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chromosome positioning performs multiple functions and 
controls non-chromosomal as well as chromosomal events, 
and that the chromosome positioning is stringently regu-
lated for its functions. Thus, chromosome positioning plays 
a much broader role and is more strictly regulated than pre-
viously thought.
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Introduction

In the nucleus of eukaryotic cells, chromosome position-
ing dynamically changes during development and differ-
entiation and thereby contributes to regulation of various 
chromosomal events, including DNA transcription, repair, 
and recombination (Spector 2003; Cremer and Cremer 
2010; Meister et al. 2011; Aparicio 2013; Mine-Hattab 
and Rothstein 2013; Rocha and Skok 2013). The linker of 
nucleoskeleton and cytoskeleton (LINC) complex, which 
consists of the conserved Sad1/Unc-84 (SUN) and Klarsi-
cht/ANC-1/Syne homology (KASH) domain nuclear mem-
brane proteins, connects the chromosomes to the cytoskel-
eton. Recent work showed that the LINC complex is a 
crucial factor that controls chromosome positioning and 
facilitates various biological processes (Fridkin et al. 2009; 
Hiraoka and Dernburg 2009; Oza et al. 2009; Razafsky and 
Hodzic 2009; Schober et al. 2009; Horigome et al. 2014).

One of the most prominent examples of LINC-depend-
ent chromosome positioning is observed during meiosis. 
During meiotic prophase, homologous chromosomes pair 
and recombine, forming chiasmata that link homologous 
chromosomes and enable their segregation at meiosis I 
(Roeder 1997; Page and Hawley 2003; Petronczki et al. 
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2003). At this stage, telomeres cluster in a small area, 
forming the typical chromosome arrangement referred to 
as the “bouquet” (Zickler and Kleckner 1998; Scherthan 
2001). The bouquet promotes homologous chromosome 
pairing by inducing homologous association and concomi-
tantly preventing non-homologous association (Zickler and 

Kleckner 1998; Harper et al. 2004; Hiraoka and Dernburg 
2009; Koszul and Kleckner 2009). The LINC complexes 
connect telomeres with the cytoskeleton and induce bou-
quet formation (Fridkin et al. 2009; Hiraoka and Dernburg 
2009; Razafsky and Hodzic 2009; Yamamoto 2014).

Promotion of homologous chromosome pairing is a com-
mon task of the bouquet in all organisms examined to date 
(Zickler and Kleckner 1998; Harper et al. 2004; Hiraoka 
and Dernburg 2009). However, recent studies of the fission 
yeast Schizosaccharomyces pombe showed that the bouquet 
also contributes to spindle formation and assembly of mei-
otic centromeres (Asakawa et al. 2005; Tomita and Cooper 
2007; Klutstein et al. 2015; Katsumata et al. 2016), indicat-
ing that LINC-dependent chromosome positioning performs 
multiple tasks and controls non-chromosomal as well as 
chromosomal events. Furthermore, we recently found that 
dissociation of centromeres from the LINC complexes is 
linked to telomere clustering during bouquet formation and 
that this connection is crucial for proper spindle formation 
(Katsumata et al. 2016). Thus, LINC-dependent chromo-
some positioning is stringently regulated, and this regulation 
is crucial for its functions. In this manuscript, we describe 
recent advances in our understanding of the functions and 
the regulation of the bouquet chromosome arrangement in 
S. pombe, including our novel finding that the bouquet also 
contributes to nuclear fusion during karyogamy. Finally, we 
discuss the universality of the multiple functions of LINC-
dependent chromosome positioning.

Formation of the bouquet chromosome 
arrangement in S. pombe

Meiosis progression and changes in chromosome 
positioning in S. pombe

Before going into detail regarding the functions and regu-
lation of LINC-dependent chromosome positioning dur-
ing meiosis in S. pombe, we first briefly describe meiotic 
progression and changes in chromosome positioning in 
this organism. In S. pombe cells, mitotic centromeres are 
attached to the spindle pole body (SPB, the fungal centro-
some), which is associated with the nuclear envelope (NE); 
the telomeres are also associated with the NE, but at dis-
tinct sites from the SPB. This chromosome positioning 
corresponds to the “Rabl” configuration observed in many 
organisms [Fig. 1a(i), 1c, Rabl] (Funabiki et al. 1993; Cre-
mer and Cremer 2010). Upon nitrogen starvation, two hap-
loid cells conjugate, forming a diploid zygote, and immedi-
ately enter meiosis [Fig. 1a(ii–x)] (Yamamoto et al. 1997). 
Upon entering meiosis, telomeres gather at the SPB while 
centromeres detach from it, forming the “bouquet” chromo-
some arrangement [Fig. 1a(ii, iii), c, Bouquet] (Chikashige 

Fig. 1  Meiotic process and changes in chromosome positioning in S. 
pombe. a Meiotic process in S. pombe. S. pombe cells normally pro-
liferate in the haploid state. During mitotic interphase, centromeres 
(red circles) are located beneath the SPB (black circle), which is 
attached to the nuclear envelope (NE; thin black lines), whereas tel-
omeres (blue circles) are located distant from the SPB, also in associ-
ation with the NE [(i) mitotic interphase]. Microtubules (green lines) 
extend from the SPB and the NE in parallel to the longitudinal cell 
axis. This chromosome arrangement corresponds to the Rabl orienta-
tion in other species. Under nitrogen-starved conditions, two cells of 
opposite mating types conjugate to form a diploid zygote, followed 
by fusion of their nuclei [(ii) Karyogamy]. During cell conjugation, 
telomeres gather at the SPB, whereas centromeres become detached 
from it, thus forming the bouquet chromosome arrangement (Bouquet 
stage). After nuclear fusion, the diploid nucleus becomes elongated 
and moves back and forth between the cell ends, led by the SPB, 
which radiates microtubules [referred to as “horsetail nuclear move-
ments”; (iii) Horsetail stage]. During the horsetail nuclear move-
ments, DNA replication, homologous chromosome pairing, and mei-
otic recombination take place. After the horsetail nuclear movements, 
the nucleus stops around the center of the zygote (iv), telomere clus-
tering resolves, and the nucleus forms the spindle and undergoes the 
first division [(v) meiosis I]. At the first division, the homologous 
chromosomes move apart from each other with elongation of the 
spindle (vi). After the first division, microtubule arrays similar to that 
in mitotic interphase are formed (vii). Subsequently, each nucleus 
forms a spindle and undergoes the second division [(viii) meiosis II]. 
After the second division, spindles disappear (ix), and the four spores 
are finally formed [(x) sporulation]. S. pombe contains three chro-
mosomes, but only one (black thick lines) is shown for simplicity. b 
The telomere–LINC connection and the telocentrosome. Upon enter-
ing meiosis, Bqt1 and Bqt2 connect the SUN domain inner nuclear 
membrane protein Sad1 with Rap1, which interacts with the telomere 
component Taz1. Sad1 binds with KASH domain outer nuclear mem-
brane proteins Kms1 and Kms2, forming the LINC complexes. At 
the telomere-localized LINC complexes, the γ-tubulin complex and 
cytoplasmic dynein become localized to form the microtubule-organ-
izing center (“telocentrosome”) and nucleate microtubules. Only 
representative factors or complexes are shown. ONM outer nuclear 
membrane, INM inner nuclear membrane. c Formation of the bouquet 
chromosome arrangement. During mitotic interphase, centromeres 
(red sphere) are attached to the SPB (green sphere), which radiates 
microtubules (green lines), via the LINC complexes (dark blue ellip-
soid) residing in the NE (brown line), whereas telomeres (light blue 
spheres) are located distant from the SPB in association with the NE. 
This chromosome arrangement corresponds to the Rabl orientation 
(Rabl). Upon nitrogen starvation, the LINC complexes are localized 
at the telomeres by telomere–LINC connectors. The microtubule-
organizing center (telocentrosome) forms at the LINC-localized tel-
omere and extends microtubules (LINC-dependent telocentrosome 
formation). SPB- and telocentrosome-nucleated microtubules gather 
the telomeres at the SPB with the aid of microtubule motors (Micro-
tubule-dependent telomere clustering). After telomere clustering, 
centromeres detach from the SPB (Centromere detachment), forming 
the bouquet chromosome arrangement (bouquet). For simplicity, only 
one chromosome (gray lines) is shown

◂
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et al. 1994). During the bouquet stage, SPB-nucleated 
microtubules and cytoplasmic dynein, a microtubule motor, 
generate back-and-forth nuclear movements between the 
cell ends (termed “horsetail” nuclear movements after an 
elongated nuclear shape) [Fig. 1a(iii)] (Chikashige et al. 
1994; Ding et al. 1998; Yamamoto et al. 1999, 2001). After 
a couple of hours of horsetail movements, a telomere clus-
ter resolves, and the zygote undergoes two meiotic divi-
sions, forming four spores [Fig. 1a(v–x)].

Telomere clustering mechanism

As in other organisms, telomere clustering in S. pombe 
depends on the LINC complexes. LINC complexes consist-
ing of the SUN domain protein Sad1 and the KASH domain 
protein Kms2 are localized at the SPB in mitosis (Hagan and 
Yanagida 1995; Miki et al. 2004; Walde and King 2014). 
Upon entering meiosis, another KASH protein, Kms1, 
joins the LINC complexes (Shimanuki et al. 1997), and the 
Kms1/Kms2-containing LINC complexes become local-
ized at telomeres, in addition to the SPB, via the actions of 
the meiosis-specific factors Bqt1 and Bqt2, which connect 
the telomere component Rap1 with Sad1 (Fig. 1b) (Chi-
kashige et al. 2006; Yoshida et al. 2013). The γ-tubulin com-
plex that nucleates microtubules and cytoplasmic dynein 
becomes localized at LINC-localized telomeres and forms 
the microtubule-organizing center, which has been termed 
the “telocentrosome” (Fig. 1b, c, LINC-dependent telocen-
trosome formation) (Yoshida et al. 2013; Yamamoto 2014). 
Cytoplasmic microtubules extend from the telocentrosome 
and the SPB, and these microtubules induce clustering of 
telomeres at the SPB with the aid of cytoplasmic dynein and 
kinesin microtubule motors (Fig. 1c, microtubule-dependent 
telomere clustering) (Yoshida et al. 2013; Yamamoto 2014).

The pathways that initiate meiosis induce telomere 
clustering. Upon nitrogen starvation, the mating phero-
mone activates the MAP kinase, inducing cell conjugation 
(Yamamoto et al. 1997; Harigaya and Yamamoto 2007), 
and activation of MAP kinase induces telomere clustering 
(Chikashige et al. 1997; Yamamoto et al. 2004). However, 
the MAP kinase-dependent pathway is not the sole regu-
latory pathway that induces telomere clustering. Inactiva-
tion of Pat1 kinase, which occurs after cell conjugation and 
induces meiotic divisions (Yamamoto et al. 1997; Harigaya 
and Yamamoto 2007), also induces telomere clustering 
without MAP kinase activation (Chikashige et al. 2004; 
Yamamoto et al. 2004). Therefore, both the MAP kinase- 
and Pat1-dependent pathways can independently induce 
telomere clustering. Because MAP kinase activation pre-
cedes Pat1 inactivation, it is possible that the MAP kinase-
dependent pathway primarily contributes to establishment 
of telomere clustering, whereas the Pat1-dependent path-
way contributes to its maintenance. It is currently unknown 

how these pathways induce telomere clustering. However, 
given that one major output of these pathways is expression 
of meiosis-specific genes (Yamamoto et al. 1997; Harigaya 
and Yamamoto 2007), they likely induce production of fac-
tors required for telocentrosome formation and/or microtu-
bule-dependent telomere clustering.

Centromere detachment mechanism

Detachment of centromeres from the SPB, another change 
in chromosome positioning essential for bouquet formation 
(Fig. 1c, centromere detachment), occurs through elimina-
tion of centromere–LINC interaction. During mitosis, cen-
tromeres are attached to the SPB via the Csi1-dependent 
interaction of the kinetochore components with the LINC 
component Sad1 (Hou et al. 2012). Upon entering meiosis, 
kinetochore components dissociate from the LINC com-
plexes and the centromeres, resulting in centromere detach-
ment from the SPB (Asakawa et al. 2005; Hayashi et al. 
2006; Katsumata et al. 2016).

Like telomere clustering, centromere detachment is 
regulated by the MAP kinase- and Pat1-dependent path-
ways. However, unlike telomere clustering, centromere 
detachment requires both MAP kinase activation and Pat1 
inactivation concomitantly. If either occurs alone, the cen-
tromeres remain attached to the SPB (Chikashige et al. 
1997, 2004), whereas, when both occur, the centromeres 
detach (Asakawa et al. 2005). As in the case of telomere 
clustering, it remains unclear how the MAP kinase- and 
Pat1-dependent pathways induce centromere detachment.

Recent work showed that centromere detachment is linked 
with telomere clustering. In Bqt1- or Rap1-lacking, telomere 
clustering-defective cells, centromeres frequently remained 
attached to the SPB (Fig. 2a, impaired telomere recruitment 
of LINC) (Katsumata et al. 2016). Centromeres are also 
frequently attached to the SPB when telomere clustering is 
impaired by microtubule disruption (Fig. 2a, microtubule 
disruption). These results indicate that centromere detach-
ment is repressed when telomere clustering is defective.

Telomere clustering causes recruitment of telomere 
components to the SPB, and one of these components, 
the telomere-binding protein Taz1, contributes to cen-
tromere detachment. When a portion of Taz1 that lacks 
the telomeric DNA-binding myb domain is artificially 
tethered to the SPB by fusion with Sad1, the repression 
of centromere detachment observed in Bqt1- or Rap1-
lacking cells is alleviated (Taz1∆myb–Sad1; Fig. 2b) 
(Katsumata et al. 2016). This indicates that efficient 
centromere detachment requires SPB recruitment of 
Taz1 (Fig. 2c, SPB recruitment of Taz1), but it does not 
require SPB interaction of telomeres or formation of 
the telocentrosome. However, Taz1∆myb–Sad1 fails to 
alleviate the repression of centromere detachment when 
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Fig. 2  Telomere clustering–linked regulation of centromere detach-
ment. a Inhibition of centromere detachment in bouquet formation. 
Impaired telocentrosome formation due to loss of a telomere–LINC 
connector (Impaired telomere recruitment of LINC) or disruption 
of SPB- and telocentrosome-nucleated microtubules (Microtubule 
disruption) causes inhibition of centromere detachment. b Induc-
tion of centromere detachment by a Sad1-fused Taz1 fragment. In 
cells lacking a telomere–LINC connector, Bqt1 or Rap1, the LINC 
complexes are not recruited to telomeres, and the telomeres fail to 

cluster (Impaired telomere recruitment of LINC). When a portion of 
Taz1 fused with Sad1 (Taz1∆myb–Sad1) is introduced, it is local-
ized at the SPB and induces centromere detachment in the absence 
of telomere clustering (Centromere detachment without telomere 
clustering). c Two mechanisms promote centromere detachment. SPB 
recruitment of Taz1 by telomere clustering (SPB recruitment of Taz1) 
and SPB- and telocentrosome-nucleated microtubules (MT forma-
tion) cooperatively promote kinetochore disassembly and centromere 
detachment from the SPB

telomere clustering is impaired by disruption of cyto-
plasmic microtubules, indicating that intact microtubules 
are also required for efficient centromere detachment 
(Fig. 2c, MT formation) (Katsumata et al. 2016). Thus, 
both Taz1-dependent and microtubule-dependent mech-
anisms facilitate centromere detachment, linking cen-
tromere detachment with telomere clustering. Molecular 
mechanisms of these pathways remain to be elucidated.

Functions of the bouquet chromosome 
arrangement in S. pombe

The bouquet promotes homologous chromosome 
pairing

In S. pombe, as in other organisms, the bouquet promotes 
homologous chromosome pairing. Impairment of the 

bouquet chromosome arrangement by mutation of genes 
required for the telomere–LINC interaction or LINC integ-
rity compromises pairing and segregation of homologous 
chromosomes and promotes non-homologous chromo-
some association (Shimanuki et al. 1997; Cooper et al. 
1998; Nimmo et al. 1998; Niwa et al. 2000; Chikashige 
and Hiraoka 2001; Kanoh and Ishikawa 2001; Tuzon et al. 
2004). Similarly, when horsetail nuclear movements are 
impaired by mutation in the dhc1 gene, which encodes a 
dynein motor subunit, homologous chromosome pairing is 
impaired (Yamamoto et al. 1997; Ding et al. 2004). These 
results suggested that a combination of telomere cluster-
ing and SPB movements induces alignment and contact of 
homologous chromosomes, thereby promoting homolo-
gous chromosome pairing (Yamamoto and Hiraoka 2001; 
Hiraoka and Dernburg 2009). In this model, spatial align-
ment of homologs requires structural integrity of chromo-
somes. Consistent with this, a recent study showed that 
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Fig. 3  Meiosis progression in diploid zygotes. a, b Changes in the 
population of different types of zygotes with (b) or without (a) expres-
sion of Taz1∆myb–Sad1 fusion. Cells were crossed on ME solid 
medium, and, at the indicated time points, the nuclear and microtu-
bule morphology of more than 100 zygotes was examined under a 
microscope. (Upper graph) Populations of zygotes in various cat-
egories. Zygotes were placed into six different categories as follows: 
2 nuc bi-nuclear zygotes forming an astral microtubule array with 
a single microtubule focus [see c, 2 nuc and 2 nuc (aberrant)], 1 nuc 
mono-nuclear zygotes forming an astral microtubule array with a sin-
gle microtubule focus [see c, 1 nuc and 1 nuc (aberrant)], MI mono- or 
bi-nuclear zygotes forming a single spindle [see c, MI and MI (aber-
rant)] or bi-nuclear zygotes without an astral microtubule array (see 
Fig. 1a, vii), MII bi- or four-nuclear zygotes forming two spindles (see 

c, MII) or four nuclear zygotes forming short cytoplasmic microtubules 
[see Fig. 1a(i)]; Aberrant: zygotes forming aberrant spindles [see c, 
MI (aberrant)]; sporulated: zygotes forming spores (see c, sporulated). 
(Lower graph) Cumulative populations of zygotes forming spindles. 
MI zygotes forming MI spindle (see c, MI), MII zygotes forming MII 
spindle (see c, MII), Aberrant MI zygotes forming aberrant MI spindle 
[see c, MI (aberrant)]. Note that, because spindle phenotype was exam-
ined every 2 h, which is longer than the lifetime of the spindle, the pop-
ulation of cells with each type of spindle was undercounted. c Repre-
sentative nuclear and microtubule morphology of zygotes. Blue, green, 
and magenta, respectively, indicate DNA, SPB (GFP-tagged Sid4), and 
microtubule (mCherry-tagged Atb2). White lines indicate cell shapes. 
The arrowhead indicates a SPB detached from the chromosome mass, 
and the arrow indicates a spindle pole lacking a SPB. Bar 5 µm
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telomere–SPB interaction is required for proper spindle 
formation (Tomita and Cooper 2007; Chikashige et al. 
2014; Fennell et al. 2015; Katsumata et al. 2016).

Interestingly, live-cell analysis of individual bouquet-
defective cells revealed that deletion of a gene required for 
the nuclear movements, such as dhc1, eliminated the cells 
that formed an abnormal spindle (Chikashige et al. 2014; 
Fennell et al. 2015). Furthermore, in the bouquet-defective 
cells, the SPB is often detached from the chromosome 
mass during the horsetail nuclear movements [Fig. 3c, 1 
nuc (aberrant)] (Tomita and Cooper 2007; Chikashige et al. 
2014). Based on these observations, it was proposed that 
nuclear movements cause detachment of the SPB from the 
NE in bouquet-defective cells, impairing spindle formation 
(Chikashige et al. 2014).

However, several other observations argue against this 
idea. First, when an improper spindle forms, the SPB 
is associated with the nuclear periphery (Fennell et al. 
2015). Second, although dhc1 deletion mostly eliminates 
zygotes with an aberrant meiosis I spindle, the propor-
tion of zygotes forming a normal meiosis I spindle does 
not increase, and instead tends to decrease (Fig. 3a, bot-
tom graph). Importantly, dhc1 deletion increased the fre-
quency of bi-nuclear zygotes (Fig. 3a, top graphs). These 
observations raise the possibility that dhc1 deletion inhib-
its nuclear fusion in spindle-defective zygotes (see the next 
section), thereby eliminating aberrant spindle formation. 
This phenomenon was likely ignored in previous studies, 
which only examined mono-nuclear zygotes (Chikashige 
et al. 2014). Third, the centromere–SPB interaction can 
substitute for the telomere–SPB interaction to induce 
proper meiotic spindle formation (Fennell et al. 2015), 
and, when the centromere–SPB interaction is abolished 
during mitosis, mitotic spindle formation is impaired, 
as seen in bouquet-defective cells (Fernandez-Alvarez 
et al. 2016). Because horsetail-like nuclear movements 
are absent in mitosis, the mitotic spindle defects seen in 
cells defective in the centromere–SPB interaction cannot 
be attributed to such movements. Collectively, based on 
the observations described above, it seems unlikely that 
the horsetail nuclear movements cause the spindle defects 
seen in bouquet-defective cells.

A very recent work revealed that LINC-dependent SPB 
interaction of either telomeres or centromeres is required 
for insertion of the SPB into the NE (Fernandez-Alvarez 
et al. 2016). In S. pombe, the NE does not break down and 
continues to enclose the chromosomes during nuclear divi-
sion. At the onset of nuclear division, the SPB, which is 
located outside of the NE, penetrates into the NE via local 
NE breakdown (NEBD) to form the spindle (Ding et al. 
1997). Loss of telomere/centromere–SPB interaction com-
promises the NEBD-accompanied SPB insertion into the 

impairment of chromosome structure decreases the fre-
quency of homologous chromosome pairing (Ding et al. 
2016a, b).

Centromere detachment from the SPB induces meiotic 
centromere formation

In addition to homologous chromosome pairing, the 
bouquet chromosome arrangement contributes to forma-
tion of meiosis-specific centromeres. During homolo-
gous chromosome segregation at meiosis I, kinetochores 
on sister centromeres fuse with one another while sister 
centromere cohesion persists, allowing sister chromatids 
to co-segregate to the same spindle pole without sepa-
rating (Petronczki et al. 2003; Hauf and Watanabe 2004; 
Brar and Amon 2008; Miller et al. 2013). Several stud-
ies showed that when centromere detachment does not 
occur, the properties of meiotic centromeres are com-
promised. In cells lacking chiasmata, sister chromatids 
often become attached to both spindle poles and experi-
ence forces toward opposite poles, but they rarely undergo 
separation owing to the properties of meiosis-specific 
centromeres (Hirose et al. 2011). Importantly, when cen-
tromeres remain attached to the SPB in the absence of 
MAP kinase activation (Chikashige et al. 2004), sister 
chromatids are predominantly segregated apart from each 
other in chiasma-lacking cells (Yamamoto and Hiraoka 
2003). Furthermore, in bouquet-defective cells, in which 
centromere detachment is repressed, the separation fre-
quency of sister chromatids significantly increased when 
chiasmata are eliminated (Katsumata et al. 2016). All 
these observations indicate that centromere detachment 
is required for establishment of the proper meiotic cen-
tromere properties. In bouquet-defective cells, in addition, 
centromeric localization of the heterochromatin protein 
1 homolog Swi6 and the centromere-specific histone H3 
variant Cnp1 is impaired (Klutstein et al. 2015). This may 
mean that centromere detachment is required for proper 
centromere localization of these components. Because 
kinetochore disassembly accompanies centromere detach-
ment, it was proposed that the properties of meiosis-spe-
cific centromeres are established through reformation of 
the kinetochore (Asakawa et al. 2005).

The bouquet contributes to spindle formation

Recent studies showed that the bouquet also contributes to 
spindle formation. In cells defective in the LINC-depend-
ent telomere–SPB interaction, the SPB is often missing 
from the spindle poles at meiosis I [Fig. 3a, bqt1∆ and 
rap1∆, lower graph, and c, MI (aberrant)] (Tomita and 
Cooper 2007; Fennell et al. 2015). This indicates that the 



1044 Curr Genet (2017) 63:1037–1052

1 3

NE, resulting in spindle impairment (Fernandez-Alvarez 
et al. 2016).

It is currently not clear how the LINC-dependent tel-
omere/centromere–SPB interaction contributes to the SPB 
insertion. Notably in this regard, the frequency of spindle 
defects is greatly reduced in haploid meiotic cells defec-
tive in the telomere–SPB interaction (Fig. 4a), in contrast 

to the situation in the corresponding mutant zygotes [in 
live-cell analysis, about half of bqt1∆ zygotes and ~80% 
of bqt1∆ zygotes expressing Taz1∆myb–Sad1 exhibit 
spindle defects (Katsumata et al. 2016)]. Because telomere/
centromere–SPB interaction is also crucial for karyo-
gamy (see the next section), a process that is missing from 
haploid meiosis, this may mean that defective telomere/
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Fig. 4  Spindle formation in haploid meiosis. a Observation frequen-
cies of meiosis I spindle types in various types of haploid cells. Hap-
loid cells were induced to enter meiosis in EMM-N liquid medium, 
and then their spindle morphology was examined every 10 min under 
a microscope. The spindle and SPB were visualized using mCherry-
tagged Atb2 and GFP-tagged Sid4, respectively. +, no mutations 
otherwise depicted; +None, without Taz1∆myb–Sad1 expression; 
+Taz1∆myb–Sad1, with Taz1∆myb–Sad1 expression; bipolar, nor-
mal spindle with SPBs at both poles; monopolar, spindle missing the 
SPB at one pole; nonpolar, spindle missing SPBs at both poles; oth-
ers, other types of spindles; no spindle, no spindle formation. Images 

show representative types of meiosis I spindles, and arrowheads 
indicate spindle poles lacking SPBs. Numbers in parenthesis indicate 
numbers of cells examined. b Dynamics of meiotic spindles in hap-
loid cells. Numbers indicate time in min. Green shows GFP-tagged 
Sid4 (SPB), and magenta shows mCherry-tagged Atb2 (microtubules) 
and Taz1∆myb–Sad1. Arrowheads indicate mCherry dots, which 
were often observed in dhc1∆ cells expressing Taz1∆myb–Sad1. 
These dots probably represent Taz1∆myb–Sad1 that failed to localize 
at the SPB due to the lack of dynein activity. White lines indicate cell 
outlines. Bar 2 µm
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centromere–SPB interaction often causes impaired or 
incomplete fusion of the NE and/or the SPBs of two nuclei 
during karyogamy, which in turn causes defective SPB 
insertion and spindle impairment during the subsequent 
meiosis I.

The telomere clustering-linked regulation of centromere 
detachment is advantageous for spindle formation. Because 
SPB insertion requires the SPB to interact with either cen-
tromeres or telomeres, detachment of centromeres from 
the SPB is disastrous for spindle formation when telomere 
clustering is defective. Indeed, when repression of cen-
tromere detachment is alleviated by Taz1∆myb–Sad1, bou-
quet-defective cells mostly fail to form proper spindles and 
complete meiosis (Fig. 5) (Katsumata et al. 2016). Because 
of the catastrophic consequence of centromere detachment, 
repression of centromere detachment is crucial for bou-
quet-defective cells, although the repression causes impair-
ment of the meiotic centromere properties, which is rela-
tively subtle compared to the spindle impairment caused 
by a loss of the repression (see the previous section). In 
nature, various environmental factors such as low tempera-
ture or osmotic stress perhaps often disrupt cytoplasmic 

microtubules and compromise telomere clustering. Accord-
ingly, cells likely evolved the telomere clustering–linked 
centromere regulatory system to ensure spindle formation 
and accomplish meiotic division under such suboptimal 
conditions.

The bouquet contributes to nuclear fusion 
during karyogamy

We further discovered that the bouquet contributes to 
nuclear fusion during karyogamy. This is demonstrated 
by the frequent observation of bi-nuclear bqt1∆ or rap1∆ 
zygotes with typical karyogamy or a horsetail microtubule 
array (an astral microtubule array with a single microtu-
bule focus) (Fig. 3a, bqt1∆ and rap1∆, upper graph, and 
c, 2 nuc). In addition, the telomere clustering-linked reg-
ulation of centromere detachment contributes to nuclear 
fusion. In bqt1∆ or rap1∆ cells, Taz1∆myb–Sad1 further 
compromises nuclear fusion and increases the proportion 
of bi-nuclear zygotes (Fig. 3b, bqt1∆ + Taz1∆myb and 
rap1∆ + Taz1∆myb, upper graph), indicating that cen-
tromere detachment further compromises nuclear fusion in 

Impaired 
telomere clustering

Concurrent telomere and 
centromere detachment

Telomere clustering Centromere detachment

• Proper spindle 
  formation

• Efficient nuclear
  fusion

 Taz1- and MT-
dependent regulation

• Defective spindle 
  formation

• Inefficient nuclear
  fusion

Fig. 5  The role of telomere clustering-linked centromere detachment 
in spindle formation and nuclear fusion. In normal meiosis, telomeres 
cluster at the SPB (telomere clustering), and the centromeres subse-
quently detach (centromere detachment), resulting in formation of 
the bouquet arrangement. When telomere clustering is compromised 
(Impaired telomere clustering), Taz1- and microtubule-dependent 
regulatory mechanisms (Taz1- and MT-dependent regulation) inhibit 
centromere detachment from the SPB. In both cases, the spindle 

forms properly and nuclear fusion occurs efficiently due to the inter-
action of the SPB with telomeres or centromeres (Proper spindle 
formation, Efficient nuclear fusion). However, when both telomeres 
and centromeres concurrently become detached from the SPB (Con-
current telomere and centromere detachment), spindle formation and 
nuclear fusion are compromised (Defective spindle formation, Inef-
ficient nuclear fusion)
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telomere clustering-defective cells. Thus, the centromere–
SPB interaction can probably substitute for the telomere–
SPB interaction to facilitate nuclear fusion, as in the case 
of spindle formation, and repression of centromere detach-
ment ensures nuclear fusion in telomere clustering–defec-
tive cells (Fig. 5).

How does telomere/centromere–SPB interaction con-
tribute to nuclear fusion? During nuclear fusion, SPB-
bridging microtubules and minus end-directed microtubule 
motors, Klp2 kinesin and dynein, move the SPBs and drive 
nuclear fusion (Fig. 6a, Interaction-dependent mecha-
nism) (Troxell et al. 2001; Scheffler et al. 2015). Because 
the SPBs often dissociate from chromosome masses 

during karyogamy in bouquet-defective cells [Fig. 3c, 2 
nuc (aberrant)], the telomere/centromere–SPB interac-
tion is probably required for the SPBs to move two nuclei 
(Fig. 6b). However, even in the absence of the telomere/
centromere–SPB interaction, nuclear fusion still occurs, 
albeit inefficiently (Fig. 3b, bqt1∆ + Taz1∆myb and 
rap1∆ + Taz1∆myb, upper graph). Remarkably, the resid-
ual nuclear fusion depends exclusively on dynein, as dem-
onstrated by the observation that introduction of the dhc1∆ 
mutation almost completely eliminates nuclear fusion 
(Fig. 3b, bqt1∆ dhc1∆ + Taz1∆myb–Sad1 and rap1∆ 
dhc1∆ + Taz1∆myb–Sad1). Because dynein mediates 
association of the centrosome with the nucleus and nuclear 

(b)(a)

SPB

Microtubule

Klp2

Nucleus
Dynein

(c)

 Interaction-dependent
mechanism

Interaction-independent
mechanism

Fig. 6  Two mechanisms driving nuclear fusion during karyogamy in 
S. pombe. a Nuclear fusion mechanisms dependent on and independ-
ent of telomere/centromere–SPB interaction (interaction-dependent 
mechanism and interaction-independent mechanism, respectively). 
In the interaction-dependent mechanism, nuclear fusion is driven by 
microtubules (green lines) bridging the SPBs (blue spheres) of two 
nuclei. Klp2 (purple spheres) localized at microtubules and cytoplas-
mic dynein (red spheres) localized at the SPB move on the microtu-
bules and generate forces on the SPBs that promote their approach 
and drive nuclear fusion, as proposed previously (Scheffler et al. 
2015). In the interaction-independent mechanism, NE-localized 
dynein interacts with SPB-nucleated microtubules and drives nuclear 

fusion by generating forces that promote approach. Blue arrows show 
the forces generated by microtubule motors. b Effects of the loss 
of telomere/centromere–SPB interaction on interaction-dependent 
nuclear fusion. When the interaction-dependent mechanism drives 
nuclear fusion, only SPBs approach and fuse in the absence of the tel-
omere/centromere–SPB interaction, and chromosome masses are left 
behind. c Effects of the loss of telomere/centromere–SPB interaction 
on the interaction-independent nuclear fusion. When the interaction-
independent mechanism drives nuclear fusion, even in the absence of 
the telomere/centromere–SPB interaction, chromosome masses are 
able to approach and fuse, albeit inefficiently
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migration in many different organisms (Gonczy et al. 1999; 
Robinson et al. 1999; Salina et al. 2002; Malone et al. 
2003; Tanaka et al. 2004; Burke and Roux 2009; Zhang 
et al. 2009; Fridolfsson and Starr 2010; Splinter et al. 2010; 
Bolhy et al. 2011; Jodoin et al. 2012; Sitaram et al. 2012), 
dynein-dependent association of the SPBs with the NE 
likely drives nuclear fusion independently of the telomere/
centromere–SPB interaction (Fig. 6a, Interaction-inde-
pendent mechanism, c). We speculate that cooperation of 
the mechanisms dependent on and independent of the tel-
omere/centromere–SPB interaction drives efficient nuclear 
fusion (Fig. 6a).

Universality of the bouquet functions

As described in the “Introduction”, bouquet-dependent 
homologous chromosome pairing is a highly conserved 
event in eukaryotic organisms (Zickler and Kleckner 1998; 
Scherthan 2001; Yamamoto and Hiraoka 2001; Hiraoka 
and Dernburg 2009; Koszul and Kleckner 2009). However, 
some variation in chromosome behavior exists among spe-
cies. In most organisms, telomere clustering is transient, 
and telomeres repeatedly cluster and disperse, whereas, 
in S. pombe, telomeres remain clustered during most of 
the meiotic prophase (Trelles-Sticken et al. 2005; Conrad 
et al. 2008; Koszul et al. 2008; Penkner et al. 2009; Baudri-
mont et al. 2010; Morimoto et al. 2012; Wynne et al. 2012; 
Shibuya et al. 2014). In C. elegans, rather than telomeres, 
chromosomal domains, called pairing centers, cluster 
(MacQueen et al. 2005; Phillips et al. 2005). In S. cer-
evisiae, actin filaments rather than microtubules drive tel-
omere clustering (Trelles-Sticken et al. 2005; Koszul et al. 
2008). Despite this mechanistic diversity, it is clear that the 
bouquet promotes homologous chromosome pairing in all 
organisms.

By contrast, bouquet-dependent meiotic centromere 
formation is observed only in yeast species. As in S. 
pombe, in S. cerevisiae centromeres are attached to the 
SPB during mitotic interphase and detach from it con-
comitant with dissociation of kinetochores from cen-
tromeres upon entry into meiosis (Miller et al. 2012; Kim 
et al. 2013; Meyer et al. 2013). Centromere detachment 
is probably also required for meiotic centromere forma-
tion in S. cerevisiae, because, in mutants defective in 
centromere detachment, sister chromatids frequently 
undergo equational segregation (Miller et al. 2012). How-
ever, unlike the situation in S. pombe, in which Csi1 con-
nects the centromeres with the SPB (Hou et al. 2012), 
microtubule disruption in S. cerevisiae induces cen-
tromere detachment and proper meiotic centromere for-
mation (Miller et al. 2012). Therefore, the mechanism of 

centromere detachment may not be identical between the 
two species. In multicellular eukaryotes, although cen-
tromeres are not associated with the centrosome before 
meiosis, kinetochore disassembly probably occurs, as 
evidenced by delocalization of outer kinetochore com-
ponents from the centromeres during meiotic prophase 
(Parra et al. 2009); therefore, in multicellular species, 
kinetochore disassembly may induce meiotic centromere 
formation, as in S. pombe.

The contribution of the bouquet to spindle formation 
or NEBD-dependent SPB insertion seen in S. pombe has 
not been reported in other organisms. However, in S. cer-
evisiae, the SUN domain protein Mps3 contributes to 
SPB insertion into the NE during mitosis (Jaspersen et al. 
2006; Friederichs et al. 2011; Chen et al. 2014), and, 
in mammals, SUN domain proteins contribute to spin-
dle formation and the associated NEBD (Turgay et al. 
2014). These facts indicate that the LINC complexes 
also contribute to spindle formation and NEBD in other 
organisms. Furthermore, in S. cerevisiae, Mps3 contrib-
utes to nuclear fusion during karyogamy (Nishikawa 
et al. 2003; Jaspersen et al. 2006), and, in multicellular 
organisms, the LINC complexes contribute to attachment 
of the centrosome to the nucleus and nuclear migration 
(Gonczy et al. 1999; Robinson et al. 1999; Salina et al. 
2002; Malone et al. 2003; Tanaka et al. 2004; Burke and 
Roux 2009; Zhang et al. 2009; Fridolfsson and Starr 
2010; Splinter et al. 2010; Bolhy et al. 2011; Jodoin et al. 
2012; Sitaram et al. 2012). Thus, contribution of the 
LINC complexes to nuclear migration is also common 
among eukaryotes. It remains unknown whether chro-
mosome–LINC interactions contribute to these events; 
however, given that Mps3 tethers telomeres to the NE in 
S. cerevisiae (Bupp et al. 2007), and that SUN domain 
proteins interact with chromosomes via nuclear lamins 
in mammals (Crisp et al. 2006; Haque et al. 2006), it is 
quite possible that the LINC–chromosome interaction is 
crucial for these events, as in the bouquet-dependent case 
in S. pombe.

Conclusion

It has long been known that chromosome position-
ing contributes to chromosomal events, including DNA 
transcription, replication, and recombination. However, 
the finding in S. pombe that the LINC-dependent bou-
quet chromosome arrangement contributes to non-chro-
mosomal events, such as spindle formation and nuclear 
fusion, indicates that chromosome positioning has more 
diverse functions than previously thought. In addition, 
the findings that centromere detachment is linked with 
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telomere clustering and that this connection is critical 
for spindle formation and nuclear fusion indicate that 
chromosome positioning is stringently regulated for its 
functions. The molecular mechanisms underlying these 
relatively novel functions and regulation of the bouquet 
remain to be determined. More importantly, it remains to 
be determined why chromosomes participate in regula-
tion of non-chromosomal events.

The available evidence suggests that the functions of 
LINC-dependent chromosome positioning are common 
in other organisms. However, most previous studies of 
LINC-dependent chromosome positioning focused solely 
on chromosomal events. Conversely, studies on LINC-
dependent non-chromosomal events rarely took chromo-
somal positioning into account. Therefore, many exciting 
chromosome positioning-dependent activities may remain 
unnoticed. Therefore, to comprehensively elucidate the 
functions of chromosome positioning, future studies should 
adopt a much broader perspective. A wider view would also 
be clinically important, given that LINC complexes are 
involved in lamin-related deceases such as Emery-Dreifuss 
muscular dystrophy (Fridkin et al. 2009; Razafsky and 
Hodzic 2009; Mejat and Misteli 2010). It is clear that chro-
mosome positioning is not strictly a chromosomal phenom-
enon but instead a phenomenon that is relevant to a wide 
range of biological fields.

Materials and methods

Yeast strains, media, and basic genetic methods

The fission yeast strains used in this study are shown 
in Table 1. Genes fused with the GFP or mCherry gene 
and deletion alleles of the genes used in this study were 
described previously (Katsumata et al. 2016). Integration of 
the mCherry-atb2+ fusion gene at the atb2+ locus was car-
ried out as follows. First, an integration plasmid, pEN5, was 
constructed. A DNA fragment carrying the mCherry-atb2+ 
fusion gene along with the nda3+ promoter was amplified 
from pMY53 using two synthetic oligonucleotide prim-
ers, TCCGAGCTCCATATATGCCGTATTCTTGAATGT 
and CCGCTCGAGTCAATCCGACATTTTTGCCTCG 
(Yoshida et al. 2013). The PCR product was digested with 
XhoI and SacI, and then inserted between the correspond-
ing sites of pRS306, a URA3-bearing plasmid (Sikorski and 
Hieter 1989). The resultant plasmid pEN5 was linearized 

by digestion with EcoRI at a site in the atb2+ gene, and 
then transformed into ura4– cells. Transformants bearing 
the mCherry-atb2+ fusion gene integrated at the atb2+ 
locus were selected by the ura+ phenotype and confirmed 
by colony PCR. Media and basic genetic manipulation 
methods used in this study were described by Moreno et al. 
(1991).

Analysis of chromosome and microtubule morphology 
in zygotic meiosis

Cells grown on YES solid medium at 30 °C were trans-
ferred to ME solid medium and induced to enter meiosis 
by incubation at 25 °C. Nuclear DNA in meiotic zygotes 
was stained with DNA-specific Hoechst 33342 dye, as 
described previously (Ding et al. 1998). Images of the 
cells at seven focal planes spaced at 0.4 µm intervals 
were taken through a 60×/1.42 NA Plan Apo oil immer-
sion objective lens on an Olympus IX71 inverted micro-
scope (Olympus Corp., Tokyo, Japan) equipped with a 
cooled charge-coupled device camera (CoolSNAP-HQ2; 
Nippon Roper Co., Ltd., Tokyo, Japan). The resultant 
images were processed by deconvolution and analyzed 
using the MetaMorph (version 7) software (Molecular 
Devices Japan, Inc., Tokyo, Japan).

Live‑cell analysis of spindle dynamics in haploid 
meiotic cells

Haploid cells bearing both mating-type genes were 
grown in liquid YES medium and induced to enter meio-
sis by incubation at 30 °C in liquid EMM-N medium, as 
described previously (Yoshida et al. 2013). For analysis of 
spindle dynamics, a drop of the cell suspension was placed 
on the bottom of 35 mm glass-bottom dishes (Matsunami 
Glass Ind., Ltd., Tokyo, Japan) coated with 5 mg/ml lectin 
(Sigma-Aldrich Japan, Inc., Tokyo, Japan). The cells were 
observed through a 60×/1.42 NA Plan Apo oil immersion 
objective lens (Olympus Corp., Tokyo, Japan) on an IX71 
inverted microscope operated by the MetaMorph software. 
Using a cooled CCD camera, time-lapse images of the cells 
were collected every 10 min at nine focal planes spaced at 
0.5 µm intervals. During collection of time-lapse images, 
the cells were kept at 25 °C. All obtained images were pro-
cessed as for analysis of zygotic cells.
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3 SKK35-1D h+ leu1-32 ura4-D18 lys1+::Pnda3-mCherry-atb2+ sid4+::GFP-kanr

SKK35-3D h– leu1-32 ura4-D18 lys1+::Pnda3-mCherry-atb2+ sid4+::GFP-kanr
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SKKT108-a h– leu1-32 bqt1::LEU2 lys1+::Pnda3-mCherry-atb2+ sid4+::GFP-kanr
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SAH70-
46C
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SKKT104-a h– leu1-32 ura4-D18 lys1+::Pnda3-mCherry-atb2+ sid4+::GFP-kanr aur1+::aur1r-Ptaz1-taz1∆myb-sad1-mCherry
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SKKT148-a h+ ade6-M210 leu1-32 bqt1::LEU2 dhc1-d3[::LEU2] lys1+::Pnda3-mCherry-atb2+ sid4+::GFP-kanr aur1+::aur1r-
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Ptaz1-taz1∆myb-sad1-mCherry

SENT34-1 h− leu1-32 ura4-D18 lys1+::mat-P dhc1-d3[::LEU2] atb2+::Pnda3-mCherry-atb2+-URA3 sid4+::GFP-kanr 
aur1+::aur1r-Ptaz1-taz1∆myb-sad1-mCherry

SENT36-1 h− leu1-32 ura4-D18 lys1+::mat-P dhc1-d3[::LEU2] bqt1::LEU2 atb2+::Pnda3-mCherry-atb2+-URA3 sid4+::GFP-kanr 
aur1+::aur1r-Ptaz1-taz1∆myb-sad1-mCherry
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