein 
particles that, in eukaryotes, are composed of four ribosomal 
RNAs (rRNAs) and 79–80 ribosomal proteins (r-proteins). 
Production of ribosomes is a fundamental multi-step pro-
cess and an extraordinarily complicated cellular challenge. 
This process has been extensively studied in the yeast Sac-
charomyces cerevisiae in which, in addition to rRNAs and 
r-proteins, more than 300 non-ribosomal trans-acting pro-
teins, also known as ribosome assembly factors, have been 
described (Woolford and Baserga 2013).

Ribosome biogenesis occurs primarily in the nucleo-
lus, although late events occur in the nucleoplasm, where 
the pre-ribosomal particles gain export competence, and 
also in the cytoplasm where the last steps in the matura-
tion of the ribosomal subunits (r-subunits) take place. In 
the yeast nucleolus, mature 18S, 5.8S and 25S rRNAs are 
co-transcribed by RNA polymerase I (RNAP I) as a single 
precursor of rRNA (pre-rRNA) that undergo either co- or 
post-transcriptional processing. Pre-5S is independently 
transcribed by RNAP III. Pre-rRNA processing occurs 
concomitantly to most rRNA modification reactions, the 
folding of pre-rRNAs and the formation of pre-ribosomal 

Abstract Ribosome biogenesis is a crucial process for 
growth and constitutes the major consumer of cellular 
resources. This pathway is subjected to very stringent regu-
lation to ensure correct ribosome manufacture with a wide 
variety of environmental and metabolic changes, and intra-
cellular insults. Here we summarise our current knowledge 
on the regulation of ribosome biogenesis in Saccharomyces 
cerevisiae by particularly focusing on the feedback mecha-
nisms that maintain ribosome homeostasis. Ribosome bio-
genesis in yeast is controlled mainly at the level of the pro-
duction of both pre-rRNAs and ribosomal proteins through 
the transcriptional and post-transcriptional control of the 
TORC1 and protein kinase A signalling pathways. Pre-rRNA 
processing can occur before or after the 35S pre-rRNA tran-
script is completed; the switch between these two alterna-
tives is regulated by growth conditions. The expression of 
both ribosomal proteins and the large family of transact-
ing factors involved in ribosome biogenesis is co-regulated. 
Recently, it has been shown that the synthesis of rRNA and 
ribosomal proteins, but not of trans-factors, is coupled. Thus 
the so-called CURI complex sequesters specific transcrip-
tion factor Ifh1 to repress ribosomal protein genes when 
rRNA transcription is impaired. We recently found that an 
analogue system should operate to control the expression 
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particles, which contain different pre-rRNAs, r-proteins 
and ribosome assembly factors depending on their matu-
ration step. These factors provide the overall process with 
the appropriate speed, accuracy, timing and directional-
ity, and participate in its regulation (for reviews on yeast 
ribosome biogenesis, see de la Cruz et al. 2015; Fernan-
dez-Pevida et al. 2015; Henras et al. 2008; Kressler et al. 
2010, 2017; Nerurkar et al. 2015; Sharma and Lafontaine 
2015; Watkins and Bohnsack 2012). It is important to 
stress that the processes of rRNA transcription, pre-rRNA 
processing and r-subunit assembly not only coincide tem-
porally and spatially, but are also highly interdependent 
events. Thus, for instance, the mutations that result in 
elongation-defective RNAP I transcription significantly 
impair pre-rRNA processing and ribosome assembly. 
Likewise, either derepression or attenuation of RNAP I 
activity leads to an equivalent response on the transcrip-
tion regulation of r-protein genes by RNAP II and 5S 
rRNA by RNAP III (Laferte et al. 2006; Schneider et al. 
2007). Different subsets of essential ribosome assembly 
factors are also required for optimal rRNA transcription 
and/or pre-rRNA stability (Gallagher et al. 2004). The 
stability of nascent pre-rRNAs is also strongly affected 
upon the depletion of most r-proteins (i.e. Deshmukh 
et al. 1993; Rosado et al. 2007).

Ribosome biogenesis is a crucial process for growth 
and constitutes the major consumer of cellular resources. 
S. cerevisiae contains about 200,000 ribosomes per cell 
(von der Haar 2008). Ribosome biogenesis involves 
nearly 65–70% of global cellular transcriptional activ-
ity since 60% of all transcription is devoted to rRNA, 
10% of all RNAP II transcription is dedicated to r-pro-
tein and ribosome assembly factor genes, and it can be 
assumed that about 30% of all RNAP III transcription 
is dedicated to 5S rRNA and MRP RNA genes. About 
90% of all mRNA splicing, and approximately 30% of 
global translation, are employed for ribosome biogenesis 
in rapidly growing yeast cells (Metzl-Raz et al. 2017; 
Pelechano and Perez-Ortin 2010; Warner 1999). Thus it 
is not surprising to realise that the synthesis of ribosomes 
is subjected to such stringent regulation to ensure correct 
ribosome manufacture with a wide variety of environ-
mental and metabolic changes, and intracellular insults. 
Regulation occurs at all different gene expression flux 
levels, allows the proper stoichiometry of all ribosomal 
components and coordinates optimal production and the 
activity of the many factors involved in the assembly of 
r-subunits (Fig. 1). The regulatory pathways that manage 
imbalanced ribosome production or misassembled ribo-
somal precursors and subunits are particularly interesting 
as they are normally linked to human disease, including 
cancer (Teng et al. 2013).

Co‑transcriptional and post‑transcriptional 
pre‑rRNA processing

It is well known that ribosome content in yeast cells is 
proportional to the growth rate. Ribosome production is 
controlled at the level of synthesis of both pre-rRNAs and 
r-proteins (Kief and Warner 1981). The yeast genome con-
tains 100–200 copies in tandem of ribosomal DNA (rDNA). 
The rDNA copy number can vary, and the number of active/
repressed copies can change in response to variations in 
environmental conditions (Dammann et  al. 1993). This 
regulation involves the chromatin alterations carried out by 
histone deacetylase Rpd3 and the FACT complex (Johnson 
et al. 2013). However, it has been proposed that regulation 
of rRNA synthesis is not achieved by varying the number of 
active rDNA gene copies, but mainly by the actual number 
of RNAP I molecules that initiate (French et al. 2003) and 
successfully elongate (Zhang et al. 2010).

In eukaryotes, ribosome assembly begins co-transcrip-
tionally. This was first evidenced by visualising the so-called 
terminal knobs on Miller chromatin spreads by electron 
microscopy, and by the demonstration that those knobs cor-
respond to the ribonucleoprotein complexes that carry out 
the compaction of the earliest 90S pre-ribosomal particles 
on nascent 35S pre-rRNA (Mougey et al. 1993). The for-
mation of these particles occurs in a stepwise and hierar-
chical manner (Dragon et al. 2002; Gallagher et al. 2004; 
Perez-Fernandez et al. 2007; Wery et al. 2009). Early 90S 
pre-ribosomal particles also contain a substantial number of 
40S r-proteins, which assemble in a defined order (de la Cruz 
et al. 2015, and references therein). Moreover, pre-rRNA 
modifications on the nascent pre-rRNA occur co-transcrip-
tionally, as evidenced by fast kinetic labelling analyses (Kos 
and Tollervey 2010). In contrast in higher eukaryotes, pre-
rRNA processing occurs almost exclusively post-transcrip-
tionally (discussed in Osheim et al. 2004; Talkish et al. 2016; 
Turowski and Tollervey 2015). However in yeast, pre-rRNA 
processing can occur either before or after the transcription 
of the 35S pre-rRNA is completed (Osheim et al. 2004). 
Quantitative measurements of pre-rRNA processing indi-
cate that about 70% of all nascent pre-rRNA transcripts are 
co-transcriptionally cleaved at site  A2 in early exponentially 
yeast growing cells (Kos and Tollervey 2010; Osheim et al. 
2004). Among pre-rRNA processing reactions, cleavage 
at site  A2 is special because it separates the intermediates 
on the large and small r-subunit synthesis pathways, which 
apparently follow independent nuclear maturation (Fernan-
dez-Pevida et al. 2015). This cleavage does not take place 
immediately after the transcription of site  A2, but instead 
appears to occur when RNAP I has travelled into the 25S 
rDNA about 1.5 kb downstream of this site (Axt et al. 2014; 
Osheim et al. 2004). Cleavage of the nascent transcript at 
site  A2 releases the earliest 90S pre-ribosomal particles, and 
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an incipient pre-60S r-particle starts to form in the 5′ region 
of nascent  27SA2 pre-rRNA before transcription termination 
(Osheim et al. 2004).

Interestingly, the efficiency of the co-transcriptional 
cleavage of pre-rRNA strongly diminishes when cell growth 
declines or upon a short temperature shift to 37 °C (Osheim 
et al. 2004). The co-transcriptional cleavage of nascent 
pre-rRNA is inhibited upon the depletion or inactivation 
of specific 60S r-subunit biogenesis factors, such as Drs1, 
Rrp5 or Rat1 (Axt et al. 2014; Lebaron et al. 2013; Talkish 
et al. 2016). These phenomena clearly suggest that a link 
between pre-rRNA processing and ribosome assembly may 
exist (Talkish et al. 2016). It seems likely that the forma-
tion of some high-order structures at the 5′ end region of 
upcoming  27SA2 pre-rRNA is required for co-transcriptional 
cleavage to occur. While many early 60S r-subunit assembly 
factors are indirectly required, specific factors may play a 

direct role in promoting the co-transcriptional cleavage at 
site  A2. For example, recent data indicate that Rrp5 binds to 
an evolutionarily conserved stem-loop located 3′ adjacent 
to site  A2 in ITS1, which suggests that the binding of Rrp5 
to nascent pre-ribosomal particles is necessary to define the 
correct timing of co-transcriptional pre-rRNA processing 
(Lebaron et al. 2013). It is feasible to imagine that upon the 
depletion of an early 60S r-subunit biogenesis factor, the 
improper folding of pre-rRNA around site  A2, and the inca-
pacity of loading or activation of the required nuclease(s), 
would delay cleavage at site  A2 and permit the formation 
of a full-length 35S pre-rRNA product. Interestingly, the 
trans-acting factors required for the late steps in the for-
mation of 60S r-subunits, which normally associate only 
with late pre-60S r-particles, appear to be associated with 
35S pre-rRNA-containing particles when pre-rRNA pro-
cessing occurs post transcriptionally (Talkish et al. 2016). 
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Fig. 1  Regulation of ribosome biogenesis in Saccharomyces cerevi-
siae. The TORC1 and PKA pathways channel the regulatory stimuli 
that regulate ribosome biogenesis. They control the transcription of 
the RP and RiBi regulons and rDNA. Posttranscriptional regulation is 

also exerted at different levels, including pre-rRNA processing, ribo-
some assembly, translation and ribosomal subunits degradation. On 
top of this, the actual performance of ribosome biosynthesis provides 
feedback on RP and assembly genes (RBB regulon)
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Under these conditions, it seems that cleavage at site  A3 
tends to occur prematurely, which leads to the formation of 
a substantial amount of 23S pre-rRNA-containing particles, 
whose further maturation to productive 40S r-subunits is 
controversial (Kos-Braun et al. 2017; Talkish et al. 2016).

The efficiency of the co-transcriptional cleavage of pre-
rRNA diminishes not only as cell growth slows down in the 
stationary phase, but also following a long list of environ-
mental stresses, such as heat or cold shock, low pH, osmotic 
or oxidative stress, or notably as a result of nutrient limita-
tion or rapamycin treatment (Kos-Braun et al. 2017; Talkish 
et al. 2016). The mechanism that lies behind this observation 
has remained unknown until very recently (Kos-Braun et al. 
2017). The Koš laboratory has recently shown that 35S pre-
rRNA can follow a distinct processing pathway when cells 
pass the diauxic transition, are starved, or are exposed to 
different environmental stresses. Under these conditions, 
the synthesis of pre-rRNA strongly reduces, but is not com-
pletely inhibited, and it follows post-transcriptional process-
ing. This pathway has, however, the singularity that cleav-
age of 35S pre-rRNA occurs practically exclusively at site 
 A3 and leads to unproductive 23S and  27SA3 pre-rRNAs, 
which are not processed, and thereby, do not finally yield 
mature rRNAs within newly synthesised ribosomes (Kos-
Braun et al. 2017). This process is fully reversible as soon 
as the growth conditions go back to being optimal. Interest-
ingly, an elegant genetic approach has demonstrated that the 
switch to this peculiar processing pathway is regulated at a 
post-transcriptional level and is specifically dependent on 
the activities of kinases CK2 and TORC1, but is independ-
ent of TOR effectors, such as Sch9 or Tap42 (Kos-Braun 
et al. 2017). As the TOR pathway controls many aspects 
of ribosome biogenesis, Kos-Braun and Koš carefully rule 
out that the switch to this peculiar pathway is due to the 
down-regulation of either RNAP I transcription or the side 
effect of the repression of the transcription of most r-pro-
tein or RiBi genes as a result of TOR inactivation follow-
ing low nutrients or stress. Instead, the switch is the result 
of the activation of a novel post-transcriptional regulatory 
mechanism that depends on TORC1 and CK2, but whose 
downstream effectors, responsible for executing the switch, 
remain unknown. Interestingly, the CK2 kinase that consists 
of four subunits, Cka1, Cka2, Ckb1 and Ckb2, is a compo-
nent of the so-called CURI complex, which is also composed 
of ribosome assembly factors Utp22 and Rrp7, and the tran-
scriptional co-activator Ifh1 (Rudra et al. 2007). Whether 
coordination exists between the role of CK2 kinase in the 
CURI complex and as a regulator of the switch to this non-
productive pre-rRNA processing pathway is an intriguing 
question that still needs further clarification. Finally, Kos-
Braun and Koš discuss the rationalisation of a regulatory 
mechanism based on an apparent waste of valuable cellular 
resources: maintenance of pre-rRNA transcription, but at 

a low rate, and the execution of pre-rRNA processing that 
leads to non-productive pre-rRNA molecules (Kos-Braun 
and Kos 2017). These authors conclude that this manner 
of down-regulating ribosome biogenesis preserves the yeast 
nucleolar structure, and also impedes both the diffusion of 
ribosome assembly factors out of the nucle(ol)us and the 
full repression of r-protein synthesis, and thus allows cells 
to rapidly revert to co-transcriptional pre-rRNA processing 
and the formation of functional r-subunits as soon as the 
environmental conditions are favourable again.

This novel process is not the sole example of post-tran-
scriptional regulation by TORC1 in ribosome biogenesis. 
Inactivation of TORC1 has also been described to tether the 
nucleoplasmic/cytoplasmic GTPase Nog1 to the nucleolus, 
and to thus inhibit the last steps of 60S r-subunit matura-
tion and transport (Honma et al. 2006). Similarly, TORC1 
regulates the subcellular localisation of nucleoplasmic 40S 
r-subunit assembly factors Dim2 and Rrp12, which are also 
trapped in the nucleolus upon its inactivation (Vanrobays 
et al. 2008). Finally, inactivation of TORC1 has also been 
reported to induce both a rapid cytoplasmic turnover of 
mature ribosomes, which does not imply autophagy (Pestov 
and Shcherbik 2012), and ribophagy (Waliullah et al. 2017).

RP and RiBi regulons: common nutritional 
control with different transcription factors

About one-tenth of yeast protein-coding genes encode ribo-
some transacting factors and r-proteins. Considering their 
associated non-coding RNAs (Beilharz 2016), ribosome-
related genes represent a very substantial proportion of RNA 
pol II-dependent transcription. Their expression is tightly 
co-regulated and responds collectively to a variety of nutri-
tional and environmental stimuli. These genes are referred to 
as members of RiBi (Ribosome Biogenesis) (Jorgensen et al. 
2004; Wade et al. 2006; Wu et al. 2002a) and RP (Ribosomal 
Protein) regulons (Warner 1989, 1999; Warner et al. 1985). 
Notably, the RiBi regulon not only encompasses rRNA pro-
cessing and ribosome assembly factors, but also a number 
of other genes that are functionally connected with ribosome 
biogenesis and function, such as those which encode transla-
tion factors, aminoacyl-tRNA synthetases, tRNA-modifying 
factors, the enzymes involved in nucleotide metabolism, and 
the subunits of RNAP I and III (Jorgensen et al. 2002, 2004). 
Both RP and RiBi regulons display very analogous expres-
sion profiles and respond similarly to different environmen-
tal conditions (i.e. Gasch et al. 2000; Ho and Gasch 2015) 
or genetic perturbations (i.e. Miyoshi et al. 2003; Wan et al. 
2015). However, RP genes are expressed at a much higher 
level than RiBi ones and exert some independent regulatory 
features (Jorgensen et al. 2004; Wade et al. 2006; Wu et al. 
2002b).
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The regulation of RP and RiBi regulons by nutritional 
signals or different stresses is channelled mainly through 
the TORC1 and Protein kinase A (PKA) pathways (Lem-
piainen and Shore 2009; Loewith and Hall 2011; Martin 
et al. 2004; Powers and Walter 1999). TORC1 is known to 
indirectly regulate 35S pre-rRNA production since r-proteins 
are required to avoid the degradation of pre-rRNAs (Reiter 
et al. 2011). Long-term inactivation of TORC1 also results 
in a proteasome-dependent degradation of Rrn3, an RNAP 
I initiation factor (Philippi et al. 2010), and in the dephos-
phorylation of Maf1, which interacts with RNAP III and 
represses the production of pre-rRNA 5S and other RNAP 
III-dependent transcripts (i.e. Wei and Zheng 2009 and ref-
erences therein).

TORC1 regulates the transcription of RP genes by modu-
lating the association between DNA-binding protein Fhl1 
and either Ifh1 or Crf1. Fhl1 is constitutively bound to 
RP gene promoters and this binding is facilitated by Rap1 
(Rudra et al. 2007). When TORC1 is active, Ifh1 is phos-
phorylated and binds Fhl1 at the promoters of RP genes to 
stimulate their transcription, whereas Crf1 remains cytoplas-
mic. Inhibition of TORC1 results in the phosphorylation of 
Crf1, which enters the nucleus and displaces Ifh1 from the 
RP gene promoters to repress transcription (Martin et al. 
2004; Schawalder et al. 2004; Zhao et al. 2006). Strikingly, 
transcription repression by the inactivation of TORC1 still 
operates in the absence of Crf1 (Martin et al. 2004; Schawal-
der et al. 2004; Zhao et al. 2006), which thus suggests addi-
tional regulators, such as Sfp1 or Sch9. The zinc-finger Sfp1 
protein, a functional analogue of c-Myc in yeast, is a general 
transcriptional activator of the RP regulon, whose function 
depends on TORC1 (Fingerman et al. 2003; Jorgensen et al. 
2004; Lempiainen and Shore 2009; Marion et al. 2004).

Another positive effector of the RP regulon is kinase 
Sch9, the putative orthologue of mammalian S6K1 (Jor-
gensen et al. 2004), which also plays an important role in 
the positive regulation of RiBi genes by TORC1 (Loewith 
and Hall 2011). Indeed Sch9 phosphorylates transcription 
factors Stb3 and Tod6/Dot6. When TORC1 is inactivated, 
Stb3 and Dot6/Tod6 are dephosphorylated, which permits 
them to bind to the promoters of RiBi genes and to recruit 
histone acetyltransferase complex Rpd3L to thus repress 
their transcription (Huber et al. 2011b). Sfp1 also contrib-
utes to the positive regulation of RiBi genes, in parallel to 
Sch9 (Jorgensen et al. 2004). This parallel control by Sfp1 
and Sch9 indicates the certain level of regulatory redun-
dancy that characterises regulons RP and RiBi (Jorgensen 
et al. 2004).

Despite the similar expression profiles of RP and RiBi 
genes in response to nutritional and environmental stim-
uli, the DNA elements and factors that control the tran-
scription of these two regulons are clearly not the same 
(reviewed in Bosio et al. 2011). Generally whereas the RP 

genes are preferentially regulated in a positive manner, the 
RiBi ones are controlled mainly by repression. Transcrip-
tion of RP genes is regulated by DNA binding activators 
Rap1 and Fhl1 (Berger et al. 2007; Hall et al. 2006; Li 
et al. 1999), although these genes are also subjected to 
repression, which is mediated by the binding of Stb3 to 
the T-rich elements of their promoters (Liko et al. 2007) 
and by the silencing domain of Rap1 (Buck and Shore 
1995). This domain is also responsible for the repression 
of RP genes in response to a secretory defect, as previously 
shown since a functional secretory pathway is essential for 
continued yeast ribosome biogenesis (Mizuta and Warner 
1994).

Transcription of RiBi genes is controlled mainly by the 
PAC (RNA Polymerase A and C promoters) and RRPE 
(ribosomal RNA-processing element) sequence elements 
found in their promoter regions (Bosio et al. 2011; Hughes 
et al. 2000; Jorgensen et al. 2004; Wade et al. 2001). The 
PAC element is recognised by transcription repressors Dot6 
and Tod6 (Badis et al. 2008; Freckleton et al. 2009; Zhu 
et al. 2009), while the RRPE element is bound by the repres-
sor Stb3 (Huber et al. 2011a; Liko et al. 2007; Lippman and 
Broach 2009; McKnight et al. 2015). It has been recently 
shown that the promoters of most RiBi genes also contain 
one binding site or more for Abf1, Reb1, and, less frequently, 
Rap1 and Tbf1, which are four transcription activators that 
belong to the so-called general regulatory factors (Bosio 
et al. 2017). In fact the association of these factors to the 
promoters of the RiBI genes is required for full expression 
in a rich medium, and for their modulation in response to 
glucose starvation, in a manner that counteracts the Rpd3L-
dependent repression entailed by the above-mentioned nega-
tive factors (Bosio et al. 2017). Interestingly, it has been 
suggested that the frequent presence of Abf1 binding sites in 
the promoters of mitochondrial RP genes might facilitate the 
co-regulation of the whole network of growth-related genes 
in yeast cells (Fermi et al. 2017). In short, although repres-
sion dominates RiBi gene regulation and activation features 
RP gene control, both ribosome-related regulons combine 
positive and negative control systems that coordinately con-
tribute to their tight nutritional regulation.

Apart from the modulation of RNAP II recruitment to 
promoters, the transcriptional regulation of RP and RiBi reg-
ulons also occurs at the elongation level, as formerly shown 
for yeast cells that grow in different carbon sources (Pel-
echano et al. 2009). Such transcription elongation regulation 
depends on PKA and is channelled, at least partially, through 
the above-mentioned silencing domain of Rap1 (Pelechano 
et al. 2009). The importance of transcription elongation in 
RP gene expression has also been evidenced by the high 
dependence that these genes have on Dst1, the yeast TFIIS 
transcription elongation factor, under transcriptional stress 
conditions (Gomez-Herreros et al. 2012).
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Coupling rRNA and r‑protein production

As previously mentioned, to ensure efficient ribosome bio-
synthesis, an equimolar production of the different riboso-
mal components is required. In fact, the imbalance between 
r-proteins and rRNA production is characteristic of the so-
called nucleolar-stress response and leads to the impairment 
of cell growth and G1 cell cycle arrest in both yeast (Gomez-
Herreros et al. 2013) and mammalian cells (see Boulon et al. 
2010; Pelava et al. 2016 and references therein). This bal-
ance in yeast is achieved by the coordinated transcription of 
pre-rRNA and RP genes, which extends beyond the stimula-
tion of the transcription of both rRNA and r-protein genes 
by the TOR signalling pathway. Several transcription factors 
have been proposed to play a role in coordinating the tran-
scription of rRNA and RP genes. For instance, Hmo1, which 
is present in the rDNA locus and in the promoter of a subset 
of RP genes (Berger et al. 2007; Hall et al. 2006; Lempi-
ainen and Shore 2009), is simultaneously released from both 
regions upon TORC1 inhibition (Berger et al. 2007).

A key element for coupling rRNA and r-proteins syn-
thesis, but not RiBi regulon proteins, is Ifh1, which is a 
co-activator of RP gene transcription (Martin et al. 2004; 
Rudra et al. 2007; Schawalder et al. 2004). Ifh1 is found 
to be associated with transcriptional factor Fhl1 at the pro-
moters of RP genes when these are actively transcribed 
(Martin et al. 2004; Rudra et al. 2005; Schawalder et al. 
2004), or it is alternatively found in the nucleolus in a 
complex so-called CURI, which comprises Ifh1 and the 
UTP-C subcomplex formed by the four subunits of CK2, 
and by ribosome assembly factors Utp22 and Rrp7 (Kro-
gan et al. 2004; Rudra et al. 2007). A model for coupling 
rRNA and r-protein production was initially suggested 
by the Warner laboratory (Rudra et al. 2007) which has 
been recently validated by the Shore laboratory (Albert 
et al. 2016). In this model, Ifh1 is sequestered within the 
CURI complex to repress RP gene transcription when 
rRNA transcription is reduced. This, under optimal growth 
conditions, Ifh1 is bound to the promoter of RP genes to 
facilitate transcription, while the UTP-C subcomplex is 
co-transcriptionally engaged in early ribosome assembly 
steps. Under nutrient starvation (TORC1 inhibition), the 
transcription of rRNA and RP genes slow-down, Ifh1 is 
released from the RP gene promoters, and concomitantly 
the UTP-C subcomplex is also released from rDNA, which 
results in the formation of the CURI complex after the 
binding of Ifh1, presumably through Utp22 (Albert et al. 
2016; Rudra et al. 2007). Although the CURI complex 
sequesters Ifh1, it is apparently not responsible of the 
direct release of Ifh1 from RP promoters, but is respon-
sible of stabilizing it. Indeed TORC1 inhibition follows 
in the absence of Utp22 or upon conditions where RNAP 
I transcription is not fully down-regulated, which keeps 

Utp22 involved in ribosome biogenesis. Then Ifh1 can rap-
idly release from the promoter of RP genes upon TORC1 
inactivation, but immediately returns to these promoters as 
it is unable to establish a long-term interaction within the 
CURI complex (Albert et al. 2016). The rapid release of 
Ifh1 depends on the inactivation of the Sch9 kinase, which 
simultaneously leads to the inhibition of RNAP I tran-
scription. The reduction in RNAP I transcription, but also 
that of RP genes by RNAP II, makes enough free UTP-C 
subcomplex available to facilitate a long-term retention 
of Ifh1 (Albert et al. 2016). Strikingly, the UTP22 gene is 
one of the few non-r-protein genes whose transcription is 
dependent on Ifh1, and thus provides a feedback mecha-
nism to tune this particular regulation (Albert et al. 2016).

In addition to this fine mechanism to coordinate r-pro-
tein gene transcription and early ribosome assembly steps, 
it is worth mentioning other post-transcriptional events 
that balance the accumulation of r-proteins versus that of 
rRNAs during ribosome biogenesis, including the autoge-
nously regulation of mRNA splicing or translation, and an 
efficient turnover of those r-proteins that are unassembled 
into ribosomes. Regarding the first mechanism, the tran-
scripts of several RP genes contain potential structures that 
mimic their respective binding sites in rRNA (i.e. Fewell 
and Woolford 1999; Vilardell et al. 2000; Vilardell and 
Warner 1997). Thus when an imbalance on ribosome bio-
genesis leads to excess r-proteins versus rRNAs, the for-
mer can bind with a low affinity to their own transcripts 
by inhibiting their splicing and further translation (Dabeva 
and Warner 1993; Vilardell and Warner 1994). Regarding 
the second mechanism, it is well known that overproduced 
r-proteins are efficiently eliminated by rapid degradation 
(elBaradi et al. 1986; Gorenstein and Warner 1977; Mai-
cas et al. 1988; Tsay et al. 1988; Warner et al. 1985). By 
such a system, yeast cells avoid the negative effects of 
the accumulation of r-proteins, which are highly basic 
and especially prone to undergo non-specific interactions 
and aggregation when not bound to rRNA (Jakel et al. 
2002). It has been recently demonstrated that degradation 
of excess r-proteins occurs in the nucleus and involves a 
ubiquitin–proteasome-depending system that comprises 
ubiquitin-conjugating enzymes Ubc4 and Ubc5 and ubiq-
uitin-ligase Tom1 (Sung et al. 2016a, b). Interestingly, it 
appears that Tom1 selectively recognises and ubiquitinates 
residues of the r-proteins that are accessible only in the 
unassembled state, but are completely unreachable in the 
mature ribosome (Sung et al. 2016a). Finally, active sur-
veillance systems also exist to degrade the fraction of pre-
rRNAs that is not productively engaged in pre-ribosomal 
particles. These systems comprise the nuclear TRAMP, the 
RNA exosome and Nrd1–Nab3–Sen1 complexes (Allmang 
et al. 2000; Dez et al. 2006; Lepore and Lafontaine 2011; 
Wery et al. 2009).
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Feedback regulation of ribosome trans‑acting 
factors

RiBi factors also exhibit a feedback regulation that oper-
ates within a more restricted network of genes, which are 
directly related to ribosome assembly (Gomez-Herreros 
et al. 2017). We recently analysed the transcriptomic con-
sequences of deleting 59 non-essential genes that encode 
distinct r-proteins, RNAP I subunits, or the protein factors 
involved in pre-rRNA processing and ribosome assembly. 
Unlike the mutations that affect general regulators like Sfp1, 
Sch9 and Hmo1, which globally impair the ribosome bio-
genesis process, many of the analysed null mutants only 
alter the expression of a limited number of genes within 
regulons RiBi and RP (Gomez-Herreros et al. 2017). For 
instance, we observed that the deletions of individual RP 
genes up-regulated a large subset of genes that encode ribo-
some assembly factors, and did not affect the RP genes 
themselves, nor the subset of the RiBi regulon genes that 
encode aminoacyl-tRNA synthetases or those involved in 
nucleotide metabolism (Gomez-Herreros et al. 2017). A sim-
ilar specific up-regulation of assembly genes was observed 
upon the deletion of specific ribosome assembly factors such 
as Rsa1 and Utp30.

We also found that some deletion mutants changed the 
expression of a very specific subset of assembly genes. Inter-
estingly, the set of genes that specifically respond to ribo-
some assembly insults better fits the RRB (rRNA and Ribo-
some Biosynthesis) regulon than the wider RiBi regulon 
(Gomez-Herreros et al. 2017). The RRB regulon was origi-
nally defined as the set of co-regulated genes directly related 
to ribosome assembly (Wade et al. 2001, 2006). Its extension 
to the RiBi regulon was done by analysing the transcrip-
tomic responses to nutritional and environmental changes, 
as well as to alterations produced by genetic perturbations 
of the TOR signalling pathway (Jorgensen et al. 2004). An 
example of these deletion mutants is dbp7∆, which lacks a 
putative RNA helicase, required for 60S r-subunit biogenesis 
(Daugeron and Linder 1998). dpb7∆ produced a strong up-
regulation of a very limited set of assembly genes. These up-
regulated genes encode factors that contribute specifically to 
60S r-subunit biogenesis and some have a direct functional 
link with Dbp7 (Gomez-Herreros et al. 2017). These, and 
other complementary results, show that a feedback system 
specifically regulates RRB genes, which is highly mutant 
specific. Thus the regulation in response to assembly per-
turbation is expected to follow its own regulatory dynamics 
within the frame of genes that directly participate in this 
process.

The clustering analysis of transcriptomic data allowed 
us to detect a regulatory structure within the RRB regulon, 
which divides into two main groups of genes. The first group 
includes the factors present in 90S and pre-40S r-particles, 

which are required for 40S r-subunit biogenesis. The second 
is enriched in the ribosome biogenesis factors present in pre-
60S r-particles, required for 60S r-subunit biogenesis (Fig. 2; 
Gomez-Herreros et al. 2017). While no obvious rules for 
regulation were detected, it is worth stressing that most 
of the mutations that specifically induce the genes which 
belong to the second group are themselves linked to the 
assembly of 60S r-subunits (Gomez-Herreros et al. 2017). 
Strikingly, the distribution of PAC and RRPE elements dif-
fers in the genes of each group; thus RPPE elements are 
less frequently present in the promoter regions of the genes 
that belong to the second group. In contrast, both clusters 
exhibit comparable frequencies of PAC elements (Gomez-
Herreros et al. 2017). Since the Dieci laboratory has recently 
published an updated map of the regulatory elements present 
in RiBi genes, including the binding sites of four transcrip-
tional activators (see above, Bosio et al. 2017), we investi-
gated whether the asymmetry between the two main clusters 
of RBB genes that we identified could be extended to other 
regulators. As shown in Fig. 2, we could not find a signifi-
cant bias for the presence of the binding sites for individual 
activators. Intriguingly however, we found that repressors 
significantly more predominated the activators in the first 
cluster than in the second one. These results indicate that 
the heterogeneity of the regulatory elements within the RBB 
regulon may well explain its internal regulatory structure 
and the plasticity of the feedback control that we have just 
revealed.

Another aspect that seems to characterise this feedback 
regulatory network of the ribosome assembly process is that 
it involves the modulation of the elongation step of transcrip-
tion. Our experiments, which adopted an in vivo depletion 
strategy, show that shortly after ribosome assembly impair-
ment, a substantial set of RBB genes increases the density 
of RNAP II molecules that are able to produce a run-on 
signal, with no parallel change in total RNAP II occu-
pancy (Gomez-Herreros et al. 2017). This pattern reflects 
the decrease presence of backtracked RNAP II molecules, 
which suffices to explain the moderate increase in mRNA 
levels (Gomez-Herreros et al. 2017). This change in tran-
scription elongation involves the recruitment of chromatin 
factor Spt6 to regulated genes, which contributes to the 
optimal dynamics of histones during activated transcription 
(Gomez-Herreros et al. 2017). Two main clues can explain 
this control at the elongation level. Since it operates in the 
gene body, it does not require any change in the formation 
of the preinitiation complex on promoter regions. Therefore, 
it is completely compatible with any other regulation at this 
level. At the same time, transcription elongation alterations 
are related to changes in mRNA stability. The increased 
expression of RiBi and RP regulons with growth is dictated 
by the relative changes of transcription and mRNA degrada-
tion rates (Chavez et al. 2016; Garcia-Martinez et al. 2016). 
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Within the different steps of transcription, elongation has 
been proposed to participate in the cross-talk with mRNA 
degradation (Gupta et al. 2016; Haimovich et al. 2013; 
Medina et al. 2014). In agreement with this proposal, we 
find that the transcription elongation changes in RBB genes 
are linked to parallel changes in mRNA stability (Gomez-
Herreros et al. 2017).

Conclusions

In this review, we focus on the main aspects of the different 
regulatory circuits that govern the synthesis of productive 
ribosomes in S. cerevisiae. Given that a vast majority of cel-
lular resources are dedicated to the biogenesis of ribosomes 
in rapidly growing yeast cells, it is not surprising that evolu-
tion has led to the selection of different and redundant mech-
anisms for the regulation of ribosome production, which 
operates at all different gene expression levels in response 
to changing environmental conditions and intracellular 
insults. Although some overlapping/redundancy is clearly 
present between different regulatory pathways, most proceed 
in parallel to each other, but maintain a certain degree of 
coordination. Some of these systems operate globally and 
are driven by well-known master regulators, such as TORC1 
and its downstream effectors Sch9, Sfp1 or Crf1. Others are 
more specific and serve as fine-tuning mechanisms of regu-
lation, and often imply both feedback loops and feed-forward 
situations. We have attempted to summarise the important 
advances made in the field of ribosome biogenesis regulation 
that have been described in recent years. Many questions, 
however, remain unsolved; among others, the elements that 
work in the coordination between different processes in ribo-
some biogenesis are still largely unknown or described at a 
low resolution. Additionally, many regulators or their down-
stream targets that operate on these pathways have not yet 
been identified. Finally, it is important to examine the degree 
of conservation that these systems show in higher eukaryotes 
as a way to understand how dysregulation of human ribo-
some biogenesis could lead to pathogenesis.
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